JPH01165763A - Crucible for electron-beam vaporization source - Google Patents

Crucible for electron-beam vaporization source

Info

Publication number
JPH01165763A
JPH01165763A JP32369687A JP32369687A JPH01165763A JP H01165763 A JPH01165763 A JP H01165763A JP 32369687 A JP32369687 A JP 32369687A JP 32369687 A JP32369687 A JP 32369687A JP H01165763 A JPH01165763 A JP H01165763A
Authority
JP
Japan
Prior art keywords
crucible
electron beam
graphite
graphite crucible
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32369687A
Other languages
Japanese (ja)
Inventor
Kazuhiro Suzuki
一弘 鈴木
Masao Iguchi
征夫 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP32369687A priority Critical patent/JPH01165763A/en
Publication of JPH01165763A publication Critical patent/JPH01165763A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the amt. of a gas discharged from the title graphite crucible and to improve the heat resistance of the crucible by coating the outer surface of the crucible with a high-m.p. metal nitride. CONSTITUTION:The crucible for an electron-beam vaporization source is obtained by coating the outer surface of a graphite crucible 1 with the film 2 of a high-m.p. metal nitride. The raw material 3 to be vaporized is heated by the electron beam 5 generated from an electron beam generator 4 from the surface side. Since the raw material 3 is held by the graphite crucible 1 having a heat insulating property and electric conductivity, the heat hardly escapes to the outside, and a large amt. of vapor 6 can be generated with good heat efficiency. The amt. of the gas discharged from the crucible 1 is also reduced by the film 2, and heat is highly insulated. As a result, the evacuation time is reduced, the electron beam generator 4 is stably operated, and the film forming rate can be increased. In addition, the film 2 can be formed by CVD, etc.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は真空蒸着及びイオンブレーティング用の電子ビ
ーム蒸発源用ルツボに関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a crucible for an electron beam evaporation source for vacuum evaporation and ion blating.

〈従来の技術〉 従来より真空蒸着用のルツボとして石英、アルミナ、窒
化ボロン、グラファイト、水冷銅ハース等が用いられて
いる。
<Prior Art> Conventionally, quartz, alumina, boron nitride, graphite, water-cooled copper hearth, etc. have been used as crucibles for vacuum evaporation.

ところで電子ビームを用いて高速の成膜速度を伴う真空
蒸着や、イオンブレーティングを行ったりするためのル
ツボは、電極として作用するための導電性を有し、かつ
熱効率を高めて高い蒸発量を得るための断熱性をも兼ね
備えていなければならない。
By the way, crucibles used for vacuum evaporation and ion blating, which involve high film formation rates using electron beams, have electrical conductivity to act as electrodes, and also have high thermal efficiency to achieve a high amount of evaporation. It must also have insulation properties to achieve this goal.

グラファイトはこの2点を満足させ得るルツボ材料であ
る。
Graphite is a crucible material that can satisfy these two points.

因みに1真空″21巻第1号(1978)第9頁に、電
子ビーム蒸発源の水冷銅ルツボ内に黒鉛のハースライナ
−を設置することにより蒸発速度が5倍程度上昇させ得
た、と記載されている。
Incidentally, in 1 Vacuum, Vol. 21, No. 1 (1978), page 9, it is stated that the evaporation rate could be increased by about five times by installing a graphite hearth liner in the water-cooled copper crucible of the electron beam evaporation source. ing.

しかしながらこのグラファイトルツボは焼成されてでき
ているため、気孔が多くルツボ表面のガス放出が著しい
、そのため真空に排気する際時間がかかりすぎ操業性に
悪影響を及ぼしたり、電子ビーム発生装置の異常放電の
原因ともなっている。
However, since this graphite crucible is made by firing, it has many pores and gas release from the crucible surface is significant.As a result, it takes too much time to evacuate the crucible, which may adversely affect operability or cause abnormal discharge in the electron beam generator. It is also the cause.

日本真空技術株式会社編の“真空ハンドブック”にも、
真の表面積と幾何学的表面積との比で表される粗さ係数
は銅の5.ステンレスの4〜6に対して黒鉛は62と表
面が粗く、ガス放出が大であることが示されている。
Also in the “Vacuum Handbook” edited by Japan Vacuum Technology Co., Ltd.
The roughness coefficient, expressed as the ratio of true surface area to geometric surface area, is 5. It has been shown that graphite has a rougher surface of 62, compared to 4 to 6 for stainless steel, and releases a large amount of gas.

また特開昭61−34174号公報に、高融点金属で構
成されたヒーター及び熱遮閉板の表面に窒化物を形成さ
せた真空蒸着用セルが開示されているが、ベースはグラ
ファイトでなく、高融点金属で構成されているため断熱
性に限界があり高速の成膜速度を与えるルツボ材には適
さない。
Furthermore, JP-A-61-34174 discloses a vacuum deposition cell in which nitride is formed on the surface of a heater and a heat shield plate made of a high-melting point metal, but the base is not graphite. Since it is composed of a high-melting point metal, it has limited heat insulation properties and is not suitable as a crucible material that provides a high film formation rate.

〈発明が解決しようとする問題点〉 本発明は真空蒸着あるいはイオンブレーティングに際し
て、真空に排気する際、放出ガス量が小さい電子ビーム
蒸発源用ルツボを、また熱効率にすぐれ、高い蒸発速度
を与えることが出来る電子ビーム用蒸発源用ルツボを提
案するものである。
<Problems to be Solved by the Invention> The present invention provides a crucible for an electron beam evaporation source that releases a small amount of gas when evacuated to a vacuum during vacuum evaporation or ion blating, and provides a crucible for an electron beam evaporation source that has excellent thermal efficiency and a high evaporation rate. This paper proposes a crucible for an evaporation source for electron beams that can be used as an evaporation source for electron beams.

く問題解決のための手段〉 本発明はグラファイトルツボの周囲外表面を高融点金属
の窒化物にて被覆したことを特徴とする電子ビーム蒸発
源用ルツボである。
Means for Solving Problems> The present invention is a crucible for an electron beam evaporation source, characterized in that the outer peripheral surface of the graphite crucible is coated with a nitride of a high melting point metal.

く作 用〉 一般に真空排気中の材料からのガス放出は、大別して予
めその材料中に入っているH、O,N等のガス成分が表
面に拡散し、真空中に放出される場合、その材料を大気
中に放置した際に大気中のガス分子が表面に吸着したり
内部に拡散浸透したものが真空排気中に離脱あるいは拡
散放出する場合、および材料そのものが蒸発する場合と
がある。
In general, gas release from a material during vacuum evacuation can be broadly classified into two types: gas components such as H, O, and N that are already present in the material diffuse to the surface and are released into the vacuum; When a material is left in the atmosphere, gas molecules in the atmosphere may be adsorbed to the surface or diffused into the material and may be released or diffused during evacuation, or the material itself may evaporate.

金属窒化物は他のセラミックスやグラファイトと比較し
て表面上の極性が小さいため、大気中の水蒸気の吸着が
きわめて小さい、しかも被覆された場合母材中に予め不
純物として入っているH2O、N等のガス成分が表面に
拡散して真空中に放出される隙の拡散障壁として作用す
る。その中でも特に融点が1600℃以上の高融点金属
の窒化物は10−’torrの蒸気圧となる温度が12
00℃以上と高く、高温においてその蒸発量がきわめて
少ない。
Metal nitrides have less polarity on the surface than other ceramics and graphite, so adsorption of water vapor in the atmosphere is extremely small.Moreover, when coated, H2O, N, etc. that are already present in the base material as impurities are absorbed. acts as a diffusion barrier in the gap where the gaseous components diffuse to the surface and are released into the vacuum. Among them, nitrides of high-melting point metals with melting points of 1,600°C or higher have a vapor pressure of 10-'torr at a temperature of 12
The amount of evaporation is extremely small at high temperatures of 00°C or higher.

以上が本発明のグラファイトルツボの放出ガス量がきわ
めて小さい理由と考えられる。
The above is considered to be the reason why the amount of gas released from the graphite crucible of the present invention is extremely small.

その上にこれら高融点金属窒化物はグラファイトと比較
して輻射率が小であるため、元来すぐれているグラファ
イトルツボの断熱性をさらに向上させ、その結果として
一層蒸発量を大きくとれる効果がある。
Furthermore, these high-melting point metal nitrides have a lower emissivity than graphite, so they can further improve the already excellent thermal insulation properties of graphite crucibles, and as a result, have the effect of increasing the amount of evaporation. .

次に本発明ルツボの具体的通用例を第1図に示す。Next, a specific practical example of the crucible of the present invention is shown in FIG.

lはグラファイトルツボであり、2は1の周囲外表面に
施された高融点金属の窒化物被膜、3は蒸発原料、4は
電子ビーム発生装置、5は電子ビーム、6は蒸気である
。電子ビーム発注装置4より発生した電子ビーム5は蒸
発原料3を表面から加熱する。蒸発原料3は断熱性、導
電性を有するグラファイト製ルツボ1によって保持され
ているので外部への熱損失は小さく、熱効率よく蒸気6
を大量に発生させることができる。グラファイトルツボ
1の周囲外表面は高融点金属の窒化物被膜2が施されて
おり、グラファイトルツボlからの放出ガス量を減少さ
せ、かつ断熱性を高めている。
1 is a graphite crucible, 2 is a high melting point metal nitride coating applied to the outer surface of 1, 3 is an evaporation source, 4 is an electron beam generator, 5 is an electron beam, and 6 is steam. The electron beam 5 generated by the electron beam ordering device 4 heats the evaporation raw material 3 from the surface. Since the evaporation raw material 3 is held in the graphite crucible 1 which has heat insulation and conductivity, heat loss to the outside is small and the steam 6 is efficiently heated.
can be generated in large quantities. The peripheral outer surface of the graphite crucible 1 is coated with a nitride coating 2 of a high melting point metal to reduce the amount of gas released from the graphite crucible 1 and to improve heat insulation.

これによって排気時間の短縮及び電子ビーム発生源4の
安定操業、そして高速の成膜速度を達成させる。
This makes it possible to shorten the exhaust time, ensure stable operation of the electron beam source 4, and achieve a high film formation rate.

次にグラファイトルツボ外表面への高融点金属の窒化物
の被覆について述べる。
Next, we will discuss coating the outer surface of the graphite crucible with high melting point metal nitride.

被覆法としてはグラファイトルツボに存在する気孔の内
部にまで高融点金属の窒化吻を被覆させるためCVD法
が望ましい、またPVD法で被覆する場合にも、前述し
た理由のためAr等の不活性ガスの流量を大にして5 
X 10−3torr程度の比較的高い蒸着圧力で被覆
を行った方がつき回りがよく気孔の内部まで高融点金属
の窒化物が被覆される。
As a coating method, the CVD method is preferable in order to coat the inside of the pores existing in the graphite crucible with the high melting point metal nitride.Also, when coating with the PVD method, an inert gas such as Ar is used for the reasons mentioned above. Increase the flow rate of 5
Coating at a relatively high deposition pressure of about X 10 -3 torr provides better coverage and allows the high melting point metal nitride to coat the inside of the pores.

高融点金属の窒化物の膜厚は0.5−〜110Irが望
ましい、  0.51rm未満の膜厚では成膜した高融
点金属の窒化物中にピンホールが多く含まれ、そこを通
してグラファイトヘガスが脱吸着するからであり、また
10.以上では熱的内部応力のためには(離が生じやす
いからである。
The film thickness of the high melting point metal nitride is preferably 0.5 to 110 Ir. If the film thickness is less than 0.51 rm, the formed high melting point metal nitride will contain many pinholes, through which the graphite gas will pass through. This is because 10. is deadsorbed. In the above case, separation is likely to occur due to thermal internal stress.

次に本発明ルツボの効果を明らかにするために、被覆な
しのグラファイトルツボ、種々の被覆を施したグラファ
イトルツボおよび水冷銅ルツボについて熱効率、蒸着速
度、放出ガス量等を実験によって求めた結果を表1に示
す。
Next, in order to clarify the effects of the crucible of the present invention, we will present the results of experiments on thermal efficiency, evaporation rate, amount of gas released, etc. for graphite crucibles without coating, graphite crucibles with various coatings, and water-cooled copper crucibles. Shown in 1.

実験に用いた蒸発原料はTiで、ルツボ内径は85閣φ
、ルツボ体積52.電子ビーム出力は50kW(共通)
である。
The evaporation raw material used in the experiment was Ti, and the inner diameter of the crucible was 85 mm.
, crucible volume 52. Electron beam output is 50kW (common)
It is.

なお熱効率は 蒸発!(g/s) X気化潜熱(J/g)で評価した。The thermal efficiency is evaporation! (g/s) X Latent heat of vaporization (J/g) was evaluated.

また蒸着速度はルツボ直上の高さ600 trmの位置
で測定した。放出ガス量は排気速度一定の真空ポンプに
より実際に排気される真空チャンバー内のルツボの設置
時及び非設置時の真空度の差より求めた。これより高融
点金属の窒化物被覆をした本発明のグラファイト製ルツ
ボが被覆なしのグラファイトルツボあるいは他の被覆を
施したグラファイトルツボあるいは水冷銅ルツボと比較
して熱効率が高く、そのため高速成膜が得られること、
また放出ガス量がきわめて少なく、より安定した蒸着操
業が可能になることがわかる。
The deposition rate was measured at a height of 600 trm directly above the crucible. The amount of released gas was determined from the difference in the degree of vacuum between when the crucible was installed and when it was not installed in a vacuum chamber that was actually evacuated by a vacuum pump with a constant pumping speed. This indicates that the graphite crucible of the present invention coated with a high-melting point metal nitride has higher thermal efficiency than an uncoated graphite crucible, a graphite crucible with other coatings, or a water-cooled copper crucible, and therefore can achieve high-speed film formation. To be able to
It can also be seen that the amount of released gas is extremely small, making it possible to perform more stable deposition operations.

さらに第2図に示すバッチタイプのイオンブレーティン
グ装置にてCrNのイオンブレーティングを行った結果
を第3図および第4図に示す。
Furthermore, the results of ion blating of CrN using the batch type ion blating apparatus shown in FIG. 2 are shown in FIGS. 3 and 4.

この方式はプラズマ電子ビームを用いたものであるが、
本発明は特に電子ビーム発生方式を限定しない、真空チ
ャンバー10の内容積は1.4ホであり図示されていな
い真空ポンプ(排気速度90001ハ)で排気される*
  0.1torrまで荒引後に本川を開始し、同時に
加熱ヒーターを入れる。炉温が300°Cまで上昇して
一定となり真空度が5X10−’torrに達したのち
、CrNのイオンブレーティングを開始する。ホローカ
ソードガン11から電子ビーム5が発生し、蒸発原料3
のクロムを蒸発させる。
This method uses a plasma electron beam, but
The present invention does not particularly limit the electron beam generation method.The internal volume of the vacuum chamber 10 is 1.4H, and is evacuated by a vacuum pump (pumping speed: 90001H), not shown.
After roughing down to 0.1 torr, start the main river and turn on the heater at the same time. After the furnace temperature rises to 300° C. and becomes constant, and the degree of vacuum reaches 5×10 −’torr, ion blating of CrN is started. An electron beam 5 is generated from the hollow cathode gun 11, and the evaporated raw material 3
Evaporates the chromium.

蒸発原料3は本発明によるTiN被覆2グラフアイトル
ツボ1によって保持される。ルツボの内径は100II
IIIlφでルツボ体積は71である。蒸発原料3から
のCr蒸気6及び反応ガス導入管8から導入されたN2
はホローカソードガンからの電子ビームによってイオン
化され、図示されていない電源によって負に印加されて
いる基板9に加速され、密着性のよいCrN膜が形成さ
れる。集束コイル7は電子ビームの蒸発原料3上での集
束状態を調整するものである。
The evaporated raw material 3 is held by a TiN-coated 2 graphite crucible 1 according to the invention. The inner diameter of the crucible is 100II
IIIlφ and the crucible volume is 71. Cr vapor 6 from the evaporation raw material 3 and N2 introduced from the reaction gas introduction pipe 8
is ionized by an electron beam from a hollow cathode gun and accelerated to the substrate 9, which is negatively applied by a power source (not shown), forming a CrN film with good adhesion. The focusing coil 7 is used to adjust the focusing state of the electron beam on the evaporation source 3.

電子ビーム出力は50kW、基板印加電圧は一100V
、N、流量は200 cc / m 、蒸着時真空度は
5×10−’torrであった。この条件で成膜した膜
はCrNであることがX線回折で確認された。第3図に
炉内温度及び真空度の変化を第4図にルツボ上高さ60
0 mmでの膜厚分布を示す、なお比較例として同一条
件でTiN被覆なしのグラファイトルツボ及びTiCを
被覆したグラファイトルツボ及び水冷銅ルツボを用いた
場合も並記した。
Electron beam output is 50kW, substrate applied voltage is -100V.
, N, the flow rate was 200 cc/m, and the degree of vacuum during deposition was 5 × 10-' torr. It was confirmed by X-ray diffraction that the film formed under these conditions was CrN. Figure 3 shows the changes in furnace temperature and degree of vacuum, and Figure 4 shows the height above the crucible at 60°.
The film thickness distribution at 0 mm is shown. As a comparative example, a graphite crucible without TiN coating, a graphite crucible coated with TiC, and a water-cooled copper crucible are also shown under the same conditions.

これより本発明のTiN被覆のグラファイトルツボは熱
効率がよく高速成膜が得られ、しかも放出ガス量が少な
いため短時間で排気される。またTiN被膜なしのグラ
ファイトルツボあるいはTiC被覆グラフフィトルツボ
と比較して電子ビーム発生の立上がりがきわめてスムー
ズで安定していたことも確認された。
From this, the TiN-coated graphite crucible of the present invention has good thermal efficiency and can achieve high-speed film formation, and furthermore, because the amount of released gas is small, it can be evacuated in a short time. It was also confirmed that the rise of electron beam generation was extremely smooth and stable compared to a graphite crucible without a TiN coating or a graphite crucible coated with TiC.

〈発明の効果〉 以上より本発明の電子ビーム蒸発源用グラファイトルツ
ボを使用することにより、操業性および安定性にすぐれ
た高速の付着速度を伴う真空蒸着、ならびにイオンブレ
ーティングが工業的に可能となった。これにより耐食性
、耐摩耗性、装飾性等の優れた薄膜で被覆された工業製
品を効率よく生産することができるようになり、産業上
益する所大である。
<Effects of the Invention> As described above, by using the graphite crucible for electron beam evaporation source of the present invention, vacuum evaporation with high deposition rate and ion blating with excellent operability and stability are industrially possible. became. This makes it possible to efficiently produce industrial products coated with a thin film that has excellent corrosion resistance, abrasion resistance, decorativeness, etc., and is of great industrial benefit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電子ビーム蒸発源用グラファイトルツ
ボの概略図、第2図は本発明の電子ビーム蒸発源用グラ
ファイトルツボを用いたイオンブレーティング装置の概
略図、第3図は排気時間に対する炉内温度及び真空度の
変化、第4図は本発明の実施例で得られた膜厚分布を示
す図である。 l・・・グラファイトルツボ、 2・・・被 膜、       3・・・蒸発原料、4
・・・電子ビーム発生装置、 5・・・電子ビーム、6
・・・蒸 気、       7・・・集束コイル、8
・・・反応ガス導入管、   9・・・基 板、10・
・・真空チャンバー、 11・・・ホローカソードガン。 特許出願人   川崎製鉄株式会社 第 1 図 第3図 排気時間(分)
Fig. 1 is a schematic diagram of a graphite crucible for an electron beam evaporation source of the present invention, Fig. 2 is a schematic diagram of an ion brating device using the graphite crucible for an electron beam evaporation source of the present invention, and Fig. 3 is a diagram showing a graphite crucible for an electron beam evaporation source according to the present invention. FIG. 4 is a diagram showing changes in furnace temperature and degree of vacuum, and film thickness distribution obtained in an example of the present invention. l...graphite crucible, 2...coating, 3...evaporation raw material, 4
...electron beam generator, 5...electron beam, 6
...Steam, 7...Focusing coil, 8
...Reaction gas introduction pipe, 9...Substrate, 10.
...Vacuum chamber, 11...Hollow cathode gun. Patent applicant: Kawasaki Steel Corporation Figure 1 Figure 3 Exhaust time (minutes)

Claims (1)

【特許請求の範囲】[Claims] グラファイトルツボの周囲外表面を高融点金属の窒化物
にて被覆したことを特徴とする電子ビーム蒸発源用ルツ
ボ。
A crucible for an electron beam evaporation source, characterized in that the peripheral outer surface of the graphite crucible is coated with a high melting point metal nitride.
JP32369687A 1987-12-23 1987-12-23 Crucible for electron-beam vaporization source Pending JPH01165763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32369687A JPH01165763A (en) 1987-12-23 1987-12-23 Crucible for electron-beam vaporization source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32369687A JPH01165763A (en) 1987-12-23 1987-12-23 Crucible for electron-beam vaporization source

Publications (1)

Publication Number Publication Date
JPH01165763A true JPH01165763A (en) 1989-06-29

Family

ID=18157579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32369687A Pending JPH01165763A (en) 1987-12-23 1987-12-23 Crucible for electron-beam vaporization source

Country Status (1)

Country Link
JP (1) JPH01165763A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111961A (en) * 2004-09-17 2006-04-27 Nippon Seiki Co Ltd Vapor deposition source system
CN114622169A (en) * 2022-04-27 2022-06-14 华天慧创科技(西安)有限公司 Antifouling film coating device and antifouling film coating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111961A (en) * 2004-09-17 2006-04-27 Nippon Seiki Co Ltd Vapor deposition source system
CN114622169A (en) * 2022-04-27 2022-06-14 华天慧创科技(西安)有限公司 Antifouling film coating device and antifouling film coating method

Similar Documents

Publication Publication Date Title
Mattox Physical vapor deposition (PVD) processes
EP0297521B1 (en) High temperature heating sputtering process
JPS61295377A (en) Formation of membrane
JPS61201769A (en) Reactive vapor deposition of oxide, nitride and oxide nitride
JPS62180069A (en) Method for coating inside surface of pipe
KR20070114234A (en) Coating and ion beam mixing apparatus and method to enhance the corrosion resistance of the materials at the elevated temperature using the same
CN115029669B (en) Method for improving deposition efficiency by adopting liquid metal high-power pulse magnetron sputtering
JPH01165763A (en) Crucible for electron-beam vaporization source
US4214015A (en) Method of coating metal substrates with alloys at elevated substrate temperatures
KR100711488B1 (en) Method for manufacturing aluminum-magnesium alloy films
JPH03146489A (en) Coated filament for use in composite material
GB1574677A (en) Method of coating electrically conductive components
KR100958975B1 (en) Method for forming Aluminium and Chromium alloy layer on metals
TW201912820A (en) Evaporation method for forming metal/ceramic coating which is excellent in abrasion-resistance, temperature-resistance and friction improvement
JPS63109162A (en) Ion plating method and its device
JP2000054114A (en) Film structure excellent in heat and wear resistance
Degout et al. High current density triode magnetron sputtering
JPH03215664A (en) Thin film forming device
RU2164549C2 (en) Method for evaporation and condensation of current conductive materials
PLATING THE EFFECT OF TEMPERATURES DEVELOPED DURING SPUTTER ION PLATING ON THE MICROSTRUCTURE AND MICROHARDNESS OF AISI 4340 STEEL
KR100193365B1 (en) How to Form Titanium Nitride Film on Metal Surface
JPH0759745B2 (en) Titanium plated steel plate with excellent heat resistance
JPS58136764A (en) Formation of boron film
JPH0387360A (en) Vacuum depositing device
JPS63213664A (en) Ion plating device