JPS6177733A - Pressure measuring device - Google Patents
Pressure measuring deviceInfo
- Publication number
- JPS6177733A JPS6177733A JP20020284A JP20020284A JPS6177733A JP S6177733 A JPS6177733 A JP S6177733A JP 20020284 A JP20020284 A JP 20020284A JP 20020284 A JP20020284 A JP 20020284A JP S6177733 A JPS6177733 A JP S6177733A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- gas
- fluid
- measuring device
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/0001—Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
- G01L9/0005—Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using variations in capacitance
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Fluid Pressure (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は半導体結晶気相成長装置などにおいて気体の圧
力を創る圧力測定器に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a pressure measuring device for creating gas pressure in a semiconductor crystal vapor phase growth apparatus or the like.
(従来技術とその問題点)
半導体結晶の成長法としての気相成長法は、気体状の原
料を結晶成長室に送りこんで、気相原料から半導体結晶
を成長せしめるものである。この送シこむ気体流中の気
相原料の量の制御、気体の流れ方の制御および結晶成長
室の圧力制御等のためにその気体圧力を測定する必要が
ある。(Prior Art and its Problems) The vapor phase growth method as a method for growing semiconductor crystals involves feeding a gaseous raw material into a crystal growth chamber and growing a semiconductor crystal from the gaseous raw material. It is necessary to measure the gas pressure in order to control the amount of gas phase raw material in the gas flow, control the flow direction of the gas, and control the pressure in the crystal growth chamber.
従来、このような圧力測定のために第4図(al或は第
4図(blに示す構造のものが用いられていた。Conventionally, a structure shown in FIG. 4 (al) or FIG. 4 (bl) has been used for such pressure measurement.
第4図(a)はブルドン管圧力計として知られているも
のの断面図である。この原理は古くより知られておシ、
例えば岩波書店発行理化学辞典第3版(1971年発行
)1183頁に説明がある。このブルドン管圧力計は、
弾力のある薄い全包板でつくられ、断面か扁平で片端部
33が閉じてあシ、他の片端部34が圧力を測定しよう
とする領域32に接続されている円弧状又は渦巻状金属
管31により構成されている。この渦巻状金属管の閉じ
られた端部33は、金A4棒35によって他の金属板3
6に固定点17で固定されている。FIG. 4(a) is a sectional view of what is known as a Bourdon tube pressure gauge. This principle has been known for a long time,
For example, there is an explanation on page 1183 of the 3rd edition of the Physical and Chemistry Dictionary published by Iwanami Shoten (published in 1971). This Bourdon tube pressure gauge is
An arc-shaped or spiral-shaped metal tube made of a thin elastic full-cover plate, with a flat cross section, one end 33 closed and the other end 34 connected to the area 32 where the pressure is to be measured. 31. The closed end 33 of this spiral metal tube is connected to another metal plate 3 by a gold A4 rod 35.
6 at a fixed point 17.
この被測定領域32の圧力がおる圧力p1の時、ブルド
ン管圧力計は、実線で示した金属管31になっている。When the pressure in the measured region 32 is p1, the Bourdon tube pressure gauge becomes the metal tube 31 shown by the solid line.
この被測定領域32の圧力が圧力p1よ)高い圧力p2
の時、プルド/管圧力計は、破線で示した金属管31′
になる。りまシ、圧力がplのときの渦巻状金属管31
は、p2のとき破線で示した渦巻状金属管31′となり
、閉じられた端部33は端部33′の位Fi:、ilC
移動して金属棒35が引張られることによシ、金属板3
6が移動し、金属板36′の位置にくる。ここで金属板
36の変位量、つま9測定点37と測定点37′との距
離Δxt−測定することによF)splを基準として圧
力p2を測定することができる。The pressure in this measurement area 32 is a higher pressure p2 than the pressure p1.
At the time of
become. spiral metal tube 31 when the pressure is pl
becomes a spiral metal tube 31' shown by a broken line when p2, and the closed end 33 is at the position of the end 33' Fi:, ilC
By moving and pulling the metal rod 35, the metal plate 3
6 moves and comes to the position of the metal plate 36'. Here, by measuring the amount of displacement of the metal plate 36 and the distance Δxt between the measuring point 37 and the measuring point 37' of the tab 9, the pressure p2 can be measured using F) spl as a reference.
また、第4図(b)は静電容量圧力計の断面図を示す。Moreover, FIG. 4(b) shows a sectional view of the capacitance pressure gauge.
これは圧力変化による金属板の変位を静電容量の変化を
用いて計測するものである。円柱空洞41の一区画が金
属ダイヤフラム42、池底面が開口43により被圧力測
定領域44と接続されている。気体を一定量封じ込んだ
気密室45には、金属ダイヤフラム42、と対向させた
電極46を備える。この電極46と金属ダイヤフラム4
2との間の静電容量は両金属板間の距離によシ変動する
。第4図(b)の実線は被測定領域44の圧力がある圧
力p1のときの状態を示す。この被圧力測定領域44の
圧力をplからI)2(+)2>1)1)に変動させる
と、実線で示したダイヤフラム42から破線で示したダ
イヤスラム42′の位置に変動する。This measures the displacement of a metal plate due to pressure changes using changes in capacitance. One section of the cylindrical cavity 41 is connected to a metal diaphragm 42, and the bottom surface of the pond is connected to a pressure measurement area 44 through an opening 43. The airtight chamber 45 in which a certain amount of gas is sealed includes a metal diaphragm 42 and an electrode 46 facing the metal diaphragm 42 . This electrode 46 and metal diaphragm 4
The capacitance between the two metal plates varies depending on the distance between the two metal plates. The solid line in FIG. 4(b) shows the state when the pressure in the region 44 to be measured is a certain pressure p1. When the pressure in this pressure measurement area 44 is changed from pl to I)2(+)2>1)1), the position changes from the diaphragm 42 shown by the solid line to the diaphragm 42' shown by the broken line.
その結果、ダイヤフラム42と電極46との距離が変動
して静電容量が変化する。このようにして静電容量の変
化を測定することによ’)s91を基準とした圧力p2
を知ることができる。As a result, the distance between the diaphragm 42 and the electrode 46 changes, and the capacitance changes. By measuring the change in capacitance in this way, the pressure p2 with respect to s91 is
can be known.
この他にもいくつかの気体圧力計測の技術かめるが、い
ずれも圧力計測のために、被圧力測定域から気体を圧力
測定領域に導いて圧力計内部にある2〜3−の空洞にた
まっている気体を用いて圧力を測定する構造となってい
る。゛
第5図は従来の圧力計をV機金属熱分解気相成長法(M
OVPE)に用いた一つの構成図を示す。There are several other gas pressure measurement techniques, but all of them involve guiding gas from the pressure measurement area to the pressure measurement area and collecting it in the 2-3 cavities inside the pressure gauge. The structure is such that the pressure is measured using the gas that is present.゛Figure 5 shows the conventional pressure gauge
One configuration diagram used for OVPE) is shown.
石英製成長室21に配したグラファイト製サセプタ22
上にG a A S基板23を保持し、RFコイル24
によシ基板23を加熱して成長を行なうものである。矢
印P、 C,D、 Jはそれぞれj@にトリメチルアル
ミニウム(TMA)、水素(H2)、ト’)メチルガリ
ウム(TMG)、アルシン(AsH3)の流れの方向を
示し、また、11〜16はストップバルブを、17はニ
ードルバルブを示す。このバルブ11゜12の開閉によ
、9TMAの流れを矢印EあるいはFの向きに切シ換え
る。矢印Bへの流れは、TMAがバイパスラインに捨て
られる流れであシ、矢印Fへの流れはTMAが成長室2
1に導入されて成長に供される流れでるる。また、同様
にT M Gはバルブ13.14によシ、バイパスライ
ンへの流れHと成長室21への流れGとに切り換えられ
る。さらに、AsH3はバルブ15.16により、バイ
パスラインへの流れLと成長室21への流れKとに切り
換えられる。矢印Iは、キャリアガスH2と、有機金属
原料TMA、TMGを含む流れで成長室21に向かうも
ので、矢印Mはこの流れにA s H3を加え成長室2
1に導入される流れである。また1反応終了−の廃ガメ
は矢印Nのように、成長室21からと9除かれる。圧力
計25.26はそれぞれ、TMA、TMG、H2の混合
ガスの圧力、成長室21の圧力を測定するものでアシ、
これらは従来の構造をもつものである。また、ニードル
バルブ17は、圧力計25の測定値より有機金属を含む
キャリアガスの圧力を調整するものでする。Graphite susceptor 22 arranged in quartz growth chamber 21
Hold the G a A S board 23 on top and attach the RF coil 24
Growth is performed by heating the substrate 23. Arrows P, C, D, and J indicate the flow direction of trimethylaluminum (TMA), hydrogen (H2), methylgallium (TMG), and arsine (AsH3), respectively, and 11 to 16 indicate 17 shows a stop valve, and 17 shows a needle valve. By opening and closing these valves 11 and 12, the flow of 9TMA is switched in the direction of arrow E or F. The flow to arrow B is the flow where TMA is discarded to the bypass line, and the flow to arrow F is the flow where TMA is discarded to the growth chamber 2.
There is a flow that is introduced into 1 and used for growth. Similarly, the TMG is switched between the flow H to the bypass line and the flow G to the growth chamber 21 by the valves 13 and 14. Furthermore, AsH3 is switched by valves 15, 16 into a flow L to the bypass line and a flow K to the growth chamber 21. Arrow I indicates a flow containing carrier gas H2 and organometallic raw materials TMA and TMG, which heads toward the growth chamber 21, and arrow M indicates a flow containing A s H3 to this flow, which leads to the growth chamber 2.
This is the flow introduced in 1. Further, the waste turtles that have completed one reaction are removed from the growth chamber 21 as indicated by arrow N. The pressure gauges 25 and 26 measure the pressure of the mixed gas of TMA, TMG, and H2, and the pressure of the growth chamber 21, respectively.
These are of conventional construction. Further, the needle valve 17 is used to adjust the pressure of the carrier gas containing organic metal based on the measured value of the pressure gauge 25.
このような成長装置を用いてAλX () a 1−
X A s(0<x<1)層、GaAs層を順に成長し
たベテロ構造を形成する場合の例を説明する。まず、バ
ルブ11閉、12開、13開、14閉、15開、16閉
の状態で成長室21にTMA、TMG、AsH3をキャ
リアガスH2とともに導き、AλxGal XASの
成長を行なう。このAixGal−xAs層成長終了後
、バルブ11を開きバルブ12を閉じTMAの流nを止
め、GaAsの成長に移る。このとき圧力計25および
圧力計26には、AλxGaI XA!1成長時に流し
てい、% T M Aが圧力計内部によどんでおり、T
MAの流れを止めた後も圧力計内部によどんでいたTM
Aがしばらく矢印1や矢印Mの流れに混りこみ反応管2
1に流れこむためTMAの流れの停止が急峻に行なわれ
ない。Using such a growth apparatus, AλX () a 1-
An example of forming a beta structure in which an X As (0<x<1) layer and a GaAs layer are grown in this order will be described. First, with valves 11 closed, 12 open, 13 open, 14 closed, 15 open, and 16 closed, TMA, TMG, and AsH3 are introduced into the growth chamber 21 together with carrier gas H2 to grow AλxGal XAS. After the growth of the AixGal-xAs layer is completed, the valve 11 is opened and the valve 12 is closed to stop the flow of TMA, and the process begins to grow GaAs. At this time, the pressure gauges 25 and 26 indicate AλxGaI XA! 1 during growth, % T M A stagnates inside the pressure gauge, and T
TM remained stagnant inside the pressure gauge even after the flow of MA was stopped.
A gets mixed in with the flow of arrow 1 and arrow M for a while, and reaction tube 2
1, the flow of TMA does not stop abruptly.
このようにして得られたへテロ構造界面の一例は、第6
図の組成分布図のようになる。すなわち、第6図は横軸
に厚さ方向の距離をλ単位で示し、縦軸にエピタキシャ
ル層のlのモル組成、 Gaのモル組成をAJI x
G a □−XA s層、GaAs層に対しそれぞれ示
したものである。図から、遷移領域を行う幅が500人
から750人の約250人と大きいことがわかる。An example of the heterostructure interface obtained in this way is the sixth
It will look like the composition distribution diagram in the figure. That is, in FIG. 6, the horizontal axis shows the distance in the thickness direction in units of λ, and the vertical axis shows the molar composition of l of the epitaxial layer and the molar composition of Ga as AJI x
These are shown for the Ga□-XAs layer and the GaAs layer, respectively. From the figure, it can be seen that the range of participants performing the transition area is large, ranging from 500 to 750, approximately 250 people.
このように厚い遷移領域があることは、通常のへテロ構
造素子をつくる上で、特性上の欠陥をもたらすほか、量
子井戸や超格子構造などの超薄膜構造をつくる上での致
命的欠点となる。また、組成がずれると格子整合のずれ
る材料のへテロ構造では界面の異状の影響は大きい。さ
らに不純物ドーピングの界面でのプロファイル異状に素
子特性に大きな悪影響を及ぼす。また、成長系を大気に
さらし、圧力計25.26に大気を導入した場合、圧力
計にたまった大気は中々不活性ガスに置換されず、汚染
源となシ、装置が良質の結晶を得るに適する状態になる
までに長時間を要するという欠点もめる。The presence of such a thick transition region not only causes defects in properties when creating normal heterostructure elements, but also poses a fatal drawback when creating ultrathin film structures such as quantum wells and superlattice structures. Become. In addition, in the case of a heterostructure of materials in which lattice matching shifts when the composition shifts, anomalies at the interface have a large effect. Furthermore, profile irregularities at the interface of impurity doping have a large adverse effect on device characteristics. In addition, when the growth system is exposed to the atmosphere and the atmosphere is introduced into the pressure gauges 25 and 26, the atmosphere accumulated in the pressure gauges is not easily replaced with inert gas and becomes a source of contamination. The drawback is that it takes a long time to reach a suitable state.
(発明の目的)
本発明の目的は、このような従来の欠点を除去し、気相
結晶成長装置に適用して高品質の半導体エピタキシャル
層および良質の界面をもつ多層エピタキシャル層を成長
させるよつな場合に適し、センサ部分による成分の混濁
の少い圧力測定器を提供することにある。(Object of the Invention) The object of the present invention is to eliminate such conventional drawbacks and to provide a method for growing high-quality semiconductor epitaxial layers and multilayer epitaxial layers with good quality interfaces by applying it to a vapor phase crystal growth apparatus. It is an object of the present invention to provide a pressure measuring device which is suitable for various cases and which causes less turbidity of components due to the sensor portion.
(発明の構成)
本発明の圧力測定器の構成は、流体の流れる筒状体の内
側面がその流体の圧力に従って凹凸する圧力センサとな
シ、前記筒状体の両底面がそれぞれ前記流体の入口及び
出口となってこれら入口及び出口とその筒状体との間が
流線形に形成され、前記筒状体の内部の圧力を測定する
ことを特徴とする。(Structure of the Invention) The structure of the pressure measuring device of the present invention is such that the inner surface of a cylindrical body through which fluid flows is uneven according to the pressure of the fluid, and both bottom surfaces of the cylindrical body are It is characterized in that an inlet and an outlet are formed between the inlet and the outlet and the cylindrical body in a streamlined shape, and the pressure inside the cylindrical body is measured.
(実施例)
第1図は本発明の一実施例の断面図で、円柱筒をの圧力
計を示している。この円柱状の筒の一底面を気体の入口
1、他底面を気体の出口2とする。(Embodiment) FIG. 1 is a sectional view of an embodiment of the present invention, showing a cylindrical pressure gauge. One bottom surface of this cylindrical tube is designated as a gas inlet 1, and the other bottom surface is designated as a gas outlet 2.
この円柱の側面は、2個所の輪状の固定部分9,10で
固定された金属ダイヤフラム5となっている。The side surface of this cylinder is a metal diaphragm 5 fixed with two annular fixing parts 9 and 10.
この金属ダイヤフラム5をとシ囲んで気密室8があシ、
その内部に金属ダイヤフラム5と対向して電極6が設け
てあり、圧力センナとなっている。An airtight chamber 8 is formed surrounding this metal diaphragm 5.
An electrode 6 is provided inside thereof facing a metal diaphragm 5, and serves as a pressure sensor.
この金属ダイヤフラム5と金属電極6との間の静電容量
が両者の距離に依存する。圧力測定室7の圧力がplの
とき金属ダイヤフラム5は実線の金属ダイヤフラム5の
状態にあるが、圧力測定室7の圧力が高い圧力p2(p
z>px)となると、破線のような金属ダイヤフラム5
にな9、ダイヤ72ムと電極6との距離が変って静電容
量の値が変わる。この静電容量の値を測定することによ
シ圧力測定室7の圧力を知ることができる。この実施例
においては、気体の矢印Aからの入口及び矢印Bへの出
口が流れの乱れを生じない流線構造3,4となっている
。このような構造では気体のたまる部分がなく被圧力測
定気体が圧力計の内部によどむことがないので、圧力計
内部の気体の入れ換シがすみやかに出来る。つま)、圧
力計内部にある気体による流れが形成されてその圧力を
測定している状態から、圧力計内部を流れる気体の糧類
が変わったとき、次の気体が最初の気体を押し流す1ζ
めに、気体の入れ換シがすみやかである。The capacitance between the metal diaphragm 5 and the metal electrode 6 depends on the distance between them. When the pressure in the pressure measurement chamber 7 is pl, the metal diaphragm 5 is in the state of the metal diaphragm 5 shown by the solid line, but when the pressure in the pressure measurement chamber 7 is high, the pressure p2 (p
z>px), the metal diaphragm 5 as shown by the broken line
9. As the distance between the diamond 72 and the electrode 6 changes, the capacitance value changes. By measuring the value of this capacitance, the pressure in the pressure measurement chamber 7 can be determined. In this embodiment, the gas inlet from arrow A and the gas outlet from arrow B have streamlined structures 3 and 4 that do not cause flow turbulence. With such a structure, there is no part where gas accumulates, and the gas to be measured for pressure does not stay inside the pressure gauge, so that the gas inside the pressure gauge can be replaced quickly. 1ζ When the type of gas flowing inside the pressure gauge changes from the state in which a flow is formed by the gas inside the pressure gauge and its pressure is measured, the next gas displaces the first gas.
Therefore, gas exchange is quick.
一方、金属ダイヤフラム5と電極6とで構成される圧力
センナは新しい流れの圧力を測定する。On the other hand, a pressure sensor consisting of a metal diaphragm 5 and an electrode 6 measures the pressure of the new flow.
この圧力測定室7は円柱でなく、多角柱であっても、そ
の効果には変シがない。このような構成をとれば、円柱
或いは多角柱の筒の内側面が圧力のセンサとなり、また
両底面がそれぞれ気体の人口及び出口となってこの筒の
内部が圧力測定器となるので、圧力測定室内部によどみ
がなくすみやかに気体全部が入れ換る構造の圧力測定器
が得られる。Even if this pressure measurement chamber 7 is not a cylinder but a polygonal cylinder, the effect remains the same. With this configuration, the inner surface of the cylindrical or polygonal cylinder becomes a pressure sensor, and both bottom surfaces become the gas intake and outlet, respectively, and the inside of this cylinder becomes a pressure measuring device, so pressure can be measured. A pressure measuring instrument having a structure in which all the gas is quickly replaced without stagnation inside the room can be obtained.
第2図は本実施例の圧力計をMOVPEに適用した場合
の構成図を示す。この図は、第5図に示した従来の構成
に対して用いている圧力計25.26の代シに圧力計1
8.19を設けたものである。これら圧力計18.19
は、それぞれTMA−TMG・H2の混合ガスの圧力、
成長室21の圧力を測定するもので、第1図に示した実
施例の構造をもち、被測定気体が圧力計の内部を流れる
ことにより、破測定気体の圧力を測定している。第2図
の成長装置で、第5図と同様に、AAxGax−xAa
(0(x<1)層、GaAs層を順゛に成長したベテ
ロ構造を形成する場合、パルプを制御して成長室21内
にTMAの流入を開閉する。この場合、圧力計18゜1
9は、従来の構造と異なシ、ともに気体のたまりの部分
がないので、TMAは速やかに流れ去シ、また、このT
MAの流れは急峻に停止される。FIG. 2 shows a configuration diagram when the pressure gauge of this embodiment is applied to MOVPE. This figure shows a pressure gauge 1 in place of the pressure gauges 25 and 26 used in the conventional configuration shown in Figure 5.
8.19 was established. These pressure gauges18.19
are the pressure of the TMA-TMG/H2 mixed gas, respectively,
This device measures the pressure in the growth chamber 21, and has the structure of the embodiment shown in FIG. 1, and the pressure of the gas to be measured is measured by causing the gas to be measured to flow inside the pressure gauge. In the growth apparatus shown in FIG. 2, as in FIG. 5, AAxGax-xAa
(When forming a veterinary structure in which a 0 (x < 1) layer and a GaAs layer are sequentially grown, the pulp is controlled to open and close the inflow of TMA into the growth chamber 21. In this case, the pressure gauge 18
9 has a different structure from the conventional structure, and since there is no part where gas accumulates, the TMA quickly flows away, and this TMA
The flow of MA is abruptly stopped.
このため得られたヘテロ構造界面は、第3図の分布図に
示したように急峻なものが得られる。第3図は横軸に厚
さ方向の距*をに単位で示し、縦軸にエピタキシャル層
のAfLのモル組成、Gaのモル組成をA A x G
a 1− zA a層、GaAsjiiVc対しそれぞ
れ示している。この図のように、本実施例を用いた場合
、遷移領域の幅が、10Å以下と小さい構成のものを得
られることがわかる。このためダブルへテロ構造レーザ
や高移′!lJJ度トランジスタなどへテロ構造素子で
良好な特性のものが得られるようになシ、また、良好な
特性の超薄膜構造が得られるようになる。Therefore, the heterostructure interface obtained is steep as shown in the distribution diagram of FIG. In Figure 3, the horizontal axis shows the distance in the thickness direction * in units of , and the vertical axis shows the molar composition of AfL and the molar composition of Ga in the epitaxial layer A x G
a 1-zA a layer and GaAsjiiVc are respectively shown. As shown in this figure, it can be seen that when this example is used, a configuration in which the width of the transition region is as small as 10 Å or less can be obtained. For this reason, double heterostructure lasers and high-transition′! It becomes possible to obtain good characteristics in a heterostructure element such as a 1JJ transistor, and it also becomes possible to obtain an ultra-thin film structure with good characteristics.
また、成長系を大気にさらし、圧力計18.19に大気
を導入しても、内部を不活性気体でパージすることによ
り、圧力計にたまった大気を速やかに追い出すことがで
き、成長系の汚染源を除くことができる。Furthermore, even if the growth system is exposed to the atmosphere and the atmosphere is introduced into the pressure gauges 18 and 19, by purging the inside with inert gas, the atmosphere accumulated in the pressure gauges can be quickly expelled. The source of contamination can be removed.
なお、本実施例は気相成長によるAJ!xGa1−XA
S系のへテロ接合の形成を説明したが、AJGaInP
系、 InGaAsP系化合物の成長等の半導体の気相
成長に適用できる。また、本実施例は気体によシ説明し
たが、液体などの流体にも適用できることは明らかであ
る。Note that this example uses AJ! by vapor phase growth. xGa1-XA
Although we have explained the formation of S-based heterojunction, AJGaInP
It can be applied to the vapor phase growth of semiconductors such as the growth of InGaAsP-based and InGaAsP-based compounds. Further, although this embodiment has been explained using gas, it is obvious that it can also be applied to fluids such as liquids.
(発明の効果)
本発明を適用することによシ、高品質の半導体エピタキ
シャル層および良質の界面をもつ多層エピタキシャル層
を成長させる気相成長装置などに適し、センナ部に流体
が残存せず混合成分の混濁の少い圧力測定器を実現でき
る。(Effects of the Invention) By applying the present invention, it is suitable for a vapor phase growth apparatus that grows high-quality semiconductor epitaxial layers and multilayer epitaxial layers with good quality interfaces, and no fluid remains in the senna part and mixes. A pressure measuring device with less turbidity of components can be realized.
第1図は本発明の実施例の部分断面図、第2図は第1図
の実施例の使用方法を示す構成図、第3図は本実施例を
用いて形成されたヘテロ構造界面の組成分布図、第4図
(a)、 (b)は従来の圧力測定器の二側を示す断面
図、第5図は第4図の従来例の使用時の構成図、第6図
は第5図によって得られたへテロ構造界面の組成分布図
である。図において、
1・・・・・・気体入口、2・・・・・・気体出口、3
,4・・・・・・流線構造、 5.5’ 、 42
.42’・・・・・・金属ダイヤフラム、6.46・・
・・・・電極、7・・・・・・圧力測定室、8.45・
・・・・・気密室% 9,10・・・・・・輪状固定部
、11〜16・・・・・・パル7’、17・・・・・・
ニードルパルプ、 18.19゜25.26・・・・
・・圧力計、21・・・・・・成長室、22・・・・・
・サセプタ、23・・・・・・基板、24・・・・・・
RFコイル、31.31’・・・・・・渦巻状金属管、
32,44・・・・・・圧力測定領域、 33.33
’・・・・・・金属管閉端部、34・・・・・・金属管
接続端部、35・・・・・・金属棒、 36.36’
・・・・・・金属板、37.37’・・・・・・測定点
、41・・・・・・円罵f国
策Z図
−厚ご方向圧1屹(A)
馬3図
第4図FIG. 1 is a partial sectional view of an embodiment of the present invention, FIG. 2 is a configuration diagram showing how to use the embodiment of FIG. 1, and FIG. 3 is a composition of a heterostructure interface formed using this embodiment. Distribution diagram, Figures 4(a) and 4(b) are sectional views showing two sides of a conventional pressure measuring device, Figure 5 is a configuration diagram of the conventional example shown in Figure 4 when used, and Figure 6 is a diagram showing the configuration of the conventional pressure measuring device. FIG. 3 is a composition distribution map of a heterostructure interface obtained from the figure. In the figure, 1... Gas inlet, 2... Gas outlet, 3
, 4... streamline structure, 5.5', 42
.. 42'...Metal diaphragm, 6.46...
... Electrode, 7 ... Pressure measurement chamber, 8.45.
...Airtight chamber% 9,10...Ring shaped fixing part, 11-16...Pal 7', 17...
Needle pulp, 18.19°25.26...
...Pressure gauge, 21...Growth chamber, 22...
・Susceptor, 23...Substrate, 24...
RF coil, 31.31'... spiral metal tube,
32, 44... Pressure measurement area, 33.33
'...Metal pipe closed end, 34...Metal pipe connection end, 35...Metal rod, 36.36'
...Metal plate, 37.37'...Measurement point, 41...National policy Z diagram - Thickness direction pressure 1 屹 (A) Horse 3 Figure 4 figure
Claims (1)
て凹凸する圧力センサとなり、前記筒状体の両底面がそ
れぞれ前記流体の入口および出口となってこれら入口お
よび出口とその筒状体との間が流線形に形成され、前記
筒状体の内部の圧力を測定することを特徴とする圧力測
定器。The inner surface of the cylindrical body through which the fluid flows becomes a pressure sensor that is uneven according to the pressure of the fluid, and both bottom surfaces of the cylindrical body serve as the inlet and outlet of the fluid, and the connection between these inlets and outlets and the cylindrical body A pressure measuring device characterized in that a gap is formed in a streamlined shape and measures the pressure inside the cylindrical body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20020284A JPS6177733A (en) | 1984-09-25 | 1984-09-25 | Pressure measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20020284A JPS6177733A (en) | 1984-09-25 | 1984-09-25 | Pressure measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6177733A true JPS6177733A (en) | 1986-04-21 |
Family
ID=16420495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20020284A Pending JPS6177733A (en) | 1984-09-25 | 1984-09-25 | Pressure measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6177733A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0500783A1 (en) * | 1989-11-20 | 1992-09-02 | Setra Systems Inc | Pressure transducer with flow-through measurement capability. |
US7343814B2 (en) | 2006-04-03 | 2008-03-18 | Loadstar Sensors, Inc. | Multi-zone capacitive force sensing device and methods |
US7451659B2 (en) | 2004-09-29 | 2008-11-18 | Loadstar Sensors, Inc. | Gap-change sensing through capacitive techniques |
US7570065B2 (en) | 2006-03-01 | 2009-08-04 | Loadstar Sensors Inc | Cylindrical capacitive force sensing device and method |
GB2534222A (en) * | 2015-01-19 | 2016-07-20 | Frequency Prec Ltd | Pressure sensor and device comprising the same |
-
1984
- 1984-09-25 JP JP20020284A patent/JPS6177733A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0500783A1 (en) * | 1989-11-20 | 1992-09-02 | Setra Systems Inc | Pressure transducer with flow-through measurement capability. |
US7451659B2 (en) | 2004-09-29 | 2008-11-18 | Loadstar Sensors, Inc. | Gap-change sensing through capacitive techniques |
US7570065B2 (en) | 2006-03-01 | 2009-08-04 | Loadstar Sensors Inc | Cylindrical capacitive force sensing device and method |
US7343814B2 (en) | 2006-04-03 | 2008-03-18 | Loadstar Sensors, Inc. | Multi-zone capacitive force sensing device and methods |
GB2534222A (en) * | 2015-01-19 | 2016-07-20 | Frequency Prec Ltd | Pressure sensor and device comprising the same |
GB2534222B (en) * | 2015-01-19 | 2017-11-15 | Frequency Prec Ltd | Pressure sensor and device comprising the same |
US10591375B2 (en) | 2015-01-19 | 2020-03-17 | Frequency Precision Ltd. | Pressure sensor and device comprising the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101447922B1 (en) | Vapor delivery device, methods of manufacture and methods of use thereof | |
JPS62286220A (en) | Manufacture of semiconductor device | |
JPS6177733A (en) | Pressure measuring device | |
JPH02284638A (en) | Feeder of high-performance process gas | |
JP3219184B2 (en) | Organometallic supply and organometallic vapor phase epitaxy | |
US6544869B1 (en) | Method and apparatus for depositing semiconductor film and method for fabricating semiconductor device | |
Maslar et al. | Apparatus for characterizing gas-phase chemical precursor delivery for thin film deposition processes | |
US20110052794A1 (en) | Vapor-phase growth apparatus and thin-film vapor-phase growth method | |
JPH02291114A (en) | Vapor growth apparatus for compound semiconductor | |
JPH0232532A (en) | Gaseous phase growth device | |
CN220417649U (en) | Fluid heating structure and semiconductor fluid processing system | |
JPH0639705B2 (en) | Gas supply device | |
JPS62189722A (en) | Vapor growth method | |
JPS6016898A (en) | Gaseous-phase growth device | |
JPH0316993A (en) | Vapor-phase epitaxial growth of compound semiconductor | |
JPS59229816A (en) | Vapor growth apparatus for compound semiconductor | |
JPH03166719A (en) | Crystal vapor growth device | |
JPH02291112A (en) | Vapor growth apparatus for compound semiconductor | |
JPH03112129A (en) | Vapor growth device for compound semiconductor | |
JPS5826657B2 (en) | 3-5 Epitaxy and hand-wringing method | |
JPH02291111A (en) | Vapor growth apparatus for compound semiconductor | |
JPS62229822A (en) | Vapor growth method for gallium arsenide layer | |
JPH01220821A (en) | Gas controlling method for vapor growth equipment | |
JPH09126397A (en) | Quantity adjusting device for extracting gas from pressure vessel | |
JPS60132320A (en) | Vapor-phase growing reaction pipe |