JPS59103330A - Vapor growth apparatus for compound semiconductor - Google Patents

Vapor growth apparatus for compound semiconductor

Info

Publication number
JPS59103330A
JPS59103330A JP21277482A JP21277482A JPS59103330A JP S59103330 A JPS59103330 A JP S59103330A JP 21277482 A JP21277482 A JP 21277482A JP 21277482 A JP21277482 A JP 21277482A JP S59103330 A JPS59103330 A JP S59103330A
Authority
JP
Japan
Prior art keywords
substrate
growth
chambers
vapor phase
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21277482A
Other languages
Japanese (ja)
Inventor
Kuniaki Konno
紺野 邦明
Masami Iwamoto
岩本 正巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP21277482A priority Critical patent/JPS59103330A/en
Publication of JPS59103330A publication Critical patent/JPS59103330A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To realize vapor growth of different compound semiconductor layers while the transition region width between growing layers is kept narrow, by inserting a slidable substrate operating plate having the recessed part for accommodating a substrate for vapor growth into the shaped recessed part of the U-shaped substrate support having a plurality of growth chambers at the upper part thereof and opening or closing respective growth chambers with a slide cover. CONSTITUTION:A plurality of growth chambers 12-14 having the opening surface are formed at the upper surface of the U-shaped quartz substrate support 11, these chambers are connected with a through holes provided near the bottom part and a quartz slidable operating plate 15 having the recessed groove 15a for accommodating semiconductor substrate 4 is inserted to the U-shaped recessed part and it is freely controlled for forward and backward movement by the quartz bar 16. The quartz slide cover 6 having the operating bar 5 is placed on the support 11 and the upper ends of chambers 12-14 are sequentially opened or closed. With such a structure, the chambers 12-14 are filled with material gas. When the substrate 4 is located under the specified chamber, this chamber is opened and the other chambers are kept closed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、化合物半導体の気相成長技術に係わり、特に
基板支持具の改良をはかった気相成長装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a compound semiconductor vapor phase growth technique, and particularly to a vapor phase growth apparatus with an improved substrate support.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近時、化合物半導体を用いた各種の新機能素子が研究開
発されており、その中の一例としてInGaAaP 4
元混晶系を用いた半導体レーザがある。この半導体レー
ザを作製する場合、結晶基板としてN型InP基板を用
い、その上にN型InP層(クラッド層)、InGaA
aP層(活性層)。
Recently, various new functional devices using compound semiconductors have been researched and developed, one example of which is InGaAaP4.
There is a semiconductor laser using an original mixed crystal system. When manufacturing this semiconductor laser, an N-type InP substrate is used as a crystal substrate, and an N-type InP layer (cladding layer), an InGaA
aP layer (active layer).

P型InP層(クラッド層)及びP型InGaAsP層
(オーミック層)等を成長させ、所謂DH(ダブルへテ
ロ)接合構造を形成するのは周知のことである。そして
、上記各成長層を形成するには、従来次のような装置が
用いられている。
It is well known that a P-type InP layer (cladding layer), a P-type InGaAsP layer (ohmic layer), etc. are grown to form a so-called DH (double heterojunction) structure. Conventionally, the following apparatus is used to form each of the above-mentioned growth layers.

は石英製反応管であシ、反応管2内には基板支持具3が
設置されている。基板支持具3の上面には凹状の溝部3
aが設けられておシ、この溝部3a内にInP基板4が
収納保持される。ま、た基板支持具3の上面には、操作
棒5に連結さ・1 :、jiliたスライドカバー6が設置されている。そ
し隔離されるものとなっている。なお、図中矢印はガス
流を示してお9、反応管2の左方がガス流上流側、右方
がガス流下流側である。
is a quartz reaction tube, and a substrate support 3 is installed inside the reaction tube 2. A concave groove 3 is formed on the upper surface of the substrate support 3.
A groove 3a is provided, and an InP substrate 4 is housed and held within this groove 3a. A slide cover 6 connected to the operating rod 5 is installed on the upper surface of the substrate support 3. It is then isolated. Note that arrows in the figure indicate gas flows 9, with the left side of the reaction tube 2 being the upstream side of the gas flow, and the right side being the downstream side of the gas flow.

上記構成の気相成長装置を用いた結晶成長は、以下のよ
うにして行われる。首ず、基板支持具3の凹部にInP
基板4を配置し、スライドカバー6をガス流下流側に引
き、ガス流雰囲気とInP基板4とが接触する状態にす
る。次に、反応管2の昇温過程中、その内部温度がIn
P基板4の熱劣化を起こす前に、ガス流上流側から既に
導入されているキャリア水素ガスにリン水素ガスを混入
させることにより、InP基板4に所望のリン圧を印加
する。その後、InP基板4の周囲温度が結晶成長可能
な温度に達した時点で、スライドカバー6をガス流上流
側に移動し溝部3aを覆う@これと同時に、ガス流上流
側から塩化インジウム、リン水素化合物等の気体状原料
を、キャリアガスである水素によフ基板支持具3の設置
されている結晶析出領或Pに運び、スライドカバー6を
ガス流下流側に移動し、−−InP’基板4とガス流雰
囲気とを接触させてInP層の気相成長を施す。InP
気相成長層が所望の膜厚になったら、直ちにスライドカ
バー6で四部3aを覆い、InP気相成長層とガス流雰
囲気とを隔離して気相成長を一旦停止する。次いで、気
相成長用気体原料の供給を中止し、水素ガスのみで気相
成長用気体原料を完全にパージする。
Crystal growth using the vapor phase growth apparatus having the above configuration is performed as follows. InP is placed in the recess of the substrate support 3.
The substrate 4 is placed, and the slide cover 6 is pulled downstream of the gas flow to bring the gas flow atmosphere into contact with the InP substrate 4. Next, during the temperature rising process of the reaction tube 2, the internal temperature becomes In
Before thermal deterioration of the P substrate 4 occurs, a desired phosphorus pressure is applied to the InP substrate 4 by mixing phosphorous hydrogen gas into the carrier hydrogen gas already introduced from the upstream side of the gas flow. After that, when the ambient temperature of the InP substrate 4 reaches a temperature that allows crystal growth, the slide cover 6 is moved upstream of the gas flow to cover the groove 3a. At the same time, indium chloride, phosphorous hydrogen, and A gaseous raw material such as a compound is carried to the crystal precipitation region P where the substrate support 3 is installed, where hydrogen is used as a carrier gas, and the slide cover 6 is moved to the downstream side of the gas flow, and the InP' substrate is moved to the downstream side of the gas flow. 4 and a gas flow atmosphere to perform vapor phase growth of an InP layer. InP
Immediately after the vapor-phase growth layer reaches a desired thickness, the four parts 3a are covered with the slide cover 6 to isolate the InP vapor-phase growth layer from the gas flow atmosphere, and the vapor-phase growth is temporarily stopped. Next, the supply of the gaseous raw material for vapor phase growth is stopped, and the gaseous raw material for vapor phase growth is completely purged with only hydrogen gas.

防止対策を施し、各々の結晶成長に必要な気相成長用原
料を上記領域に送シ込み、前記と同様の操作を施すこと
により、組成比若しくは種類の異なる気相成長層が順次
多層成長することになる。
By taking preventive measures, feeding the vapor phase growth raw materials necessary for each crystal growth into the above region, and performing the same operations as above, multiple vapor phase growth layers with different composition ratios or types are sequentially grown. It turns out.

しかしながら、この種の従来装置を用いる場合にあって
は、次の(1) (2)のような問題があった。
However, when using this type of conventional device, there are problems such as the following (1) and (2).

(1)熱劣化防止に用いるリン水素化物や砒素水素化物
等を、昇温途中から気相成長開始前ま不経済である。ま
た、反応管2の出口付近に上記水素化物の熱分解物が多
量堆積科、作業性が著しく低下する。
(1) Phosphorus hydride, arsenic hydride, etc. used to prevent thermal deterioration are uneconomical from the middle of heating up to before the start of vapor phase growth. In addition, a large amount of thermal decomposition products of the hydride are deposited near the outlet of the reaction tube 2, resulting in a significant decrease in workability.

組成や再現性等の不安定化、成長速度の著しい低下を招
く要因となシ、さらには異なる気相成長間の遷移領域幅
を拡げる要因となる。なお、上記組成の不安定化や遷移
領域の拡大化は、半導体レーザの特性劣化を招くもので
ある。
This becomes a factor that causes instability in the composition and reproducibility, a significant decrease in the growth rate, and furthermore, it becomes a factor that widens the width of the transition region between different vapor phase growth methods. Note that the above-mentioned instability of the composition and expansion of the transition region lead to deterioration of the characteristics of the semiconductor laser.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、異なる化合物半導体結晶層を容易かつ
再現性良く多層に気相成長させることができ、さらに各
成長層間の遷移領域幅を極めて狭くし得る化合物半導体
の気相成長装置を濠供することにある。
An object of the present invention is to provide a compound semiconductor vapor phase growth apparatus that can easily and reproducibly grow different compound semiconductor crystal layers in multiple layers, and furthermore, can extremely narrow the width of the transition region between each growth layer. There is a particular thing.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、基板支持具の改良をはかシ、異なる成
長層形成工程間での待ち時間を短くずせる化合物半導体
の気相成長装置において、−主面側にそれぞれ開口し上
記基板を収納する複数の成長部屋を備え上記反応管内に
設置される基板支持具と、この基板支持具の一主面側に
スライド自在に設置され上記各成長部屋を開閉するスラ
イドカバーと、上記基板支持具の各成長部屋を貫通し基
板支持具にスライド自在に取着され、上記基板を載置し
該基板を各成長部屋間で移動せしめるスライド式基板操
作板とを設は屋を設けたことによシ、熱劣化防止用の水
素化物を流す時間を大幅に短くすることができ、管壁析
出物の量を少なくすることができる。このため、各成長
層の再現性や安定性の向上をはかさ19得る また 7
 イト力 −による各成長し1・、” 麺の開閉によって、基板若しくは気相成長層と1゛去ス
流雰囲気との接触及び隔離を瞬間的に行う1゛′ことが
可能となシ、これによシ各成長層間での遷移領域幅を極
めて狭くすることができる。したがって、半導体レーザ
の製造等に適用して絶大なる効果を発揮する。
The gist of the present invention is to provide a compound semiconductor vapor phase growth apparatus that improves the substrate support and shortens the waiting time between different growth layer forming steps, and provides a compound semiconductor vapor phase growth apparatus with openings on the -main surface side. a substrate support that is installed in the reaction tube and has a plurality of growth chambers for storage, a slide cover that is slidably installed on one main surface of the substrate support and opens and closes each of the growth chambers, and the substrate support. A slide-type substrate operation plate is provided that penetrates each growth chamber and is slidably attached to the substrate support, on which the substrate is placed and the substrate is moved between the growth chambers. Second, the time for flowing the hydride for preventing thermal deterioration can be significantly shortened, and the amount of pipe wall deposits can be reduced. Therefore, the reproducibility and stability of each growth layer can be improved19 and 7
Each growth caused by the light force 1.'' By opening and closing the noodles, it is possible to instantaneously bring the substrate or vapor-grown layer into contact with and isolation from the evaporating atmosphere. As a result, the width of the transition region between each grown layer can be made extremely narrow.Therefore, it can be applied to the manufacture of semiconductor lasers, etc., and exhibits great effects.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明の一実施例に係わる気相成長装置の要部
構成を示す斜視図である。なお、第1図と同一部分には
同一符号を付して、その詳第3の成長部屋12.13.
14がそれぞれ形成されている。成長部屋12.〜,1
4はその底面近くで貫通孔によ・て互ゝいに連通されて
いる。そして、この貫通孔には、石英製のスライド式基
板操作板15が摺動自在に嵌め込まれている。操作板1
5の上面には前記成長部屋12゜〜、14と略同径の凹
状溝部15aが形成されhい反応室2の外部から移動せ
られるものとなっている。
FIG. 2 is a perspective view showing the configuration of main parts of a vapor phase growth apparatus according to an embodiment of the present invention. Note that the same parts as in FIG.
14 are formed respectively. Growth room 12. ~,1
4 are connected to each other by a through hole near the bottom surface thereof. A sliding board operation plate 15 made of quartz is slidably fitted into this through hole. Operation board 1
A concave groove 15a having approximately the same diameter as the growth chamber 12 and 14 is formed on the upper surface of the reaction chamber 5, and can be moved from the outside of the reaction chamber 2.

宜)−”・3&i″A z z O417″′牝前記操
1棒゛により反応室12.〜,14はそれぞれ開閉され
るものとなっている。なお、基板支持具IZは前記反応
管2の結晶析出領域に配置されている。
The reaction chambers 12. to 14 are opened and closed, respectively, by the operation rod 1.The substrate support IZ is attached to the reaction tube 2. It is located in the crystal precipitation region.

次に、上記構成の本装置を用いた気相成長工程について
説明する。こ、こては、I nP/I nGaAs p
/InP/ InP基板の3層構造の例について説明す
る。
Next, a vapor phase growth process using this apparatus having the above configuration will be explained. This iron is I nP/I nGaAs p
/InP/ An example of a three-layer structure of an InP substrate will be described.

まず、操作棒16の操作によりスライド式基板操作板I
5を移動し、InP基板4の位置を成長部屋12と成長
部屋13との間にする。次いで、操作棒5の操作によシ
スライドカバー6を移動し、成長部屋12.〜.z 4
をそれぞれ開の状態にしたところで、反応管2内の昇温
を開・始する。そして、反応器2内の温度がInP基噂
− ′板′°4に熱劣化を生じさせる温度よりも低いうちに
、InP基板4及び結晶成長によって形成が予想される
各成長層の熱劣化を防止するために、次の諸作゛業を行
う。初めに、InP基板4いて、スライドカバー6を移
動し、成長部屋12.13を閉の状態にしたところで、
上記ガスライドカバー6を移動し、成長部屋12.〜。
First, by operating the operating rod 16, the sliding board operating board I
5 to position the InP substrate 4 between the growth chambers 12 and 13. Next, the system slide cover 6 is moved by operating the operating rod 5 to open the growth chamber 12. ~. z 4
When each of the tubes is opened, the temperature inside the reaction tube 2 starts to increase. Then, while the temperature inside the reactor 2 is lower than the temperature that causes thermal deterioration in the InP substrate 4, thermal deterioration of the InP substrate 4 and each growth layer expected to be formed by crystal growth is prevented. To prevent this, perform the following actions. First, the InP substrate 4 was placed, the slide cover 6 was moved, and the growth chambers 12 and 13 were closed.
Move the gas slide cover 6 and move the growth chamber 12. ~.

14の全てを閉の状態にする。14 are all closed.

次に1前記リン水素化物及び砒素水素化物の供給を停止
したのち、操作4916によシスライド式基板操作板1
5を移動し、InP基板4を第1の成長部屋12内に配
置する。このとき、InP基板4には所望のリン圧が印
加されるため、InP基板4が熱劣化を起こす等の不都
合はない。
Next, after stopping the supply of the phosphorus hydride and arsenic hydride, perform operation 4916 to
5 and place the InP substrate 4 in the first growth chamber 12. At this time, since a desired phosphor pressure is applied to the InP substrate 4, there is no problem such as thermal deterioration of the InP substrate 4.

次いで、反応管2内が気相成長可能な温度に達したら、
ガス流上流側(図中左側)から塩化インジウム及びリン
水素化物等の気体状原料を水素ガスに混入させ、結晶析
出領域に運ぶ。気相成長川原側ガスが定常状態に達した
ら、前記スライドカバー6を移動し、成長部屋12のみ
を所望時間だけ開の状態にする。これにより、InP基
板4上には、第3図(、)に示す如(InP気相成長層
31が成長形成される。
Next, when the inside of the reaction tube 2 reaches a temperature that allows vapor phase growth,
Gaseous raw materials such as indium chloride and phosphorus hydride are mixed with hydrogen gas from the upstream side of the gas flow (left side in the figure) and transported to the crystal precipitation region. When the gas on the riverside side of the vapor phase growth reaches a steady state, the slide cover 6 is moved to leave only the growth chamber 12 open for a desired period of time. As a result, an InP vapor phase growth layer 31 is grown on the InP substrate 4 as shown in FIG.

InP気相成長層31が所望膜厚形成されたら基板4上
のInP気相成長層31の成長が停止すると共に、In
P気相成長層31にリン圧が印加される。このため、I
nP、気相成長層31に熱劣化が起こる等の不都合はな
い。次いで、前記反応管2内の気相成長用原料ガスをパ
ージしたのち、今度は塩化ガリウム、塩化インジウム、
リン水素化物及び砒素水素化物等からなる気体状原料を
水素ガスに混入させ、この気相成長用原料ガスを結晶析
出領域に運ぶ。そして、先のInP気相成長層31の成
長工程と同様にして、該成長層3I上に第3図(b)に
示す如(InGaAsP気相成長層32を成長形成する
。InGaAsP気相成長層32が所望膜厚形成された
ら、直ちに操作板15を移動しInP基板4を第3の成
長部屋14内に配置し、InGaAsP気相成長層32
の成長を停止する。このとき、成長部屋32にリン圧及
び砒素圧が印加されているので、  11GaAsP気
相成長層32に熱劣化が起こる等の不都合はない。これ
以降は、上記気相成長用原料ガスを)f−ジしたのち、
前記InP気相成長層31の成長工程と同様の工程を施
すことによシ、第3図(1りに示す如(InG;AsP
気相成長層32上にInP気相成長層33が成長形成さ
れることになる。
When the InP vapor phase growth layer 31 is formed to a desired thickness, the growth of the InP vapor phase growth layer 31 on the substrate 4 is stopped, and the InP vapor phase growth layer 31 is grown to a desired thickness.
Phosphorus pressure is applied to the P vapor phase growth layer 31. For this reason, I
There is no problem such as thermal deterioration of the nP vapor growth layer 31. Next, after purging the raw material gas for vapor phase growth in the reaction tube 2, gallium chloride, indium chloride,
A gaseous raw material consisting of phosphorus hydride, arsenic hydride, etc. is mixed with hydrogen gas, and this raw material gas for vapor phase growth is transported to a crystal precipitation region. Then, in the same manner as the growth process of the previous InP vapor growth layer 31, an InGaAsP vapor growth layer 32 is grown on the growth layer 3I as shown in FIG. 3(b). 32 to a desired thickness, the operation plate 15 is immediately moved, the InP substrate 4 is placed in the third growth chamber 14, and the InGaAsP vapor phase growth layer 32 is
stop growing. At this time, since phosphorous pressure and arsenic pressure are applied to the growth chamber 32, there is no problem such as thermal deterioration of the 11GaAsP vapor phase growth layer 32. After this, after f-di the above raw material gas for vapor phase growth,
By performing a process similar to the growth process of the InP vapor phase growth layer 31, as shown in FIG.
An InP vapor growth layer 33 is grown on the vapor growth layer 32 .

かくして本装置によれば、組成比或いは種類の異々る層
を、所望の配列で多層成長することができる。しかも、
スライドカバー6及びスライド式操作板の移動を速やか
に行うことによって、InP基板4若しくは気相成長層
31,32゜33と気相成長用原料ガスとの接触及び隔
離を瞬間的に行うことができ、これによシ各々の気相成
長層間での遷移領域の幅を極力短くすることが可能と々
る。また、従来装置に比して熱劣化防止用の水素化物等
を流す時間を大幅(約また、上述した効果を確認するた
め、本発明者等は実施例装置を用いInP基板4上にI
nP気相成長層3zを約4.5〔μm〕、その上にIn
GaA+zP気相成長層32を約0.3〔μm〕、最終
層としてInP気相成長層33を約2.0〔μm〕成長
形成した試料を準備し、各成長層の遷移領域幅を測定し
た。その結果、遷移領域幅は100〜20 o (1)
と極めて狭いものであることが確認された。
Thus, according to the present apparatus, it is possible to grow multiple layers of different composition ratios or types in a desired arrangement. Moreover,
By quickly moving the slide cover 6 and the sliding operation plate, it is possible to instantaneously bring the InP substrate 4 or the vapor growth layers 31, 32 and 33 into contact with and isolate the vapor growth source gas. This makes it possible to minimize the width of the transition region between each vapor-grown layer. In addition, in order to confirm the above-mentioned effect, the present inventors and others used the example apparatus to inject an I
The nP vapor phase growth layer 3z is approximately 4.5 [μm] thick, and the In
A sample was prepared in which a GaA+zP vapor-phase growth layer 32 was grown to a thickness of about 0.3 [μm] and an InP vapor-phase growth layer 33 was grown to a thickness of about 2.0 [μm] as the final layer, and the transition region width of each growth layer was measured. . As a result, the transition region width is 100-20 o (1)
It was confirmed that it was extremely narrow.

なお、本発明は上述した実施例に限定されるものではな
い。例えば、前記基板支持具及びその周辺部の材質は石
英に限るものではなく、BNやC等を用いてもよい。さ
らに基板支持具に形成する成長部屋の数は3個に限るも
のではなく、所望する成長層の数に応じて適宜定めれば
よい。
Note that the present invention is not limited to the embodiments described above. For example, the material of the substrate support and its surrounding area is not limited to quartz, and BN, C, etc. may also be used. Further, the number of growth chambers formed in the substrate support is not limited to three, and may be determined as appropriate depending on the desired number of growth layers.

また、InP 基板の代りにGaAs基板を用いてもよ
く、このGaAs基板上にGaAs層やGaAtAs層
等を気相成長させることもできる。さらに、不純物添加
の各層を順次成長させることも可能である。
Further, a GaAs substrate may be used instead of the InP substrate, and a GaAs layer, a GaAtAs layer, etc. may be grown in a vapor phase on this GaAs substrate. Furthermore, it is also possible to sequentially grow each impurity-doped layer.

その他、本発明の要旨を逸脱しない範囲で程々変形して
実施することができる。
Other modifications may be made without departing from the spirit of the invention.

【図面の簡単な説明】[Brief explanation of drawings]

第、1図は従来の気相成長装置の概略構成を示す断面図
、第2図は本発明の一実施例の要部構成を示す斜視図、
第3図(a)〜(C)は上記実施例装置を用いた気相成
長工程を示す断面図である。 1・・・抵抗加熱炉、2・・・反応管、4・・・工♂基
板、5.16・・・操作棒、6・・・スライドカバー、
11・・基板支持具、12.〜,14・・・反応部屋、
15・・・スライド式基板操作板、15a・・・溝部。 出願人 工業技術院長 石 坂 誠 −第1図 第2図 第3図 1 147
1 is a sectional view showing a schematic configuration of a conventional vapor phase growth apparatus, and FIG. 2 is a perspective view showing a main part configuration of an embodiment of the present invention.
FIGS. 3(a) to 3(C) are cross-sectional views showing a vapor phase growth process using the apparatus of the above embodiment. 1... Resistance heating furnace, 2... Reaction tube, 4... Engineering board, 5.16... Operating rod, 6... Slide cover,
11...Substrate support, 12. ~, 14... reaction chamber,
15...Sliding board operation plate, 15a...Groove portion. Applicant Makoto Ishizaka, Director General of the Agency of Industrial Science and Technology - Figure 1 Figure 2 Figure 3 Figure 1 147

Claims (1)

【特許請求の範囲】 反応管内に半導体結晶基板を配置し、この基板上に2種
以上の異なる化合物半導体結晶を気相から順次連続して
成長させる化合物半導体の気相成長装置において、−主
面側にそれぞれ開口し前記基板を収納する複数の成長部
屋を備え前記反応管内に設置された基板支持具と、この
基板支持具の上記−主面上にスライド自在に設は−1 前記基板を載置し該基板を上記各成長部屋間で
[Scope of Claims] A compound semiconductor vapor phase growth apparatus in which a semiconductor crystal substrate is disposed in a reaction tube, and two or more different compound semiconductor crystals are successively grown from the vapor phase on this substrate, a substrate support provided with a plurality of growth chambers each having an opening on each side and accommodating the substrate, and installed in the reaction tube; Place the substrate between each of the above growth chambers.
JP21277482A 1982-12-06 1982-12-06 Vapor growth apparatus for compound semiconductor Pending JPS59103330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21277482A JPS59103330A (en) 1982-12-06 1982-12-06 Vapor growth apparatus for compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21277482A JPS59103330A (en) 1982-12-06 1982-12-06 Vapor growth apparatus for compound semiconductor

Publications (1)

Publication Number Publication Date
JPS59103330A true JPS59103330A (en) 1984-06-14

Family

ID=16628166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21277482A Pending JPS59103330A (en) 1982-12-06 1982-12-06 Vapor growth apparatus for compound semiconductor

Country Status (1)

Country Link
JP (1) JPS59103330A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286059A (en) * 1976-01-13 1977-07-16 Nippon Telegr & Teleph Corp <Ntt> Process for production and apparatus used for process of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286059A (en) * 1976-01-13 1977-07-16 Nippon Telegr & Teleph Corp <Ntt> Process for production and apparatus used for process of semiconductor device

Similar Documents

Publication Publication Date Title
JPS6077431A (en) Method of producing cadmium mercury telluride
US3394390A (en) Method for making compond semiconductor materials
JPS62286220A (en) Manufacture of semiconductor device
JP3991393B2 (en) Compound semiconductor manufacturing equipment
JPH04132681A (en) Device for epitaxial growth of compound semiconductor
JPS59103330A (en) Vapor growth apparatus for compound semiconductor
JPS61264722A (en) Manufacture of semiconductor device
JP2701339B2 (en) Vapor phase growth equipment
JPH02230720A (en) Vapor growth method and apparatus for compound semiconductor
JPS6016898A (en) Gaseous-phase growth device
JPS59229816A (en) Vapor growth apparatus for compound semiconductor
JPS6060714A (en) Vapor-phase epitaxial crowing method for i-v group compound semiconductor
JP2753009B2 (en) Compound semiconductor growth method
JPS5825223A (en) Vapor growth unit for 3-5 compound semiconductor
JP2005032893A (en) Vapor phase epitaxy method of compound semiconductor
JP2641539B2 (en) Method for manufacturing semiconductor device
JPS5826657B2 (en) 3-5 Epitaxy and hand-wringing method
JPS58128725A (en) Method and apparatus for manufacturing vapor phase epitaxial crystal
JPS63174314A (en) Method for doping iii-v compound semiconductor crystal
JPS61176112A (en) Vapor-phase epitaxial growing method and device thereof
JPH0536397B2 (en)
JPH02107594A (en) Vapor phase epitaxial growing equipment
Pitts et al. Flow modulation growth of III-V compound semiconductors using a multichamber OMVPE reactor
JPS5826656B2 (en) 3-5 Epitaxy method
JPH04219393A (en) Method and device for gas-phase epitaxial growth