JPH04219393A - Method and device for gas-phase epitaxial growth - Google Patents

Method and device for gas-phase epitaxial growth

Info

Publication number
JPH04219393A
JPH04219393A JP40370690A JP40370690A JPH04219393A JP H04219393 A JPH04219393 A JP H04219393A JP 40370690 A JP40370690 A JP 40370690A JP 40370690 A JP40370690 A JP 40370690A JP H04219393 A JPH04219393 A JP H04219393A
Authority
JP
Japan
Prior art keywords
raw material
material gas
reaction tube
epitaxial growth
phase epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP40370690A
Other languages
Japanese (ja)
Inventor
Hiroshi Nishino
弘師 西野
Koji Shinohara
篠原 宏爾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP40370690A priority Critical patent/JPH04219393A/en
Publication of JPH04219393A publication Critical patent/JPH04219393A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide a method and a device for gas-phase epitaxial growth of a crystal and to provide a gas-phase epitaxial growth device which does not produce any convection in a tubular reactor, can heat only a raw material gas to be heated and gives a homogeneous crystal. CONSTITUTION:In a method for the gas-phase epitaxial growth of a crystal, an auxiliary raw material gas Gb containing at least one kind of crystal components is allowed to flow along the inner wall of a reaction tube 1 in the direction counter to the flow direction of a main raw material gas Ga fed from the center of one end of the reaction tube 1 to prevent the convection of the main raw material gas Ga. In order to realize the method, an auxiliary raw material gas-feeding inlet 21 for feeding the auxiliary raw material gas Gb containing at least one kind of the crystal components toward a main raw material gas-feeding inlet 11 and along the inner wall of the reaction tube 1 is installed at the center of the cylindrical part of the reaction tube 1. The auxiliary raw material gas Gb can thereby prevent the convection of the main raw material gas Ga in the reaction tube 1.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は気相エピタキシャル成
長方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a vapor phase epitaxial growth method and apparatus.

【0002】0002

【従来技術】近年の電子ディバイスの高品質化、高密度
化の要求に伴い、制御性の高い結晶成長技術が要求され
ている。このため、大面積基板上への成長が容易で、組
成や不純物導入等の制御性に優れた気相エピタキシャル
成長方法が多用されている。図4は従来の縦型の気相エ
ピタキシャル成長装置を示すものである。反応管1の上
端部中央に原料ガス導入口111が設けられ、バルブ等
を介して原料ガスGが導入される構成とするとともに、
反応管1の内部中央部に支持軸12を介して基板加熱台
13を配置し、該加熱台13上で管軸に直角に、かつ、
原料ガス導入口111に対向して基板10が配置できる
ようになっている。
2. Description of the Related Art With the recent demand for higher quality and higher density electronic devices, a highly controllable crystal growth technique is required. For this reason, a vapor phase epitaxial growth method is often used because it is easy to grow on a large-area substrate and has excellent controllability of composition, impurity introduction, etc. FIG. 4 shows a conventional vertical vapor phase epitaxial growth apparatus. A raw material gas inlet 111 is provided at the center of the upper end of the reaction tube 1, and the raw material gas G is introduced through a valve or the like.
A substrate heating table 13 is arranged in the center of the interior of the reaction tube 1 via a support shaft 12, and on the heating table 13, a substrate is heated perpendicularly to the tube axis, and
The substrate 10 can be placed opposite the source gas inlet 111.

【0003】上記構成において、化合物半導体結晶を成
長させる場合、結晶組成となる原子を含む各種有機金属
原料ガスがキャリアガス(例えば水素)に添加、混合さ
れ、上記原料ガス導入口111より導入され、上記加熱
台13上に配置されて加熱された基板10に、該原料ガ
スGを接触させて分解し、目的とする化合物結晶を基板
10上に折出するようになっている。
In the above configuration, when growing a compound semiconductor crystal, various organometallic raw material gases containing atoms forming the crystal composition are added to and mixed with a carrier gas (for example, hydrogen), and introduced from the raw material gas inlet 111; The raw material gas G is brought into contact with the heated substrate 10 placed on the heating table 13 and decomposed, so that the desired compound crystals are precipitated onto the substrate 10.

【0004】HgCdTeのように化合物を液体(この
場合Hg、有機カドミウム、有機テルル)を原料として
成長させる場合には、該液体を適当な温度に保持してキ
ャリアガスに蒸気として混入し、上記原料ガス導入口1
11から反応管1内に導入するようになっている。
When a compound such as HgCdTe is grown using a liquid (in this case, Hg, organic cadmium, or organic tellurium) as a raw material, the liquid is maintained at an appropriate temperature and mixed into a carrier gas as vapor, and the above raw materials are grown. Gas inlet 1
11 into the reaction tube 1.

【0005】[0005]

【発明が解決しようとする課題】上記従来の方法による
と、原料ガス導入口111と反応管1との断面積が異な
り、断面積の小さい原料ガス導入口111から反応管1
に導入された原料ガスGは断面積の大きな反応管1内で
拡がろうとする。この原料ガスGの拡がりが基板10の
上部での対流の原因となる。そして、対流が発生すると
基板10上に成長する結晶の厚み、あるいは組成におけ
る部分的な不均一が生じる。この厚みあるいは組成の不
均一性は結果として、この結晶から抽出された多数のデ
ィバイスの電気特性の不均一性となって顕れることにな
り、不都合である。
[Problems to be Solved by the Invention] According to the above-mentioned conventional method, the cross-sectional areas of the raw material gas inlet 111 and the reaction tube 1 are different, and the reaction tube 1 is
The raw material gas G introduced into the reaction tube 1 tries to spread within the reaction tube 1 having a large cross-sectional area. This spread of the source gas G causes convection above the substrate 10. When convection occurs, the crystal grown on the substrate 10 becomes partially non-uniform in its thickness or composition. This non-uniformity in thickness or composition results in non-uniformity in the electrical properties of many devices extracted from this crystal, which is disadvantageous.

【0006】更に、HgCdTeのように液体原料(H
g)を加熱して用いる場合は、液体原料ガス導入口11
1での結露を防止するために原料ガス導入口111付近
を加熱する必要がある。しかしながら、この加熱によっ
て加熱する必要のない低温原料ガス(有機テルル、有機
カドミウム)も加熱され、基板10以外の部分での原料
ガスの分解や原料ガス間の反応が起こり、基板10上で
の均質なエピタキシャル成長を阻害する原因となってい
る。
Furthermore, liquid raw materials (H
g) When using by heating, liquid raw gas inlet 11
In order to prevent dew condensation at 1, it is necessary to heat the vicinity of the raw material gas inlet 111. However, this heating also heats the low-temperature raw material gases (organic tellurium, organic cadmium) that do not need to be heated, and decomposition of the raw material gases and reactions between the raw material gases occur in parts other than the substrate 10, resulting in a homogeneous state on the substrate 10. This is a cause of inhibiting epitaxial growth.

【0007】本発明は上記従来の事情に鑑みて提案され
たものであって、反応管内で対流が生じず、しかも加熱
の必要な原料ガスのみを加熱できて、均質な結晶が得ら
れる気相エピタキシャル成長装置を提供することを目的
とするものである。
The present invention has been proposed in view of the above-mentioned conventional circumstances, and is a gas phase method in which no convection occurs in the reaction tube, only the raw material gas that needs to be heated can be heated, and homogeneous crystals can be obtained. The object of the present invention is to provide an epitaxial growth apparatus.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
にこの発明は以下の手段を採用している。すなわち、図
1に示すように、反応管1内に原料ガスを流入させ、加
熱された基板10上に結晶を成長させる気相エピタキシ
ャル成長方法において、反応管1の一端部中央部から導
入される主原料ガスGaのガス流方向に逆流する方向に
、上記反応管1の管壁に沿って結晶組成の少なくとも1
種を含む副原料ガスGbを流し、主原料ガスGaの対流
を防止するものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention employs the following means. That is, as shown in FIG. 1, in a vapor phase epitaxial growth method in which a raw material gas is introduced into a reaction tube 1 and a crystal is grown on a heated substrate 10, a main gas introduced from the center of one end of the reaction tube 1 is used. At least one crystal composition of
This is to flow the auxiliary material gas Gb containing seeds and prevent the convection of the main material gas Ga.

【0009】[0009]

【作用】副原料ガス導入口21から導入された副原料ガ
スGbは、反応管1の管壁に沿って主原料ガスGaと逆
方向に流れ、主原料ガス導入口11付近で該主原料ガス
導入口11より注入する主原料ガスGaに押されて、該
主原料ガスGaの流れと同じ方向に流れる。この副原料
ガスGbの流れは、主原料ガスGaの拡がりを抑えるよ
うに作用するので主原料ガス導入口11と反応管1の断
面積差を補完することになり、主原料ガスGaが基板1
0の上の空間で対流することがないことはもとより、副
原料ガスGb自身の対流を防ぐことになる。
[Operation] The auxiliary raw material gas Gb introduced from the auxiliary raw material gas inlet 21 flows in the opposite direction to the main raw material gas Ga along the tube wall of the reaction tube 1, and the main raw material gas Ga is introduced from the main raw material gas inlet 11. It is pushed by the main raw material gas Ga injected from the inlet 11 and flows in the same direction as the flow of the main raw material gas Ga. This flow of the auxiliary raw material gas Gb acts to suppress the spread of the main raw material gas Ga, so it compensates for the difference in cross-sectional area between the main raw material gas inlet 11 and the reaction tube 1, so that the main raw material gas Ga
Not only does convection not occur in the space above zero, but also convection of the sub-source gas Gb itself is prevented.

【0010】更に、上記装置によると主副2つの原料ガ
ス導入口11、21を備えているので、必要とする複数
の原料ガスに温度差があるときにはいずれか一方の原料
ガス導入口11、21を低温原料ガス導入口として利用
し、他の原料ガス導入口11、21を高温原料ガス導入
口として利用できる。これにより、高温原料ガス中の組
成が低温ガスで冷やされて結露することもなく、また、
低温原料ガスが分解されてその金属分が管壁に付着した
り、該低温ガスに含まれる複数の組成が中間生成物を生
成することもなくなる。
Furthermore, since the above-mentioned apparatus is provided with two main and sub-source gas inlets 11 and 21, when there is a temperature difference between the plurality of required source gases, only one of the source gas inlets 11 and 21 is provided. can be used as a low-temperature source gas inlet, and the other source gas inlets 11 and 21 can be used as high-temperature source gas inlets. This prevents the composition of the high-temperature raw material gas from being cooled by the low-temperature gas and causing dew condensation.
There is no possibility that the low-temperature raw material gas will be decomposed and its metal components will adhere to the tube wall, and that the multiple compositions contained in the low-temperature gas will not produce intermediate products.

【0011】[0011]

【実施例】図2はこの発明の一実施例を示すものである
。反応管1の上端には主原料導入口11が開口され、反
応管1内には従来と同様の加熱台13が支持軸12に支
えられて、上記主原料ガス導入口11に対向して配置さ
れ、その上に基板10が載置されるようになっている。 反応管1内の胴部には副原料ガス導入口21が反応管1
の内壁に沿って、かつ、主原料ガス導入口11に向かっ
て副原料ガス導入口21が開口されている。この副原料
ガス導入口21は液体原料、例えば水銀の導入口として
利用されるところから、該副原料ガス導入口21の近辺
の反応管1及び配管22には加熱器25が取り付けられ
、液体原料が管壁等に結露しないようになっている。と
ころが、この加熱器25の影響は低温ガス導入口として
利用される(すなわち加熱する必要のない)上記主原料
ガス導入口11の周辺にも及ぶため、該主原料ガス導入
口11の周辺には冷却器26が配置されている。 これによって、高温原料ガスは結露することなく、また
、低温原料ガスは高温に加熱されて分解したり、あるい
は2種以上の低温原料ガスがある場合に相互に反応して
中間生成物を作ることなく反応管1に導入される。しか
も、副原料ガスGbが反応管1の基板10の上部の空間
に充満し、細い主原料導入口11から導入された主原料
ガスGaの反応管1内の拡がりを抑え、対流の発生を防
止することになる。従って、主原料ガスGa、副原料ガ
スGbとも均等に反応管1内に拡散し、基板10上には
厚み及び組成とも均質なエピタキシャル結晶が成長する
Embodiment FIG. 2 shows an embodiment of the present invention. A main raw material inlet 11 is opened at the upper end of the reaction tube 1, and within the reaction tube 1, a heating table 13 similar to the conventional one is supported by a support shaft 12 and is arranged opposite to the main raw material gas inlet 11. and the substrate 10 is placed on it. An auxiliary raw material gas inlet 21 is provided in the body of the reaction tube 1.
An auxiliary raw material gas inlet 21 is opened along the inner wall of the main raw material gas inlet 11 and toward the main raw material gas inlet 11 . Since this auxiliary raw material gas inlet 21 is used as an inlet for a liquid raw material, for example, mercury, a heater 25 is attached to the reaction tube 1 and piping 22 in the vicinity of the auxiliary raw material gas inlet 21. This prevents condensation from condensing on pipe walls, etc. However, the influence of the heater 25 also extends to the vicinity of the main raw material gas inlet 11, which is used as a low-temperature gas inlet (that is, does not need to be heated). A cooler 26 is arranged. This prevents the high-temperature raw material gas from condensing, and the low-temperature raw material gas from being heated to high temperatures and decomposing, or from reacting with each other to create intermediate products when there are two or more types of low-temperature raw material gases. is introduced into the reaction tube 1 without any problems. Moreover, the auxiliary raw material gas Gb fills the space above the substrate 10 of the reaction tube 1, suppresses the spread of the main raw material gas Ga introduced from the narrow main raw material inlet 11 into the reaction tube 1, and prevents the occurrence of convection. I will do it. Therefore, the main raw material gas Ga and the auxiliary raw material gas Gb are evenly diffused into the reaction tube 1, and an epitaxial crystal having a uniform thickness and composition is grown on the substrate 10.

【0012】図3はHgCdTe等液体原料として水銀
を使用する場合のこの発明の実施例を示すものである。 反応管1の胴部下端部に水銀溜31が備えられ、該水銀
溜31は上記副原料導入口21と連通するようにし、ま
た、この水銀溜31に対してキャリアガスである水素導
入管32が水銀溜31に充填された水銀(Hg)内に開
口するようにしてバブラ30を構成する。このバブラ3
0は上記加熱器25によって200〜300℃に加熱さ
れ、温度に応じた圧の水銀蒸気が水素によって副原料ガ
ス導入口21より反応管1に導入されることになる。
FIG. 3 shows an embodiment of the present invention in which mercury is used as a liquid raw material such as HgCdTe. A mercury reservoir 31 is provided at the lower end of the body of the reaction tube 1, and the mercury reservoir 31 communicates with the auxiliary raw material inlet 21. The bubbler 30 is configured such that it opens into mercury (Hg) filled in a mercury reservoir 31. This bubbler 3
0 is heated to 200 to 300° C. by the heater 25, and mercury vapor at a pressure corresponding to the temperature is introduced into the reaction tube 1 through the auxiliary raw material gas inlet 21 by hydrogen.

【0013】尚、導入される水銀の濃度調整あるいは副
原料ガス量の調整のため、上記水銀溜31から副原料ガ
ス導入口21に至る配管33が分岐され、反応管1の外
部に導かれ流量調整用の水素導入口34とされる。また
、主原料ガス導入口11よりは有機テルル、有機カドミ
ウムの混合ガスが反応管1内に導入されることになる。
In order to adjust the concentration of the mercury introduced or the amount of the auxiliary raw material gas, the piping 33 from the mercury reservoir 31 to the auxiliary raw material gas inlet 21 is branched and guided to the outside of the reaction tube 1 to control the flow rate. This is used as a hydrogen inlet 34 for adjustment. Further, a mixed gas of organic tellurium and organic cadmium is introduced into the reaction tube 1 through the main raw material gas inlet 11 .

【0014】以上の構成により、水銀は副原料ガス導入
口21付近で結露することなく、反応管1に導入され、
また、主原料ガス導入口11より導入される有機テルル
、有機カドミウムの混合ガスは高温原料ガスに触れるこ
となく反応管1に導入されるので分解することなく、あ
るいは中間生成物を作ることなく反応管1に導入される
。しかも、水銀を含むキャリアガスが有機テルル、有機
カドミウムを含むキャリアガス流に対流を起こさせない
ように制御するので、均質なHgCdTe結晶を得るこ
とができる。
With the above configuration, mercury is introduced into the reaction tube 1 without condensation near the auxiliary raw material gas inlet 21,
In addition, the mixed gas of organic tellurium and organic cadmium introduced from the main raw material gas inlet 11 is introduced into the reaction tube 1 without coming into contact with the high temperature raw material gas, so it reacts without being decomposed or producing intermediate products. is introduced into tube 1. Moreover, since the carrier gas containing mercury is controlled so as not to cause convection in the flow of the carrier gas containing organic tellurium and organic cadmium, a homogeneous HgCdTe crystal can be obtained.

【0015】[0015]

【発明の効果】以上説明したようにこの発明は、低温原
料ガスと高温原料ガスを異なる導入口から反応管に導入
しているので、高温ガスの結露あるいは低温ガスの基板
以外の部分での分解、あるいは中間生成物の生成等を防
止することができる。また、副原料ガスが主原料ガスの
反応管内での拡がりを防止するので、対流の発生が抑え
られる。そして、上記2つの要因によって均質な結晶を
成長させることができる。
Effects of the Invention As explained above, in this invention, low-temperature raw material gas and high-temperature raw material gas are introduced into the reaction tube through different inlets, so that condensation of high-temperature gas or decomposition of low-temperature gas in parts other than the substrate is prevented. , or the generation of intermediate products can be prevented. Furthermore, since the sub-source gas prevents the main source gas from spreading within the reaction tube, the occurrence of convection is suppressed. A homogeneous crystal can be grown due to the above two factors.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の原理図である。FIG. 1 is a diagram showing the principle of the present invention.

【図2】本発明の実施例概念図である。FIG. 2 is a conceptual diagram of an embodiment of the present invention.

【図3】本発明の実施例概念図である。FIG. 3 is a conceptual diagram of an embodiment of the present invention.

【図4】従来例概念図である。FIG. 4 is a conceptual diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1          反応管 10        基板 11        主原料ガス導入口21     
   副原料ガス導入口30        バブラ Ga        主原料ガス Gb        副原料ガス
1 Reaction tube 10 Substrate 11 Main raw material gas inlet 21
Auxiliary raw material gas inlet 30 Bubbler Ga Main raw material gas Gb Auxiliary raw material gas

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  反応管(1) 内に原料ガスを流入さ
せ、加熱された基板(10)上に結晶を成長させる気相
エピタキシャル成長方法において、反応管(1) の一
端部中央部から導入される主原料ガス(Ga)のガス流
方向に逆流する方向に、上記反応管(1) の管壁に沿
って結晶組成の少なくとも1種を含む副原料ガス(Gb
)を流し、主原料ガス(Ga)の対流を防止することを
特徴とする気相エピタキシャル成長方法。
Claim 1: In a vapor phase epitaxial growth method in which a raw material gas is introduced into a reaction tube (1) and a crystal is grown on a heated substrate (10), a source gas is introduced from the center of one end of the reaction tube (1). The secondary raw material gas (Gb) containing at least one type of crystal composition is distributed along the tube wall of the reaction tube (1) in a direction counter-flowing to the gas flow direction of the main raw material gas (Ga).
) and preventing convection of the main raw material gas (Ga).
【請求項2】  反応管(1) 内に原料ガス(Ga)
を流入させ、加熱された基板(10)上に結晶を成長さ
せる気相エピタキシャル成長装置において、反応管(1
) の一端中央部に主原料ガス(Ga)を導入する主原
料ガス導入口(11)を設けるとともに、反応管(1)
 の胴部中央部に上記主原料ガス導入口(11)の方向
に向かって、かつ、反応管(1) の管壁に沿って結晶
組成の少なくとも1種を含む副原料ガス(Gb)を導入
する副原料ガス導入口(21)を設けたことを特徴とす
る気相エピタキシャル成長装置。
[Claim 2] Source gas (Ga) is contained in the reaction tube (1).
In a vapor phase epitaxial growth apparatus in which crystals are grown on a heated substrate (10) by flowing a reaction tube (1
) A main material gas inlet (11) for introducing the main material gas (Ga) is provided at the center of one end, and a reaction tube (1) is provided.
An auxiliary raw material gas (Gb) containing at least one type of crystal composition is introduced into the center of the body of the main raw material gas inlet (11) and along the tube wall of the reaction tube (1). A vapor phase epitaxial growth apparatus characterized by being provided with an auxiliary raw material gas inlet (21).
【請求項3】  主原料ガス(Ga)と副原料ガス(G
b)で温度が異なる原料ガスを用いることを特徴とする
請求項2に記載の気相エピタキシャル成長装置。
Claim 3: Main raw material gas (Ga) and auxiliary raw material gas (G
3. The vapor phase epitaxial growth apparatus according to claim 2, wherein source gases having different temperatures are used in b).
【請求項4】  主原料ガス導入口(11)又は副原料
ガス導入口(21)のいずれかにバブラ(30)を介在
させ、液体原料蒸気を含んだ高温原料ガスを反応管(1
) に導入することを特徴とする請求項2に記載の気相
エピタキシャル成長装置。
4. A bubbler (30) is interposed in either the main raw material gas inlet (11) or the auxiliary raw material gas inlet (21), and the high temperature raw material gas containing liquid raw material vapor is passed through the reaction tube (1).
) The vapor phase epitaxial growth apparatus according to claim 2, characterized in that the vapor phase epitaxial growth apparatus is introduced into.
【請求項5】  低温原料ガスである有機テルル及び有
機カドミウムが主原料ガス導入口(11)から導入され
、高温原料ガスである水銀が副原料ガス導入口(21)
から導入される請求項4に記載の気相エピタキシャル成
長装置。
5. Organic tellurium and organic cadmium, which are low-temperature raw material gases, are introduced through the main raw material gas inlet (11), and mercury, which is a high-temperature raw material gas, is introduced into the auxiliary raw material gas inlet (21).
The vapor phase epitaxial growth apparatus according to claim 4, which is introduced from.
JP40370690A 1990-12-19 1990-12-19 Method and device for gas-phase epitaxial growth Withdrawn JPH04219393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40370690A JPH04219393A (en) 1990-12-19 1990-12-19 Method and device for gas-phase epitaxial growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40370690A JPH04219393A (en) 1990-12-19 1990-12-19 Method and device for gas-phase epitaxial growth

Publications (1)

Publication Number Publication Date
JPH04219393A true JPH04219393A (en) 1992-08-10

Family

ID=18513434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40370690A Withdrawn JPH04219393A (en) 1990-12-19 1990-12-19 Method and device for gas-phase epitaxial growth

Country Status (1)

Country Link
JP (1) JPH04219393A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100642A (en) * 2001-09-26 2003-04-04 Dowa Mining Co Ltd Vapor phase thin film epitaxial growth system and vapor phase thin film epitaxial growth method
KR100450173B1 (en) * 2001-10-18 2004-09-30 변철수 Methods and Apparatuses of Chemical Vapor Deposition using diffusion suppressing gasses and devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100642A (en) * 2001-09-26 2003-04-04 Dowa Mining Co Ltd Vapor phase thin film epitaxial growth system and vapor phase thin film epitaxial growth method
KR100450173B1 (en) * 2001-10-18 2004-09-30 변철수 Methods and Apparatuses of Chemical Vapor Deposition using diffusion suppressing gasses and devices

Similar Documents

Publication Publication Date Title
US6048398A (en) Device for epitaxially growing objects
US5288326A (en) Apparatus for continuous growth of SiC single crystal from SiC synthesized in a vapor phase without using graphite crucible
US6039812A (en) Device for epitaxially growing objects and method for such a growth
EP1805353A1 (en) Method for producing gan or algan crystals
US3635771A (en) Method of depositing semiconductor material
JPH04219393A (en) Method and device for gas-phase epitaxial growth
CN110662858B (en) Method for supplying gases to grow epitaxial structures based on group III metal nitrides
JP2001192299A (en) Method and device for producing silicon carbide single crystal
JPS60169563A (en) Manufacture and device for telluride metal
JPS6343333A (en) Vapor-phase epitaxial growth process
SU1074161A1 (en) Device for gas epitaxy of semiconductor connections
JPS637620A (en) Apparatus for vaporizing volatile material
JPH06115913A (en) Synthesis of boron carbonitride
JPS625634A (en) Vapor growth method for compound semiconductor
CN117418305A (en) Silicon carbide crystal growth equipment and growth method
JPH01136971A (en) Vapor phase growth device
JPH01152734A (en) Evaporator
JPH03233943A (en) Vapor epitaxial growth apparatus
JPS6052118B2 (en) Magnesia spinel vapor phase growth equipment
JPH02181938A (en) Vapor phase epitaxial growth apparatus
JPH04116819A (en) Vapor phase growtgh device for compound semiconductor
JPH0697656B2 (en) Vapor phase epitaxial growth method
JPS6389491A (en) Vapor growth device
JPS63204733A (en) Manufacture of compound semiconductor film
JPS62119919A (en) Device for crystal growth of compound semiconductor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980312