JPS59229816A - Vapor growth apparatus for compound semiconductor - Google Patents

Vapor growth apparatus for compound semiconductor

Info

Publication number
JPS59229816A
JPS59229816A JP10426283A JP10426283A JPS59229816A JP S59229816 A JPS59229816 A JP S59229816A JP 10426283 A JP10426283 A JP 10426283A JP 10426283 A JP10426283 A JP 10426283A JP S59229816 A JPS59229816 A JP S59229816A
Authority
JP
Japan
Prior art keywords
tube
reaction tube
group
gas
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10426283A
Other languages
Japanese (ja)
Inventor
Kuniaki Konno
紺野 邦明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10426283A priority Critical patent/JPS59229816A/en
Publication of JPS59229816A publication Critical patent/JPS59229816A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02461Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)

Abstract

PURPOSE:To stably improve composition of each grown layer, growing rate and reproducibility without receiving influence of precipitate on the bulb wall by constituting a furnace heater, III-group metal source boat, V-group gas introducing pipe and substrate supporting device in such a way that they can be moved to the up-stream side of internal gas of respective reaction tube. CONSTITUTION:A movable furnace heater 1 is arranged at the outside of a reaction tube 2, and a substrate support device 3, a III-group metal source boat 8, a V-group gas introducing tube 11 and a III-group metal source boat protection tube 15 are arranged within the reaction tube 2. These support device 3, source boat 8, introducing tube 11 and protection tube 15 are attached to the coupling bar 10 and thereby these can be moved in parallel in the axial direction of reaction tube 2 by operating the coupling bar 10 from the outside of reaction tube 2. The III-group metal source boat 8' is disposed within the protection tube 15 and the HCl/H2 introducing tube 14 is also connected thereto. Here, the source boat 8 is filled with indium metal 9 and the source boat 8' is filled with the gallium metal 9'.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、化合物半導体の気相成長技術に係わシ、特に
複数の■−v族化合物半導体層を積層形成するのに適し
た化合物半導体の気相成長装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a compound semiconductor vapor phase growth technique, and particularly relates to a compound semiconductor vapor growth technique suitable for stacking a plurality of ■-v group compound semiconductor layers. Regarding a vapor phase growth apparatus.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近時、化合物半導体を用いた各種の新機能素子が研究開
発されておシ、その中の一例としてInGaAaP J
元混合系を用いた半導体レーデがある。この半導体レー
ザを作製する場合、結晶基板としてN型InP基板を用
い、その上にN型InP層(クラッド層)、InGaA
sP層(活性層)。
Recently, various new functional devices using compound semiconductors have been researched and developed, one example of which is InGaAaP J
There is a semiconductor radar using an original mixed system. When manufacturing this semiconductor laser, an N-type InP substrate is used as a crystal substrate, and an N-type InP layer (cladding layer), an InGaA
sP layer (active layer).

P型InP層(クラ、ド層)及びP型InGaAsP層
(オーミック層)等を成長させ、所謂DH(ダブルへテ
ロ)接合構造を形成するのは周知のことである。そして
、上記各成長層を形成するには、従来法のような装置が
用いられている。
It is well known that a so-called DH (double heterojunction) structure is formed by growing a P-type InP layer (cladding layer) and a P-type InGaAsP layer (ohmic layer). In order to form each of the growth layers described above, an apparatus similar to a conventional method is used.

第1図はHCA / PH3/ AsH3/ Ga /
 In / H2系のInGaAsP 4元混晶気相成
長装置の概略構成を示す断面図である。図中1は炉加熱
体、2は石英製反応管であり、反応管2内には基板支持
具3が設置されている。基板支持具3の上面には凹状の
溝部3aが設けられておシ、この溝部3a内にInP基
板4が収納される。また、基板支持具3の上面には、操
作棒5に連結されたスライドカバー6が設置されている
。そして、スライドカバー6の移動によp、InP基板
4と反応管2内のガス流雰囲気とが接触或いは隔離され
るものとなっている。なお、図中矢印はガス流を示して
おシ、反応管2の左方がガス流上流側、右方がガス流下
流側である。
Figure 1 shows HCA / PH3 / AsH3 / Ga /
1 is a cross-sectional view showing a schematic configuration of an In/H2-based InGaAsP quaternary mixed crystal vapor phase growth apparatus. In the figure, 1 is a furnace heating body, 2 is a quartz reaction tube, and a substrate support 3 is installed inside the reaction tube 2. A concave groove 3a is provided on the upper surface of the substrate support 3, and the InP substrate 4 is accommodated in the groove 3a. Furthermore, a slide cover 6 connected to the operating rod 5 is installed on the upper surface of the board support 3. By moving the slide cover 6, the InP substrate 4 and the gas flow atmosphere within the reaction tube 2 are brought into contact with each other or isolated from each other. Note that arrows in the figure indicate gas flows; the left side of the reaction tube 2 is the upstream side of the gas flow, and the right side is the downstream side of the gas flow.

上記構成の気相成長装置を用いた結晶成長は、以下のよ
うにして行われる。まず、基板支持具3の凹部にInP
基板4を配置し、スライドカバー6をガス流下流側に引
き、ガス流雰囲気とInP基板4とが接触する状態にす
る。次に、反応管2の昇温過程中、その内部温度がIn
P基板4の熱劣化を起こす前に、ガス流上流側から既に
導入されているキャリア水素ガスにリン水素ガスを混入
させることによj)、InP基板4に所望のリン圧を印
加する。その後、InP基板4の周囲温度が結晶成長可
能な温度に達した時点で、スライドカバー6をガス流上
流側に移動し溝部3&f、覆う。これと同時に、ガス流
上流側から塩化インジウム、リン水素化合物等の気体状
原料を、キャリアガスである水素によシ基板支持具3の
設置されている結晶析出領域Pに運び、気体状原料及び
水素ガスが定常状態になるまで待つ。
Crystal growth using the vapor phase growth apparatus having the above configuration is performed as follows. First, InP is placed in the recess of the substrate support 3.
The substrate 4 is placed, and the slide cover 6 is pulled downstream of the gas flow to bring the gas flow atmosphere into contact with the InP substrate 4. Next, during the temperature rising process of the reaction tube 2, the internal temperature becomes In
Before thermal deterioration of the P substrate 4 occurs, a desired phosphorus pressure is applied to the InP substrate 4 by mixing phosphorous hydrogen gas into the carrier hydrogen gas already introduced from the upstream side of the gas flow. Thereafter, when the ambient temperature of the InP substrate 4 reaches a temperature that allows crystal growth, the slide cover 6 is moved upstream of the gas flow to cover the grooves 3&f. At the same time, gaseous raw materials such as indium chloride and phosphorus hydrogen compounds are transported from the upstream side of the gas flow to the crystal precipitation region P where the substrate support 3 is installed, using hydrogen as a carrier gas, and the gaseous raw materials and Wait until the hydrogen gas reaches a steady state.

気体状原料及び水素ガスが定常状態に達した−のみで気
相成長用気体原料を完全にパージする。
Only when the gaseous raw material and hydrogen gas have reached a steady state, the gaseous raw material for vapor phase growth is completely purged.

かくして、1つの気相成長層を得たのちは、各各の結晶
の熱劣化防止に見合った種類のガスを反応管2内の結晶
析出領域に送シ込んで熱劣化防止対策を施し、各々の結
晶成長に必要な気相成長装置科を上記領域に送シ込み、
前記と同様の操作を施すことによ多、組成比若しくは種
類の異なる気相成長層が順次多層成長することになる。
In this way, after one vapor phase growth layer is obtained, a type of gas suitable for preventing thermal deterioration of each crystal is sent into the crystal precipitation region in the reaction tube 2 to take measures to prevent thermal deterioration, and We will send the vapor phase growth equipment necessary for crystal growth to the above area,
By carrying out operations similar to those described above, multiple vapor phase growth layers having different composition ratios or types are successively grown.

しかしながら、この種の従来装置を用いる場合にあって
は、次の(1)、(2)のような問題があった。
However, when using this type of conventional device, there are problems such as the following (1) and (2).

(1)  気相成長を施すとき、基板だけでなく結晶析
出領域の反応管内壁にも結晶の析出が生じ、熱劣化防止
用の水素化物がとの管壁析出を助長する。そして、この
管壁析出物7は気相成長層の組成や再現性等の不安定化
、成長速度の著し部のHCl量を増やして行うために、
HClを定常量まで戻すのに長時間を要し作業性の低下
を招く。
(1) When vapor phase growth is performed, crystals are precipitated not only on the substrate but also on the inner wall of the reaction tube in the crystal precipitation region, and hydrides for preventing thermal deterioration promote the precipitation on the tube wall. In order to prevent this tube wall precipitate 7 from destabilizing the composition and reproducibility of the vapor phase growth layer, and by increasing the amount of HCl in the areas where the growth rate is significant,
It takes a long time to return HCl to a constant level, resulting in a decrease in work efficiency.

〔発明の目的) 本発明の目的は、管壁析出物による悪影響を防止し、異
なる化合物半導体結晶層を容易がつ再現性良く多層に気
相成長させることができ、さらに各成長層間の遷移領域
幅を極めて狭くし得る化合物半導体の気相成長装置を提
供することにある。
[Object of the Invention] The object of the present invention is to prevent the adverse effects of tube wall precipitates, to easily and reproducibly grow different compound semiconductor crystal layers in multiple layers, and to further improve the transition region between each growth layer. An object of the present invention is to provide a compound semiconductor vapor phase growth apparatus that can be extremely narrow in width.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、管壁析出物の存在領域によシガス流上
流側で気相成長を行い、ガスエツチング工程を省略して
も管壁析出物による悪影響を回避することにある。
The gist of the present invention is to perform vapor phase growth on the upstream side of the gas flow in the region where the tube wall precipitates exist, and to avoid the adverse effects of the tube wall precipitates even if the gas etching step is omitted.

すなわち本発明は、反応管内に原料ガスを導1−1ミし
、■族金属の塩化物と■原ガスとを用いた1□:気相開
管法によシ半導体基板上に2種以上の、″  □ ・−゛・=町−v族化合物半導体層を成長させる化合物
半波側にその一端が配置され上記支持具近傍にV原ガス
を導入する■原ガス導入管等を1つの結晶層成長毎に反
応管内のガス流上流側に所定距離だけ一体的に移動せし
めると共に、この移動に同期して上記支持具近傍を一定
状態に加熱するようにしたものである。
That is, the present invention introduces a raw material gas into a reaction tube, and uses a chloride of a group metal and a raw gas. `` □ ・-゛・= Town - One end of which is placed on the half-wave side of the compound for growing the V group compound semiconductor layer, and the V source gas is introduced near the support tool. Each time the layer grows, it is moved integrally by a predetermined distance to the upstream side of the gas flow in the reaction tube, and in synchronization with this movement, the vicinity of the support is heated to a constant state.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、炉加熱体、■族金属ソースポート、■
原ガス導入管及び基板支持具等を各各反応管内部ガス流
上流側へ移動できる構成としているので、気相成長工程
毎に生ずる管壁析出物のある領域よりも絶えずガス流上
流側(管壁析出物の無い領域)で新たな気相成長を施す
ことが可能となる。したがって、ガスエツチング工程を
省略しても管壁析出物の影響上受けないことになシ、そ
の結果として各成長層の組成)成長速度及び再現性の安
定化向上をはかシ得、また各成長層間に於ける遷移領域
幅を狭くすることができる。このため、半導体レーザの
製造等に適用して絶大なる効果を発揮する。
According to the present invention, a furnace heating body, a group metal source port, and a
Since the raw gas inlet pipe, substrate support, etc. are configured to be able to move upstream of the gas flow inside each reaction tube, they are constantly moved upstream of the gas flow (tube It becomes possible to carry out new vapor phase growth in areas (areas where there are no wall precipitates). Therefore, even if the gas etching process is omitted, it will not be affected by the tube wall precipitates, and as a result, the growth rate (composition) and reproducibility of each growth layer will be stabilized and improved. The width of the transition region between grown layers can be narrowed. Therefore, it can be applied to the production of semiconductor lasers, etc., and exhibits great effects.

〔発明の実施例〕[Embodiments of the invention]

第2図(、)〜(c)は本発明の一実施例に係わる気相
成長装置を説明するためのもので第2図(、)はその概
略構成を示す模式図、第2図(b)は要部構成を示す断
面図、第2図(c)は同図(b)の矢視A−A断面図で
ある。なお、第1図と同一部分には同一符号を付して、
その詳しい説明は省略する。
Figures 2 (,) to (c) are for explaining a vapor phase growth apparatus according to an embodiment of the present invention. Figure 2 (,) is a schematic diagram showing its schematic structure, and Figure 2 (b ) is a cross-sectional view showing the configuration of the main parts, and FIG. 2(c) is a cross-sectional view taken along arrow A-A in FIG. 2(b). The same parts as in Fig. 1 are given the same reference numerals.
A detailed explanation thereof will be omitted.

この実施例が第1図に示した従来装置と異なる点は、炉
加熱体、基板支持具、■族金属ソースが一ト及び■原ガ
ス導入管等を反応管の軸方向に対して平行移動できる構
成としたことにある、すなわち、反応管2の外側には移
動可能な炉加熱体1が配置され、反応管2内には基板支
持具3、■族金属ソースポードe、V原ガス導入管11
及び■族金属ソースポート保護管15が配置されている
。そして、これら支持具3、ソースが一ト8、導入管1
1及び保護管15は連結棒10に取着されておシ、連結
棒10f反応管2の外部から操作することによシ反応管
2の軸方向に平行移動するものとなっている。また、保
護管15には、その内部に■族金属ソースポート8/が
配置されると共に、HC6/[2導入管14′が連結さ
れている。ここで、ソースデート8内にはインジウムメ
タル9が充填され、ソースが一ト8/内にはガリウムメ
タル9′が充填されている。なお、図中12は反応管導
入管、13゜13′は導入管11 、14’を滑らかに
移動するためのシール、14はHC1/H2導入管、1
6は反応管導入管をそれぞれ示している。また、上記炉
加熱体1は連結棒1oの移動に伴い上記支持具3、ソー
スポード8,8′導入管J 1 、14’及び保護管1
5と一体的に移動するものとなっている。
This embodiment differs from the conventional apparatus shown in Fig. 1 in that the furnace heating element, substrate support, group metal source (1) are moved in parallel to the axial direction of the reaction tube, and (2) the source gas introduction tube is moved parallel to the axial direction of the reaction tube. That is, a movable furnace heating element 1 is disposed outside the reaction tube 2, and inside the reaction tube 2 there are a substrate support 3, a group Ⅰ metal source port e, and a V source gas introduction tube. 11
and a group Ⅰ metal source port protection tube 15. These supports 3, a source 8, and an introduction pipe 1
1 and the protective tube 15 are attached to the connecting rod 10, and the connecting rod 10f is moved in parallel in the axial direction of the reaction tube 2 by operating it from outside the reaction tube 2. In addition, the protective tube 15 has a group Ⅰ metal source port 8/ disposed therein, and is connected to the HC6/[2 inlet pipe 14'. Here, the source date 8 is filled with indium metal 9, and the source date 8/ is filled with gallium metal 9'. In the figure, 12 is a reaction tube introduction tube, 13° 13' is a seal for smooth movement of the introduction tubes 11 and 14', 14 is an HC1/H2 introduction tube, 1
Reference numeral 6 indicates a reaction tube introduction tube. Further, as the connecting rod 1o moves, the furnace heating body 1 is moved to the support 3, the source ports 8, 8', the introduction tubes J1, 14', and the protective tube 1.
It moves together with 5.

次に、上記構成の本装置を用いた気相成長方法を、第3
図(、)〜(d)を参照して説明する。なお、第3図(
、)〜(c)は炉加熱体1及び基板支持具3等の位置を
示す模式図、同図(d)は反応炉内温度プルファイルを
示す模式図である。また、ここではI nP/I nG
aAsP/I nP基板の3層構造の例について説明す
る。
Next, the vapor phase growth method using this apparatus having the above configuration will be explained in the third step.
This will be explained with reference to Figures (,) to (d). In addition, Figure 3 (
, ) to (c) are schematic diagrams showing the positions of the furnace heating body 1, the substrate support 3, etc., and (d) is a schematic diagram showing the temperature pull file in the reactor. Also, here I nP/I nG
An example of a three-layer structure of an aAsP/I nP substrate will be described.

まず、炉加熱体1を第3図(、)に示す如く温度プルフ
ァイルAの位置に配置し、連結棒10f反応管2の外部
から操作して■族金属ソースポート8、基板支持具3及
び■原ガス導入管11等を温度プルファイルAの位置に
対応させる。
First, the furnace heating element 1 is placed at the temperature pull file A as shown in FIG. ■Make the source gas inlet pipe 11, etc. correspond to the position of temperature pull file A.

次いで、操作棒5の操作によシスライドカバー6を移動
し、InP基板4Q・収納されている凹状溝部3aを閉
の状態にしたところ、反応管2内の昇温を開始する。次
いで、反応管2内が温度プロファイルAのような気相成
長可能な温度に達したら、HC1/H2導入管14から
は昇温以前から流れているH2にHctk混入させてイ
ンジウムメタル9まで運び塩化インジウムを形成し、ま
た■原ガス導入管11からは同じく昇温以前から流れて
いるH2にPH3’(i−混入させて、リンのガス状分
子を形成する。そして% InP気相成長用原料ガスが
定常状態に達したら、前記スライドカバー6を移動し、
凹状溝部Jai所望時間だけ開の状態にする。これによ
p、InP基板4上には第4図(、)に示す如(、In
P気相成長層21が成長形成される。なお、こ−のIn
P気相成長層21を形成する際にガリウムメタル9′が
収納されている■族金属ソースボート保護管15内にH
2のみを流しておくことは勿論である。
Next, by operating the operation rod 5, the system slide cover 6 is moved to close the concave groove 3a in which the InP substrate 4Q is housed, and the temperature inside the reaction tube 2 starts to rise. Next, when the inside of the reaction tube 2 reaches a temperature that allows vapor phase growth as shown in temperature profile A, Hctk is mixed into the H2 that has been flowing from the HC1/H2 introduction tube 14 before the temperature rise and is carried to the indium metal 9 where chloride is added. Indium is formed, and PH3' (i-) is mixed into H2, which has also been flowing from the raw gas inlet pipe 11 before the temperature was raised, to form gaseous molecules of phosphorus. When the gas reaches a steady state, move the slide cover 6,
The concave groove portion Jai is kept open for a desired period of time. As a result, as shown in FIG.
A P vapor growth layer 21 is grown. In addition, this In
When forming the P vapor phase growth layer 21, H is added to the group III metal source boat protection tube 15 in which the gallium metal 9' is housed.
Of course, only 2 is allowed to flow.

InP気相成長層21が所望膜厚形成されたら、直ちに
操作棒5の操作によりスライドカバー6を移動して凹状
溝部3af閉の状態にする。次いで、炉加熱体1を温度
プロファイルBの位置丁;に配置し、連結棒10の操作
によりm族金属ソ譜 ・、−スが−) s 、 s’fll族金属ソースケー
ト保護管1″J゛ :□′″:、% s 、a板支持具3及び■族ガス導入
管11等−も温度プロファイルBの位置に対応さぜる。
Immediately after the InP vapor growth layer 21 is formed to a desired thickness, the operating rod 5 is operated to move the slide cover 6 to close the concave groove 3af. Next, the furnace heating element 1 is placed at the position of the temperature profile B, and by operating the connecting rod 10, the M group metal source skate protection tube 1''J is heated.゛:□''':, % s The A plate support 3, the group (Ⅰ) gas inlet pipe 11, etc. are also set to correspond to the position of the temperature profile B.

こような気相成長可能な温度になったらHC1/H2導
入管14′からもHCl ’ii−混入させてガリウム
メタル9′まで運び塩化ガリウムを形成し、またV原ガ
ス導入管11にはAsH3を更に混入させて、砒素のガ
ス状分子を形成する。GaInAsP気相成長用原料ガ
スが定常状態に達したら、前記InP気相成長工程と同
じく、凹状溝部を所望時間だけ開の状態にして、第4図
(b)に示す如く該成長層21上にGaInAsP層2
2を成長層成2る。このとき、InP基板4が管壁析出
物7aよシもガス流上流側にあるため、GaInAsP
層22は管内層成27aの影響を受けない。
When the temperature reaches such a temperature that allows vapor phase growth, HCl 'ii- is also mixed in from the HC1/H2 inlet pipe 14' and transported to the gallium metal 9' to form gallium chloride, and AsH3 is added to the V raw gas inlet pipe 11. is further mixed in to form gaseous molecules of arsenic. When the raw material gas for GaInAsP vapor phase growth reaches a steady state, the concave groove is kept open for a desired period of time, as in the InP vapor phase growth process, and the gas is deposited on the growth layer 21 as shown in FIG. 4(b). GaInAsP layer 2
2 to form a growth layer. At this time, since the InP substrate 4 and the tube wall precipitates 7a are on the upstream side of the gas flow, the GaInAsP
Layer 22 is not affected by intratubular stratification 27a.

GaInAaP気相成長層22が所望膜厚形成されたら
、直ちに凹状溝部3aを閉の状態にする。
Immediately after the GaInAaP vapor growth layer 22 is formed to a desired thickness, the concave groove 3a is closed.

同時K HCl−/II2導入管14/のnczと■原
ガス導入管11のAsH3とを停止する。次いで、炉加
熱体、Jを温度プロファイルCの位置に配置し、先の′
ブ如(GaInAsP層22上にInP気相成長層23
気i成長形成されることになる。なお、第3図(C)類
の異なる層を、所望の配列で多層成長することができる
。しかも、炉加熱体1と■族金属ソースyW−ト8.8
’基板支持具3、v原ガス導入管11等を各成長毎に管
壁析出物領域よシも反応管2内のガス流上流側へ移動す
ることで、管壁析出物7m 、7bの影響を受けない気
相成長が可能となシ、気相成長層の再現性及び安定性の
向上、更には成長速度の安定化をはがシ得る効果が生ず
る。さらに、従来装置に比してガス・エツチング工程を
省略できるため、作業時間を大幅に短縮することができ
、経済性及び作業性の向上をはかシ得る。
At the same time, ncz of K HCl-/II2 introduction pipe 14/ and (1) AsH3 of raw gas introduction pipe 11 are stopped. Next, place the furnace heating element J at the position of the temperature profile C, and
(InP vapor phase growth layer 23 on GaInAsP layer 22)
It will grow and form. Note that it is possible to grow multiple layers of different layers as shown in FIG. 3(C) in a desired arrangement. Furthermore, the furnace heating element 1 and the group II metal source yW-to 8.8
'By moving the substrate support 3, raw gas inlet pipe 11, etc. to the upstream side of the gas flow in the reaction tube 2 from the tube wall precipitate region for each growth, the influence of the tube wall precipitates 7m and 7b can be reduced. This has the effect of making it possible to perform vapor phase growth without any turbulence, improving the reproducibility and stability of the vapor phase grown layer, and further stabilizing the growth rate. Furthermore, since the gas etching step can be omitted compared to conventional equipment, the working time can be significantly shortened, resulting in improved economic efficiency and workability.

また、上述した効果を確認するため、本発明者等は実施
例装置を用いInP基板4上にInP気相成長層21を
約5.0〔μm〕、その上にGaInAsP気相成長層
22を約0,2〔μm、L最終層としてInP気相成長
層23t−約2.0〔μm〕成長形成するの数社3層に
限るものではなく、適宜変更可能である。そして、所望
する成長層の数に応じて、反応管長等を適宜定めればよ
い。また、lap基板の代わシにGaAs基板を用いて
もよ〈1このGaAs基板上にG1Ag層やGaAtA
+s層等を気相成長させることもできる。炉加熱体は必
ずしも移動させる必要はなく、操作棒の移動に応じて前
記第3図(d)に示す如く反応管内温度プロファイルを
可変できるものであればよい。その他、本発明の要旨を
逸脱し寿いで、種々変形して実施することができる。
In addition, in order to confirm the above-mentioned effect, the present inventors used the embodiment apparatus to form an InP vapor-phase epitaxy layer 21 of about 5.0 [μm] on the InP substrate 4, and a GaInAsP vapor-phase epitaxy layer 22 thereon. It is not limited to three layers, but can be changed as appropriate. Then, the length of the reaction tube and the like may be determined as appropriate depending on the desired number of growth layers. In addition, a GaAs substrate may be used instead of a LaP substrate.
+s layer etc. can also be grown in vapor phase. The furnace heating element does not necessarily have to be moved, but may be any element that can vary the temperature profile in the reaction tube as shown in FIG. 3(d) according to the movement of the operating rod. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の気相成長装置の概略構成を示す断面図、
第2図(1k)〜(c)は本発明の一実施例の構成を説
明するだめのもので、第2図(、)はその概略構成を示
す模式図、第2図(b)はその要部構1・・・炉加熱体
、2・・・反応管、3a・・・凹状溝部、3・・・基板
支持具、4・・・InP基板、5・・・操作棒、6・・
・スライドカバー、7,7*、7b・・・管壁析出物、
8,8′・・・■族金属ソース&−)、9・・・インジ
ウム、9′・・・ガリウム、10・・・連結棒、1ノ・
・・■原ガス導入管、12・・・反応管導入管、13゜
13′・・・シール、14 、14’・・・HC4/′
F(2導入管、15・・・■族金属ソースが一ト保護管
、16・・・反応管導入管、21・・・InP気相成長
層、22・・・GaInAIIP気相成長層、23・・
・InP気相成長層。
FIG. 1 is a cross-sectional view showing the schematic configuration of a conventional vapor phase growth apparatus.
Figures 2 (1k) to (c) are for explaining the configuration of an embodiment of the present invention, Figure 2 (,) is a schematic diagram showing the schematic configuration, and Figure 2 (b) is a schematic diagram of the configuration. Principal parts 1...Furnace heating body, 2...Reaction tube, 3a...Concave groove, 3...Substrate support, 4...InP substrate, 5...Operation rod, 6...
・Slide cover, 7, 7*, 7b...tube wall deposits,
8, 8'... ■ Group metal source &-), 9... Indium, 9'... Gallium, 10... Connecting rod, 1 No.
...■Raw gas introduction tube, 12...Reaction tube introduction tube, 13゜13'...Seal, 14, 14'...HC4/'
F (2 introduction tube, 15... group metal source is one protection tube, 16... reaction tube introduction tube, 21... InP vapor phase growth layer, 22... GaInAIIP vapor phase growth layer, 23・・・
-InP vapor phase growth layer.

Claims (3)

【特許請求の範囲】[Claims] (1)反応管内に原料ガスを導入し、■族金属の塩化物
と■族ガスと音用いた気相開管法によシ半導体基板上に
2種以上の■−v族化合物半導体層を成長させる化合物
半導体の気相成長装置において、前記反応管内に配置さ
れ前記基板を支持する基板支持具と、この支持具近傍で
かつ上記反応管内のガス流上流側に配置された複数の■
族金属ソースカートと、上記支持具近傍でかつガス流上
流側にその一端が配置され上記支持具近傍にV族ガスを
導入する■族ガス導入管と、上記支持具、ポート及び導
入管を1つの結晶層成長毎に前記反応管内のガス流上流
側に所定距離だけ一体的に移動せしめる手段と、前記反
応管内の所定領域を加熱しかつ上記移動と共にその加熱
領域を可変して前記支持具近傍を一定状態に加熱する加
熱手段とを具備してなることt′特徴とする化合物半導
体の気相成長装置。
(1) A raw material gas is introduced into a reaction tube, and two or more types of group ■-V compound semiconductor layers are formed on a semiconductor substrate by the gas phase open tube method using a chloride of a group ■ metal, a group ■ gas, and sound. In a vapor phase growth apparatus for growing a compound semiconductor, a substrate support disposed within the reaction tube to support the substrate, and a plurality of
A group metal source cart, a group gas introduction pipe whose one end is arranged near the support and on the upstream side of the gas flow and which introduces the group V gas into the vicinity of the support, and the support, the port, and the introduction pipe. means for integrally moving a predetermined distance upstream of the gas flow in the reaction tube for each crystal layer growth; 1. A compound semiconductor vapor phase growth apparatus characterized by comprising a heating means for heating the compound semiconductor to a constant state.
(2)前記加熱手段は前記反応管外に配置された炉加熱
体からな〕、この炉加熱体社前記支持具箋が一ト及び導
入管と一体的に移動されるものであることを特徴とする
特許請求の範囲第1項記載の化合物半導体の気相成長装
置。
(2) The heating means is a furnace heating body disposed outside the reaction tube, and the supporting tool is moved integrally with the furnace heating body and the introduction tube. A compound semiconductor vapor phase growth apparatus according to claim 1.
(3)  前記支持具、−一ト及び導入管は、同一の連
結棒に一体的に連結されたものであること1!−特徴と
する特許請求の範囲第1項記載の化合物半導体の気相成
長装置。
(3) The support, the one and the introduction pipe are integrally connected to the same connecting rod.1! - A compound semiconductor vapor phase growth apparatus according to claim 1.
JP10426283A 1983-06-13 1983-06-13 Vapor growth apparatus for compound semiconductor Pending JPS59229816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10426283A JPS59229816A (en) 1983-06-13 1983-06-13 Vapor growth apparatus for compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10426283A JPS59229816A (en) 1983-06-13 1983-06-13 Vapor growth apparatus for compound semiconductor

Publications (1)

Publication Number Publication Date
JPS59229816A true JPS59229816A (en) 1984-12-24

Family

ID=14376010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10426283A Pending JPS59229816A (en) 1983-06-13 1983-06-13 Vapor growth apparatus for compound semiconductor

Country Status (1)

Country Link
JP (1) JPS59229816A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279047B2 (en) * 2001-07-06 2007-10-09 Technologies And Devices, International, Inc. Reactor for extended duration growth of gallium containing single crystals
US7501023B2 (en) 2001-07-06 2009-03-10 Technologies And Devices, International, Inc. Method and apparatus for fabricating crack-free Group III nitride semiconductor materials
US7670435B2 (en) 2001-03-30 2010-03-02 Technologies And Devices International, Inc. Apparatus for epitaxially growing semiconductor device structures with sharp layer interfaces utilizing HVPE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788095A (en) * 1980-11-20 1982-06-01 Fujitsu Ltd Vapor phase growing method
JPS57123895A (en) * 1981-01-22 1982-08-02 Nippon Telegr & Teleph Corp <Ntt> Vapor-phase epitaxial growing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788095A (en) * 1980-11-20 1982-06-01 Fujitsu Ltd Vapor phase growing method
JPS57123895A (en) * 1981-01-22 1982-08-02 Nippon Telegr & Teleph Corp <Ntt> Vapor-phase epitaxial growing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7670435B2 (en) 2001-03-30 2010-03-02 Technologies And Devices International, Inc. Apparatus for epitaxially growing semiconductor device structures with sharp layer interfaces utilizing HVPE
US7279047B2 (en) * 2001-07-06 2007-10-09 Technologies And Devices, International, Inc. Reactor for extended duration growth of gallium containing single crystals
US7501023B2 (en) 2001-07-06 2009-03-10 Technologies And Devices, International, Inc. Method and apparatus for fabricating crack-free Group III nitride semiconductor materials
US7611586B2 (en) * 2001-07-06 2009-11-03 Technologies And Devices International, Inc. Reactor for extended duration growth of gallium containing single crystals

Similar Documents

Publication Publication Date Title
JPS62188309A (en) Vapor growth method and equipment therefor
CA1296241C (en) Method for epitaxial growth from the vapour phase of semiconductor materials
JPS59229816A (en) Vapor growth apparatus for compound semiconductor
JPS6291495A (en) Vapor growth method for thin semiconductor film
JPS60112694A (en) Gas-phase growth method of compound semiconductor
JP2701339B2 (en) Vapor phase growth equipment
JPH04160100A (en) Method for epitaxial-growing iii-v compound semiconductor
JPH02230720A (en) Vapor growth method and apparatus for compound semiconductor
JPS6134932A (en) Vapor growing process
JPH02126632A (en) Vapor phase epitaxy for compound semiconductor crystal layer and reaction tube therefor
JPS6122619A (en) Vapor-phase epitaxial growing device
JPS59103330A (en) Vapor growth apparatus for compound semiconductor
JPH03244119A (en) Vapor growth method for group iii-v compound semiconductor
JPH01117020A (en) Epitaxial growth method for iii-v compound semiconductor
JPS61174624A (en) Semiconductor growing apparatus
JPS60215595A (en) Method for vapor-phase growth
JPH0366121A (en) Vapor growth device and vapor growth
JPH0265125A (en) Reaction pipe of mocvd crystal growth device
JPH0760800B2 (en) Vapor growth method for compound semiconductors
JPS5826657B2 (en) 3-5 Epitaxy and hand-wringing method
JPH05217903A (en) Method and apparatus for vapor growth
JPS6121994A (en) Vapor growth device
Pitts et al. Flow modulation growth of III-V compound semiconductors using a multichamber OMVPE reactor
JPS63134600A (en) Vapor growth device
JPH01244612A (en) Method and apparatus for vapor growth of gallium arsenide