JPH03244119A - Vapor growth method for group iii-v compound semiconductor - Google Patents

Vapor growth method for group iii-v compound semiconductor

Info

Publication number
JPH03244119A
JPH03244119A JP4206390A JP4206390A JPH03244119A JP H03244119 A JPH03244119 A JP H03244119A JP 4206390 A JP4206390 A JP 4206390A JP 4206390 A JP4206390 A JP 4206390A JP H03244119 A JPH03244119 A JP H03244119A
Authority
JP
Japan
Prior art keywords
group
carrier gas
material carrier
raw material
supply port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4206390A
Other languages
Japanese (ja)
Other versions
JP3035953B2 (en
Inventor
Hideto Ishikawa
石川 秀人
Mikio Kamata
幹夫 鎌田
Hiromasa Shibata
柴田 浩正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2042063A priority Critical patent/JP3035953B2/en
Publication of JPH03244119A publication Critical patent/JPH03244119A/en
Application granted granted Critical
Publication of JP3035953B2 publication Critical patent/JP3035953B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To uniformize characteristics with uniform film thickness of a group III-V compound by enlarging the flow ratio of a group III material carrier gas and by displacing a position of mixture of III and V group material carrier gases from the substrate end to the upstream side of gas flow. CONSTITUTION:A group III material carrier gas is introduced from the first supply port 1, and a group V material carrier gas from the second supply port 2. In this case their introduction into the same reaction furnace 10 equalizes pressures on the Bernoulli theorem so that the group V material carrier gas is led into the supply port 1 on the side of group III material carrier gas in the vicinity of outlet of the supply port 2. It follows that a position of mixture of a group III material carrier gas and a group V material carrier gas is displaced from a vapor growth substrate 3 to the side of supply port 1: this provides an effect equal to that of displacement of the vapor growth substrate 3 from region A to B side. This process enables preparation of uniform film thickness of a group III-V compound to uniformize characteristics, thereby realizing a semiconductor device to a purposed design.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、■−V族化合物半導体の気相成長方法に係わ
り、特に、例えばInP基体上にGaTnAs、へi’
rnAs等のI−V族化合物半導体をMOCVII(M
etalOrganic Chemical Vapo
r Deposition  :有機金属による化学的
気相成長)法によって形成して、半導体装置、例えばF
ET(電界効果トランジスタ)を得るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for vapor phase growth of ■-V group compound semiconductors, and in particular, for example, GaTnAs, i'
MOCVII (M
etalOrganic Chemical Vapo
r Deposition: Formed by a metal-organic chemical vapor deposition method to form a semiconductor device, e.g.
This is to obtain an ET (field effect transistor).

〔発明の概要〕[Summary of the invention]

■−V族化合物半導体の気相成長方法において、反応炉
中に、■族原料ガスと■族原料ガスとをそれぞれ独別に
含む■族原料キャリアガスとV族原料キャリアガスとを
独別に制御して送り込むことができるようにした第1及
び第2のガス供給口が、被気相成長基体の配置部近傍に
設けられ、上記■族原料キャリアガスの流量をCIII
とし、V族原料キャリアガスの流量をCVとするとき、
■−V族化合物半導体の膜厚の制御性を良好にし、特性
の向−ヒをはかる。
■-In the vapor phase growth method for group V compound semiconductors, a group III raw material carrier gas and a group V raw material carrier gas each containing a group III raw material gas and a group V raw material gas are separately controlled in a reactor. First and second gas supply ports are provided in the vicinity of the placement portion of the substrate to be subjected to vapor phase growth, and the flow rate of the Group Ⅲ raw material carrier gas is adjusted to the CIII level.
When the flow rate of the group V raw material carrier gas is CV,
(2) Improve the controllability of the film thickness of the V group compound semiconductor and improve its characteristics.

[従来の技術] 111−V族化合物半導体は、近年例えばAZGaln
P系の半導体レーザ装置、選択ドープAI InAs/
Ga InAs構造の2次元電子ガスチャンネルによる
高電子移動度トランジスタ(いわゆるIIEMT)等に
広く利用されてきている。
[Prior Art] In recent years, 111-V group compound semiconductors have been developed, for example, by AZGaln.
P-based semiconductor laser device, selectively doped AI InAs/
It has been widely used in high electron mobility transistors (so-called IIEMTs) using two-dimensional electron gas channels having a Ga InAs structure.

このような^ZGalnP、 Ga1nAs等の化合物
半導体は、熱力学的制限からエピタキシャル成長は極め
て困難であり、MOCVD法によるエピタキシャル成長
の開発研究が進められている。
It is extremely difficult to epitaxially grow such compound semiconductors such as ^ZGalnP and Ga1nAs due to thermodynamic limitations, and research and development on epitaxial growth by MOCVD is underway.

このAZGaInP系等の■−■族化合物の生成は、メ
チル系或いはエチル系のMOCVD法によって行われる
。−船釣にはその■族金属AI、Ga及びInの各供給
原料としては、それぞれの有機金属ガス、例えばエチル
系MOCVD法においては、トリエチルアルミニウム、
トリエチルガリウム、トリエチルインジウム(以下それ
ぞれTEAZ、TEGa、TEInと略記する)を用い
、P(りん)の供給原料ガスとしてホスフィンPl+3
(As (ひ素)の供給原料ガスとしてアルシンAst
13を用いる。
The production of the 1-2 group compounds such as AZGaInP is carried out by a methyl-based or ethyl-based MOCVD method. - For boat fishing, the feedstocks for group III metals AI, Ga, and In are organometallic gases such as triethylaluminum, triethylaluminum, and
Using triethylgallium and triethylindium (hereinafter abbreviated as TEAZ, TEGa, and TEIn, respectively), phosphine Pl+3 was used as the feedstock gas for P (phosphorus).
(Arsine As feedstock gas for As (arsenic))
13 is used.

ところが、この場合、その原料基体の例えばTEInと
Pl+3とは、TEInが熱的に不安定であるに比し、
PH,ば熱的に極めて安定であり、両者を室温で混合す
ると中間寄生反応が起こり、華気圧の低い重合物(ポリ
マー)を生しるということが報告されている。
However, in this case, the raw material bases, for example, TEIn and Pl+3, are thermally unstable, whereas TEIn is thermally unstable.
It has been reported that PH is extremely thermally stable, and that when the two are mixed at room temperature, an intermediate parasitic reaction occurs, producing a polymer with a low atmospheric pressure.

このため、このような中間寄生反応を抑制するために、
反応炉内を減圧するとか、PI(、を予め分解して供給
するなどの方法が採られていたが、減圧成長による場合
は装置が複雑となるばかりでなく制御性が低く、また、
P)laを予備分解する方法による場合は、供給ガスの
温度を高めることになるため、分解ガスと、上述したよ
うな熱的に不安定なTt3+nとを合流混合する際に、
TElnの好ましくない分解や、中間反応を生し易くす
るという問題があった。
Therefore, in order to suppress such intermediate parasitic reactions,
Methods such as reducing the pressure inside the reactor or decomposing and supplying PI in advance have been adopted, but when using reduced pressure growth, the equipment is not only complicated but also has poor controllability.
P) When using the method of pre-decomposing la, the temperature of the supplied gas is increased, so when the decomposed gas and the thermally unstable Tt3+n as described above are mixed together,
There is a problem that undesirable decomposition of TELn and intermediate reactions tend to occur.

そこで、本出願人は特開昭61−35514号公報にお
いて■、V族原料ガスを独立に反応器に供給し、両基体
を基板に達する直前で混合させて、基板上にAfGal
nP系の■−V族化合物半導体層をエピタキシャル成長
させる方法を提案した。
Therefore, in Japanese Patent Application Laid-Open No. 61-35514, the applicant proposed (1) to supply Group V raw material gas independently to the reactor, mix both substrates just before reaching the substrate, and form AfGal on the substrate.
We proposed a method for epitaxially growing an nP-based ■-V group compound semiconductor layer.

Ga1nAs、 AZInAs系においても、このよう
に■。
In the Ga1nAs and AZInAs systems as well, ■.

■族原料ガスを独立に反応器に導入するという上述の方
法により、良好な半導体化合物が得られている。
Good semiconductor compounds have been obtained by the above-mentioned method in which the Group (1) raw material gases are independently introduced into the reactor.

しかしながらこのような方法により作製した半導体化合
物は、その膜厚を均一にすることが難しく、例えば基板
のウェーハの中央部では膜厚が大、周縁部では膜厚が小
となるという不都合が生しる。
However, it is difficult to make the film thickness of the semiconductor compound produced by this method uniform; for example, the film thickness is large at the center of the wafer and is small at the periphery, which is an inconvenience. Ru.

従って、例えば選択ドープAt InAs/Ga In
As構造のFETを作製した場合、膜厚をdとすると、
そのしきい値電圧vthは、ドーピングを均一にした場
合には、膜厚の2乗d2に比例し、ドーピングをライン
状すなわちある層にのみ部分的に行う場合は、はぼ膜厚
dに比例するため、膜厚の不均一に伴って、しきい値電
圧vthも不均一となり、目的とする特性の半導体装置
を得難い。
Thus, for example selectively doped At InAs/Ga In
When a FET with an As structure is fabricated, if the film thickness is d, then
The threshold voltage vth is proportional to the square of the film thickness d2 when the doping is uniform, and proportional to the film thickness d when the doping is performed in a line or only partially in a certain layer. Therefore, as the film thickness becomes non-uniform, the threshold voltage vth also becomes non-uniform, making it difficult to obtain a semiconductor device with desired characteristics.

−な膜厚すなわち特性を有する化合物半導体装置を作製
することを可能にした■−V族化合物半導体の気相成長
方法を提供することをその目的とする。
The object of the present invention is to provide a method for vapor phase growth of a -V group compound semiconductor, which makes it possible to fabricate a compound semiconductor device having a film thickness or characteristics of -1.

[課題を解決するための手段] 本発明によるI−V族化合物半導体の気相成長方法に用
いる気相成長装置の一例の要部の路線的断面図を第1図
に示す。
[Means for Solving the Problems] FIG. 1 shows a cross-sectional view of the essential parts of an example of a vapor phase growth apparatus used in the method for vapor phase growth of IV group compound semiconductors according to the present invention.

■−V族化合物半導体の気相成長方法において、反応炉
(10)中に、■族原料ガスと■族原料ガスとをそれぞ
れ独別に含む■族原料キャリアガスとV族原料キャリア
ガスとを独別に制御して送り込むことができるようにし
た第1及び第2のガス供給口(1)及び(2)が、被気
相成長基体(3)の配置部(4)近傍に設けられ、■族
原料キャリアガスの流量をC11rとし、V族原料キャ
リアガスの流量をCVとする〔発明が解決しようとする
課題〕 本発明は、上述したような問題を解決して、均しm十t
、v (作用] 上述したように、本発明による■−V族化合物半導体の
気相成長法では、■族と■族の原料ガスを独立に反応器
に供給する。これは、気相中の中間寄生反応を避けるた
めであるが、このため原料ガスの混合は、第1図に示す
ようにできるだけ被気相成長基体(3)の直前で行われ
ることが望ましい。
■-In the vapor phase growth method for group V compound semiconductors, a group III raw material carrier gas and a group V raw material carrier gas each containing a group III raw material gas and a group V raw material gas are separately provided in a reactor (10). First and second gas supply ports (1) and (2), which can be separately controlled and fed, are provided near the placement part (4) of the substrate (3) to be subjected to vapor phase growth, and The flow rate of the raw material carrier gas is C11r, and the flow rate of the group V raw material carrier gas is CV.
, v (Function) As described above, in the vapor phase growth method of the ■-V group compound semiconductor according to the present invention, the group ■ and group ■ raw material gases are independently supplied to the reactor. In order to avoid intermediate parasitic reactions, it is therefore desirable that the raw material gases be mixed as much as possible immediately before the substrate (3) to be subjected to vapor phase growth, as shown in FIG.

また、この基体(3)の直前で混合した原料ガスはある
流速をもって基体(3)上を移動するが、その移動の過
程は、第2図に示すように、化合物の成長速度が増加す
る領域A、成長速度がほぼ一定の領域B、成長速度が減
少する領域Cの3領域に大別し得る。
In addition, the raw material gas mixed just before the substrate (3) moves on the substrate (3) at a certain flow rate, and the process of movement occurs in a region where the growth rate of the compound increases, as shown in Figure 2. It can be roughly divided into three regions: A, region B where the growth rate is approximately constant, and region C where the growth rate decreases.

したがって、膜厚を均一化するためには、被気相成長基
体(3)は領域Bに配置されることが望ましいが、上述
したように原料ガスの混合は基体(3)の直前で行われ
るため、実質上、領域A側に基体(1)がずれている状
態となる。
Therefore, in order to make the film thickness uniform, it is desirable that the substrate (3) to be subjected to vapor phase growth be placed in region B, but as mentioned above, the mixing of the raw material gases should be done just before the substrate (3). Therefore, the base body (1) is substantially shifted toward the area A side.

このような成長速度の分布は、一般に原料ガスの混合、
分解、拡散等の素過程の組合せで決定され、各素過程の
条件は反応炉の形状、成長温度等により変化するが、特
に■−V族化合物の場合、V族原籾に対し、■族原料の
供給がMOCVD戒長の律速となっていることから、上
述したような成長速度の分布も、V族原料に対する■族
原料のキャリアガスの流量、流速による影響が大である
ことが予想される。
Such a growth rate distribution is generally determined by the mixture of raw material gases,
It is determined by a combination of elementary processes such as decomposition and diffusion, and the conditions for each elementary process vary depending on the shape of the reactor, growth temperature, etc., but especially in the case of ■-V group compounds, the Since the supply of raw materials is the rate-determining factor for MOCVD, it is expected that the growth rate distribution described above will be greatly influenced by the flow rate and flow rate of the carrier gas for the Group I raw materials relative to the Group V raw materials. Ru.

そこで、■族原料キャリアガスの流量CIIIとV族原
料キャリアガスの流量CVとの比、CIII/(C■+
CV)を0.77以上1.0未満としたところ、膜厚の
均一な領域が充分に得られた。
Therefore, the ratio of the flow rate CIII of the group ■ raw material carrier gas to the flow rate CV of the group V raw material carrier gas, CIII/(C■ +
When CV) was set to 0.77 or more and less than 1.0, a sufficiently uniform film thickness region was obtained.

これは次の現象に因るものと思われる。This seems to be due to the following phenomenon.

第1図において、■族原料キャリアガスを第1の供給口
(1)、V族原料キャリアガスを第2の供給口(2)よ
り導入させるとする。ヘルヌーイの定理によると、ガス
流は動圧と静圧の和によって表わされ、■族側とV族側
のガス供給口(1)及び(2)内では、となる。ω1.
ω2は各供給口(1)及び(2)内の各流速で、P、、
P2は各静圧、ρは密度である。各供給口(1)及び(
2)の形状は等しく設計されており、この場合は供給流
量と流速はある定数で変換できる。
In FIG. 1, it is assumed that the Group Ⅰ raw material carrier gas is introduced through the first supply port (1) and the V Group raw material carrier gas is introduced through the second supply port (2). According to Hernoulli's theorem, the gas flow is expressed by the sum of dynamic pressure and static pressure, and within the gas supply ports (1) and (2) on the group Ⅰ side and the group V side. ω1.
ω2 is each flow velocity in each supply port (1) and (2), P,,
P2 is each static pressure, and ρ is the density. Each supply port (1) and (
The shapes of 2) are designed to be the same, and in this case, the supply flow rate and flow rate can be converted by a certain constant.

この場合、同じ反応炉(10)内に導入されることから
、圧力は等しいので右辺の定数は等しくなり、ω、〉ω
2であることから、P+(Pzとなる。従って、V族原
料キャリアガスは供給口(2)の白日付近で■族原料キ
ャリアガス側の供給口(1)に引き込まれることになり
、■族原料キャリアガスと■族原料キャリアガスとが混
合される位置が、被気相成長基体(3)から供給口(1
)側へずれたことになり、第2図における領域へからB
側へ、被気相成長基体(3)がずれたと同等の効果が得
られることとなる。
In this case, since they are introduced into the same reactor (10), the pressures are equal, so the constants on the right side are equal, ω, 〉ω
2, it becomes P+(Pz. Therefore, the group V raw material carrier gas will be drawn into the supply port (1) on the group ■ group raw material carrier gas side near the daylight of the supply port (2), and The position where the group raw material carrier gas and the group (2) raw material carrier gas are mixed is from the vapor phase growth substrate (3) to the supply port (1
) side, and from the area in Figure 2 to B
The same effect will be obtained if the vapor phase growth substrate (3) is shifted to the side.

これにより、■−V族化合物の膜厚を均一に作製するこ
とができ、特性の均一化をはかり、すなわち、目的とす
る設計通りの半導体装置を得ることができる。
As a result, the film thickness of the -V group compound can be made uniform, and the characteristics can be made uniform, that is, a semiconductor device according to the intended design can be obtained.

〔実施例〕〔Example〕

以下、第1図を参照して本発明による■−V族化合物半
導体の気相成長方法を説明する。
Hereinafter, a method for vapor phase growth of a ■-V group compound semiconductor according to the present invention will be explained with reference to FIG.

第1図において、(10)は例えば石英管よりなる反応
炉で、反応炉(10)内には、例えば円形のInP単結
晶よりなる被気相成長基体(3)を載置する配置部(4
)を設ける。この配置部(4)は加熱によりこれの上の
基体(3)を所要の温度になすように設定される。
In FIG. 1, (10) is a reactor made of, for example, a quartz tube, and inside the reactor (10) is an arrangement part (10) on which a vapor phase growth substrate (3) made of, for example, a circular InP single crystal is placed. 4
) will be established. This arrangement (4) is set in such a way that the substrate (3) thereon is brought to the required temperature by heating.

この加熱手段は、例えば図示しないが、反応炉(10)
の外部に設けた高周波コイルによる高周波誘導加熱手段
によって構威し得る。また配置部(4)の基部には図示
しないが、その中心軸上で回転する回転手段が設けられ
、これにより、より均一な膜厚の化合物半導体を得るよ
うになされる。
This heating means is, for example, a reaction furnace (10), although not shown.
This can be achieved by high-frequency induction heating means using a high-frequency coil provided externally. Further, although not shown in the drawings, the base of the placement part (4) is provided with a rotating means that rotates on its central axis, thereby making it possible to obtain a compound semiconductor having a more uniform film thickness.

そしてこの配置部(4)上の基体(3)の上面と、反応
炉(10)の上部の内壁面との間の高さに、かつその端
面が基体(3)の−側の端部上に近接するようにして、
第1の供給口(1)及び第2の供給口(2)が設けられ
る。これら第1及び第2の供給口(1)及び(2)は、
その断面形状が等しく、かつ図示しないが、第1図と紙
面と直交する方向の幅が、例えば基体(3)の直径と等
しい長方形となされる。
Then, at a height between the upper surface of the substrate (3) on this arrangement part (4) and the inner wall surface of the upper part of the reactor (10), and its end surface is above the - side end of the substrate (3). so that it is close to
A first supply port (1) and a second supply port (2) are provided. These first and second supply ports (1) and (2) are
Although not shown, the cross-sectional shape is the same, and the width in the direction perpendicular to the plane of FIG. 1 is, for example, a rectangle that is equal to the diameter of the base body (3).

このような構成において、例えば■族金属のトリメチル
化合物、例えばトリメチルガリウムGa(CI+3)3
とトリメチルインジウムIn(CH3)3を所要の混合
割合をもって、キャリアガスの水素H,中に0.1%未
満混入させた■族原料キャリアガスを、矢印g+で示す
ように第1の供給口(1)から送り込み、V族原料とし
て例えばアルシンASH3を同様にキャリアガスの水素
H2中に10%未満混入させたV族原料キャリアガスを
、矢印g2で示すように第2の供給口(2)から送り込
む。このとき基体(3)の温度は例えば640°Cに保
持しておく。
In such a configuration, for example, a trimethyl compound of group Ⅰ metal, such as trimethyl gallium Ga(CI+3)3
Group Ⅰ raw material carrier gas, in which less than 0.1% of hydrogen H and trimethylindium In(CH3)3 are mixed in the carrier gas at the required mixing ratio, is fed to the first supply port (as shown by arrow g+). 1), and a group V raw material carrier gas in which less than 10% of arsine ASH3 is similarly mixed in carrier gas hydrogen H2 as a V group raw material is fed from the second supply port (2) as shown by arrow g2. Send it in. At this time, the temperature of the substrate (3) is maintained at, for example, 640°C.

このようにして第■及び第2の供給口(1)及び(2)
から導入された各原料キャリアガスは、供給口(1)及
び(2)の開口端(5)の近傍で混合された後、矢印g
で示すように基体(3)の上面に沿って移動して、基体
(3)上に化合物半導体Ga1nAsを成長させ得る。
In this way, the third and second supply ports (1) and (2)
Each raw material carrier gas introduced from
The compound semiconductor Ga1nAs can be grown on the substrate (3) by moving along the upper surface of the substrate (3) as shown in FIG.

この場合、各供給口(1)及び(2)においては共に、
流量10I!、7分の場合で約1m/秒の流速となって
いる。
In this case, at each supply port (1) and (2),
Flow rate 10I! , the flow velocity is approximately 1 m/sec in the case of 7 minutes.

上述したような方法により、直径2インチ(約50+n
m )のInPつ、?−−ハ(3)に対して、m、v族
原料キャリアガスの各流量を表1に示すように変化させ
てI−V族化合物半導体を成長させた。なお、各側とも
配置台(4)の回転をせずに、1時間の気相成長を行っ
た後、基体(3)上に作製された化合物半導体層の膜厚
をSEM(走査電子顕微鏡)により測定した。
By the method described above, a diameter of 2 inches (approximately 50+n
m ) InP one? --For C (3), a group IV compound semiconductor was grown by changing the flow rates of the m and v group raw material carrier gases as shown in Table 1. In addition, after performing vapor phase growth for 1 hour without rotating the placement table (4) on each side, the film thickness of the compound semiconductor layer produced on the substrate (3) was measured using an SEM (scanning electron microscope). It was measured by

表  1 表1において、cmは■族原料キャリアガスの流量、C
VはV族原料キャリアガスの流量で共に1 2 単位は27分である。なお、上述した例では供給口(1
)及び(2)の断面形状を等しくしたので、各原料キャ
リアガスの流速をvm及びVvとするとき、CIII/
(CIII+CV)は、Vm / (Vm+Vv)で置
き換えられる。
Table 1 In Table 1, cm is the flow rate of group II raw material carrier gas, C
V is the flow rate of the group V raw material carrier gas, and each unit of 1 2 is 27 minutes. Note that in the above example, the supply port (1
) and (2) are made equal, so when the flow velocity of each raw material carrier gas is vm and Vv, CIII/
(CIII+CV) is replaced by Vm/(Vm+Vv).

各側における、供給口の開口端(5)すなわち被気相戒
長基体(3)の端部からの距離に対する化合物半導体す
なわちこの場合GaInAsの膜厚の分布を第3図に示
す。
FIG. 3 shows the distribution of the film thickness of the compound semiconductor, in this case GaInAs, with respect to the distance from the open end (5) of the supply port, that is, the end of the vaporized substrate (3) on each side.

第3図において、a −fはそれぞれ表1に示すように
比較例1.2及び実施例1〜4の流量条件における膜厚
の分布を示す。
In FIG. 3, a to f indicate the distribution of film thickness under the flow conditions of Comparative Examples 1.2 and Examples 1 to 4, respectively, as shown in Table 1.

第3図に示すようにある距離から膜厚がほぼ一定、すな
わち成長速度が一定となることがわかる。
As shown in FIG. 3, it can be seen that the film thickness is approximately constant from a certain distance, that is, the growth rate is constant.

流量比CIII/(CIII+CV)ずなわちVm/(
Vm→Vv)に対する、成長速度が一定となり始める距
離の変化を第4図に示す。第4図に示すように、CII
IとCVの比即ちVmとVvの比を変化させることによ
り、成長速度が一定となる距離はほぼ比例関係にあるこ
とがわかる。そして、この場合配置台(4)すなわちこ
れの上のウェーハ(3)を回転しないで成長させた場合
を示すが、ウェーハ(3)を回転させた場合は、停止状
態における膜厚不均一部分が実質的に供給口(1)及び
(2)の開口端(5)から遠ざかる位置を通過すること
によって、ある程度の膜厚が上昇する部分が広がる。こ
のことを考え合わせれば、2インチウェーハであっても
、距離35mm以上で均一な膜厚を形威し得る流速比、
第4図に示すように流速比0.77以上であれば3分の
1以上の面積において、はぼ均一な膜厚すなわちほぼ均
一な特性を得ることができる。さらに膜厚の均一な領域
を増加させるためには、0.83以上程度の流速比とす
ることが望ましい。なお、この場合■族原料キャリアガ
スの流速比を1.0未満とすれば、均一な膜厚のGa 
InAs膜を得られた。
Flow rate ratio CIII/(CIII+CV), that is, Vm/(
FIG. 4 shows changes in the distance at which the growth rate starts to become constant with respect to Vm→Vv). As shown in Figure 4, CII
It can be seen that by changing the ratio between I and CV, that is, the ratio between Vm and Vv, the distance over which the growth rate becomes constant is approximately proportional. In this case, the case is shown in which the growth is performed without rotating the placement table (4), that is, the wafer (3) on it, but if the wafer (3) is rotated, the non-uniform part of the film thickness in the stopped state is By passing through a position substantially away from the open ends (5) of the supply ports (1) and (2), the portion where the film thickness increases to a certain extent widens. Considering this, even for 2-inch wafers, the flow velocity ratio that can form a uniform film thickness over a distance of 35 mm,
As shown in FIG. 4, if the flow velocity ratio is 0.77 or more, it is possible to obtain a substantially uniform film thickness, that is, substantially uniform characteristics over one-third or more of the area. Furthermore, in order to increase the area with uniform film thickness, it is desirable to set the flow velocity ratio to about 0.83 or more. In this case, if the flow rate ratio of the Group Ⅰ raw material carrier gas is less than 1.0, a uniform Ga film thickness can be obtained.
An InAs film was obtained.

また、上述した比較例1と実施例4では、他の各側と比
較して化合物半導体の厚さ即ち成長速度が、全体的に低
い値となっているが、これは装置のクリーニング前とク
リーニング後によって生じた変化であり、第4図に示す
ように各原料ガスの流速比と、成長速度が一定となる距
離との関係を見ると、はぼ−直線−Lにのり、比例関係
を示すことがわかる。
In addition, in Comparative Example 1 and Example 4, the thickness of the compound semiconductor, that is, the growth rate, is lower overall than on the other sides, but this is the case before and after cleaning the device. This is a change that occurred later, and as shown in Figure 4, when looking at the relationship between the flow velocity ratio of each raw material gas and the distance at which the growth rate is constant, it is on a straight line L, indicating a proportional relationship. I understand that.

また上述した例においては、InP単結晶基体(3)上
に、Ga1nAs化合物を成長させた例を示したが、そ
の他■−V族化合物半導体を作製する場合に応用するこ
とができる。
Further, in the above-mentioned example, a Ga1nAs compound was grown on the InP single crystal substrate (3), but the present invention can also be applied to the production of other ■-V group compound semiconductors.

〔発明の効果〕〔Effect of the invention〕

上述したように、本発明による■−■族気相戒長方法に
よれば、■族原料キャリアガスの流量比を大とすること
により、■、■族原料キャリアガスが混合される位置を
、実質的に被気相成長基体の端部よりガス流の上流側へ
ずらずことができる。
As described above, according to the group ■-■ gas phase kainacho method according to the present invention, by increasing the flow rate ratio of the group ■ raw material carrier gas, the position where the group ■ and ■ group raw material carrier gases are mixed can be adjusted to It can be substantially shifted upstream in the gas flow from the end of the substrate to be subjected to vapor phase growth.

このため、第2図に示すように、供給口からの距離に対
して成長速度が一定となる領域Bを、基体上において増
加させることができ、■族原料キャリアガスの流量比C
III / (CIII+CV)を0.77以上1.0
未満とすると、例えば2インチウェーハ基体上において
面積にして約3分の1以上の、膜厚が一定なすなわちし
きい値電圧vthが一定な領域を得ることができ、特性
の均一化をはかり、目的とする設計通りの半導体装置を
得ることができる。
Therefore, as shown in FIG. 2, it is possible to increase the region B on the substrate where the growth rate is constant with respect to the distance from the supply port, and the flow rate ratio C of the group (III) raw material carrier gas can be increased.
III/(CIII+CV) 0.77 or more 1.0
If it is less than, for example, it is possible to obtain a region with a constant film thickness, that is, with a constant threshold voltage vth, of about one-third or more of the area on a 2-inch wafer substrate, and to make the characteristics uniform, A semiconductor device as designed can be obtained.

また供給口(1)及び(2)から基体(3)までの距離
は装置固有のものであり、これを可変とするのは設計上
非常に困難であるが、本発明気相成長方法によれば各原
料キャリアガスの流速差による圧力差を利用するもので
あるから、装置に特に変更を加える必要がなく、簡単に
特性の均一化をはかることができる。
Furthermore, the distance from the supply ports (1) and (2) to the substrate (3) is unique to the device, and it is very difficult to make it variable in terms of design. For example, since the pressure difference due to the difference in flow rate of each raw material carrier gas is utilized, there is no need to make any particular changes to the apparatus, and the characteristics can be easily made uniform.

また、例えばAI InAs/Ga1nAs等のFET
の作製において、急峻な異種半導体界面(ヘテロ界面)
を得るためには、■−V族化合物のMOCVD法による
成長において■族原料キャリアガスが供給律速となって
いるので、■族原料キャリアガスの流量即ち流速を増大
化し、原料ガスの切換え時間をできるだけ短時間とする
ことが望ましいが、本発明方法でもこの■族原料キャリ
アガスの流速を■族原料キャリアガスの流速に比して大
とされるため、好ましい方向である。
Also, for example, FETs such as AI InAs/Ga1nAs
In the fabrication of steep dissimilar semiconductor interfaces (heterointerfaces)
In order to obtain this, the flow rate, that is, the flow rate, of the group III raw material carrier gas is increased, and the switching time of the raw material gas is shortened, since the group III raw material carrier gas is the rate-limiting supply in the growth of the ■-V group compound by the MOCVD method. Although it is desirable to make the time as short as possible, this is also a preferable method in the method of the present invention because the flow rate of the group (1) raw material carrier gas is made higher than the flow rate of the group (2) raw material carrier gas.

5 65 6

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に用いる気相成長装置の要部の路線的
断面図、第2図は原料ガス供給口からの距離と化合物半
導体の成長速度の関係を示す図、第3図は比較例1.2
及び実施例1〜4における、供給口からの距離に対する
膜厚の分布を示す図、第4図は比較例1.2及び実施例
1〜4における■族原料ガスの流速比と成長速度が一定
となる距離との関係を示す図である。 (1)は第1のガス供給口、(2)は第2のガス供給口
、(3)は被気相成長基体、(4)は配置部、(5)は
開口端、(10)は反応炉、(11)は気相成長装置で
ある。
Figure 1 is a cross-sectional view of the main parts of the vapor phase growth apparatus used in the present invention, Figure 2 is a diagram showing the relationship between the distance from the source gas supply port and the growth rate of compound semiconductors, and Figure 3 is a comparison. Example 1.2
FIG. 4 is a diagram showing the distribution of film thickness with respect to the distance from the supply port in Examples 1 to 4. FIG. It is a figure showing the relationship with the distance which becomes. (1) is the first gas supply port, (2) is the second gas supply port, (3) is the vapor phase growth substrate, (4) is the arrangement portion, (5) is the open end, and (10) is the The reactor (11) is a vapor phase growth apparatus.

Claims (1)

【特許請求の範囲】[Claims] III−V族化合物半導体の気相成長方法において、反応
炉中に、III族原料ガスとV族原料ガスとをそれぞれ独
別に含むIII族原料キャリアガスとV族原料キャリアガ
スとを独別に制御して送り込むことができるようにした
第1及び第2のガス供給口が、被気相成長基体の配置部
近傍に設けられ、上記III族原料キャリアガスの流量を
C_IIIとし、V族原料キャリアガスの流量C_Vとす
るとき、0.77≦C_III/C_III+C_V<1.0
と選定することを特徴とするIII−V族化合物半導体の
気相成長方法。
In a method for vapor phase growth of III-V compound semiconductors, a group III raw material carrier gas and a group V raw material carrier gas each containing a group III raw material gas and a group V raw material gas are separately controlled in a reactor. First and second gas supply ports are provided in the vicinity of the placement of the substrate to be subjected to vapor phase growth, and the flow rate of the Group III raw material carrier gas is C_III, and the flow rate of the Group V raw material carrier gas is C_III. When the flow rate is C_V, 0.77≦C_III/C_III+C_V<1.0
A method for vapor phase growth of a III-V compound semiconductor, characterized in that:
JP2042063A 1990-02-22 1990-02-22 (III)-(V) Group Compound Semiconductor Vapor Phase Growth Method Expired - Fee Related JP3035953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2042063A JP3035953B2 (en) 1990-02-22 1990-02-22 (III)-(V) Group Compound Semiconductor Vapor Phase Growth Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2042063A JP3035953B2 (en) 1990-02-22 1990-02-22 (III)-(V) Group Compound Semiconductor Vapor Phase Growth Method

Publications (2)

Publication Number Publication Date
JPH03244119A true JPH03244119A (en) 1991-10-30
JP3035953B2 JP3035953B2 (en) 2000-04-24

Family

ID=12625643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2042063A Expired - Fee Related JP3035953B2 (en) 1990-02-22 1990-02-22 (III)-(V) Group Compound Semiconductor Vapor Phase Growth Method

Country Status (1)

Country Link
JP (1) JP3035953B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004030066A1 (en) * 2002-09-24 2004-04-08 Tokyo Electron Limited Substrate processing apparatus
WO2023175826A1 (en) * 2022-03-17 2023-09-21 株式会社Kokusai Electric Substrate treatment device, gas nozzle, semiconductor device production method, substrate treatment method, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004030066A1 (en) * 2002-09-24 2004-04-08 Tokyo Electron Limited Substrate processing apparatus
WO2023175826A1 (en) * 2022-03-17 2023-09-21 株式会社Kokusai Electric Substrate treatment device, gas nozzle, semiconductor device production method, substrate treatment method, and program

Also Published As

Publication number Publication date
JP3035953B2 (en) 2000-04-24

Similar Documents

Publication Publication Date Title
EP1432844A1 (en) Apparatus for inverted cvd
JP2505777B2 (en) Epitaxial layer deposition method for semiconductor materials
JPS6291495A (en) Vapor growth method for thin semiconductor film
JPH03244119A (en) Vapor growth method for group iii-v compound semiconductor
JPH0529218A (en) Organic metal molecular beam epitaxial growth method
JP3386302B2 (en) N-type doping method for compound semiconductor, chemical beam deposition method using the same, compound semiconductor crystal formed by these crystal growth methods, and electronic device and optical device constituted by this compound semiconductor crystal
JPS60112694A (en) Gas-phase growth method of compound semiconductor
JPH0296324A (en) Manufacture of semiconductor device and vapor growth device used for it
JPH11329980A (en) Organic metallic gaseous phase growing device and method therefor using the same
US5256595A (en) Method of growing device quality InP onto an InP substrate using an organometallic precursor in a hot wall reactor
JPH02126632A (en) Vapor phase epitaxy for compound semiconductor crystal layer and reaction tube therefor
JPH02203520A (en) Growth of compound semiconductor crystal
JP3052269B2 (en) Vapor phase growth apparatus and growth method thereof
JPS58223317A (en) Method and device for growing of compound semiconductor crystal
JPH0520896B2 (en)
US6245144B1 (en) Doping control in selective area growth (SAG) of InP epitaxy in the fabrication of solid state semiconductor lasers
JPH04338636A (en) Semiconductor vapor growth device
JPH03110829A (en) Manufacture of compound semiconductor thin film
JPH01266715A (en) Thin film growth apparatus
JP2793239B2 (en) Method for manufacturing compound semiconductor thin film
JPH03135015A (en) Manufacture of iii-v compound p-type semiconductor
JPH0426597A (en) Vapor growth method for iii-v compound semiconductor with organometallic compound
JPH03232221A (en) Vapor growth method for compound semiconductor
JPH01109715A (en) Vapor phase epitaxy method
JPS61111521A (en) Vertical vapor growth equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees