JPS6177340A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6177340A
JPS6177340A JP19834184A JP19834184A JPS6177340A JP S6177340 A JPS6177340 A JP S6177340A JP 19834184 A JP19834184 A JP 19834184A JP 19834184 A JP19834184 A JP 19834184A JP S6177340 A JPS6177340 A JP S6177340A
Authority
JP
Japan
Prior art keywords
layer
substrate
wiring layer
barrier layer
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19834184A
Other languages
Japanese (ja)
Inventor
Shigeyoshi Koike
小池 重好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19834184A priority Critical patent/JPS6177340A/en
Publication of JPS6177340A publication Critical patent/JPS6177340A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To contrive to improve the reliability of the title device by preventing the separating of poly Si crystal into an Al wiring layer by a method wherein a silicide layer of high melting pint metal is adhered on a substrate by covering the contact region, and the wiring layer is formed after removal of the silicide layer in the part except the contact region. CONSTITUTION:A MOS transistor is formed in the element-forming region located by field oxide regions 2, and source-drain regions 3 and 4, a gate, an SiO2 layer 6, and PSG layer 7 are formed by normal proceses. As a barrier layer 8, the an MoSix layer of 150-300Angstrom thickness is adhered over the substrate by sputtering; next, the barrier layer 8 in the part except the contact window is etched away by a normal lithography process. Annealing is instantaneously carried out with a halogen lamp for 10 sec at 900 deg.C. As the wiring layer 9, an Al Si layer of 10,9000rho thickness is adhered over the substrate by evaporation, and the wiring layer 9 is patterned, resulting in the finish of element formation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は基板に接するコンタクト用配線層との界面に高
融点金属のシリサイド層等よりなるバリア層を介在させ
た半導体装置のコンタクト特性と信軌性を向上させる製
造方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention is directed to the contact characteristics and reliability of a semiconductor device in which a barrier layer made of a silicide layer of a high melting point metal is interposed at the interface with a contact wiring layer in contact with a substrate. This invention relates to a manufacturing method for improving trajectory.

半導体装置の配線層として、一般に純アルミニウム(A
l)が多く用いられてきた。その理由は比抵抗が小さく
、Siおよび二酸化珪素(Stow)Jiに対して密着
性が良く、珪素(Si)基板に対して何れの導電型の場
合でも、良好なオーミックコンタクトが形成できること
である。
Pure aluminum (A
l) has been widely used. The reason for this is that it has a low specific resistance, has good adhesion to Si and silicon dioxide (Stow) Ji, and can form a good ohmic contact with a silicon (Si) substrate regardless of the conductivity type.

しかし配線層として純Atを使用した場合はプロセス中
の低温熱処理により、八1とSi基板が接する界面で共
晶合金を生じ、Si基板に深いエッチピ、ットを生じる
。近年半導体装置の高集積化により半導体装置を構成す
る素子は微細化されるに従ってこのことは問題となって
きた。
However, when pure At is used as the wiring layer, a eutectic alloy is formed at the interface where the metal oxide and the Si substrate contact each other due to low-temperature heat treatment during the process, resulting in deep etch pits in the Si substrate. In recent years, this has become a problem as semiconductor devices have become more highly integrated and the elements constituting the semiconductor devices have been miniaturized.

そこで配線層としてAIに代わって、AlSi合金が用
いられるようになったが、Al中のStがプロセスの熱
処理により、またはさらに低温においても固相反応によ
りSiエピタキシャル層がAlとSi基板の界面に成長
してコンタクト不良原因となっていた。
Therefore, an AlSi alloy has been used instead of AI as a wiring layer, but the Si epitaxial layer forms at the interface between the Al and the Si substrate due to heat treatment in the process or solid phase reaction even at lower temperatures. As it grew, it became the cause of poor contact.

特に微細化にともないコンタクト窓が小さくなると、固
相エピタキシャル層による影響は大きくなる。
In particular, as the contact window becomes smaller with miniaturization, the influence of the solid phase epitaxial layer becomes greater.

固相エピタキシャル層の成長を防止するために、バリア
層として高融点金属のシリサイド層をAIとSi基板間
に介在させる方法がよく用いられるようになった。
In order to prevent the growth of a solid phase epitaxial layer, a method in which a silicide layer of a high melting point metal is interposed as a barrier layer between an AI and a Si substrate has become frequently used.

バリア層はモリブデンシリサイド(MoSix)、タン
グステンシリサイド(WSi、) 、チタンナイトライ
ド(TiN)等がある。
The barrier layer includes molybdenum silicide (MoSix), tungsten silicide (WSi), titanium nitride (TiN), and the like.

しかしバリア層をAIとSi基板間に介在させると、例
えばMoS i Xにおいてはデポ直後の状態は非晶質
でMoとSi間の結合が弱いため、Siは自由になって
^l中に入り、ポリ状のSi結晶を析出する。
However, when a barrier layer is interposed between the AI and Si substrates, for example in MoS i X, the state immediately after deposition is amorphous and the bond between Mo and Si is weak, so Si becomes free and enters the , poly-shaped Si crystals are precipitated.

^1配線層中にポリSi結晶が析出すると、配線層の実
効的な断面積は減るため、配線層の抵抗は上がり、八1
のマイグレーションが生じ易くなり、信頼性を著しく阻
害する。
^1 When poly-Si crystals precipitate in the wiring layer, the effective cross-sectional area of the wiring layer decreases, so the resistance of the wiring layer increases.
migration is likely to occur, significantly impeding reliability.

従ってバリア層をAIとSi基板間に介在させた半導体
装置のAt配線層中にポリS1結晶が析出することによ
る信頼性の低下を防止する製造方法が望まれる。
Therefore, a manufacturing method is desired that prevents a decrease in reliability due to precipitation of poly-S1 crystals in the At wiring layer of a semiconductor device in which a barrier layer is interposed between the AI and Si substrates.

〔従来の技術〕[Conventional technology]

第2図(al乃至(C)は従来例によるバリア層を有す
る半導体装置の製造方法を工程順に示す断面図である。
FIGS. 2A to 2C are cross-sectional views showing, in order of steps, a conventional method for manufacturing a semiconductor device having a barrier layer.

第2図(a)において、1はp型St基板で、フィール
ド酸化領域2によって画定された素子形成領域にMOS
トランジスタが形成される。3.4はn4型のソース・
ドレイン領域、5はポリSt層よりなるゲート、6はS
i01層、7は燐珪酸ガラス(PSG)層を表し、ここ
までは通常の工程により形成される。
In FIG. 2(a), reference numeral 1 denotes a p-type St substrate, and a MOS is formed in the element formation region defined by the field oxidation region 2.
A transistor is formed. 3.4 is the n4 type source
Drain region, 5 is a gate made of polySt layer, 6 is S
The i01 layer and 7 represent phosphosilicate glass (PSG) layers, which are formed by normal steps up to this point.

つぎにバリア層8として、スパッタにより厚さ150〜
300人のMoSix層を基板全面に被着する。
Next, a barrier layer 8 is formed by sputtering to a thickness of 150~
A layer of 300 MoSix is deposited over the entire substrate.

つぎに本発明者により特願昭58−159536号明細
書に開示された方法により900℃で10秒間の瞬間的
なハロゲンランプによるアニールを行う。
Next, instantaneous annealing is carried out using a halogen lamp at 900 DEG C. for 10 seconds according to the method disclosed in Japanese Patent Application No. 159536/1982 by the present inventor.

この瞬間的なアニールにより、A1配線層はコンタクト
特性を低下させないで、ボ’JSi結晶の析出を可なり
防止できる。
By this instantaneous annealing, the A1 wiring layer can prevent the precipitation of Bo'JSi crystals to a large extent without deteriorating the contact characteristics.

第2図(b)において、配5a層9として、蒸着により
厚さ10000人のAlSi層を基板全面に被着する。
In FIG. 2(b), an AlSi layer having a thickness of 10,000 wafers is deposited on the entire surface of the substrate as a layer 9 by vapor deposition.

第2図(e)において、配線層9をパターニングして素
子形成を終わる。
In FIG. 2(e), the wiring layer 9 is patterned to complete the element formation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の瞬間的なアニールにより、ポリSi結晶の析出は
かなり防止できるが、Mos+、がX=2よりSiが多
くなると、結合にあずからないSiはやはりAt配線層
中に析出する。
Although the above-mentioned instantaneous annealing can considerably prevent the precipitation of poly-Si crystals, when Mos+ becomes more Si than X=2, the Si that does not participate in bonding still precipitates in the At wiring layer.

生産工程において、Xを正確に制御することは難しいた
め、このSiの析出を抑える対策が必要となってきた。
Since it is difficult to accurately control X in the production process, it has become necessary to take measures to suppress this Si precipitation.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、基板上にコンタクトa域を覆って
高融点金属のシリサイド層を被着し、該コンタクト領域
以外の該シリサイド層を除去後、配線層を形成する本発
明による半導体装置の製造方法により達成される。
The solution to the above problem is to provide a semiconductor device according to the present invention, in which a silicide layer of a refractory metal is deposited on a substrate to cover the contact area a, and after removing the silicide layer outside the contact area, a wiring layer is formed. This is achieved by a manufacturing method.

〔作用〕[Effect]

コンタクトの安定化のために必要なバリア層はコンタク
ト窓の中だけにあればよいので、必要以外のバリア層は
エツチングして除去する。
Since the barrier layer necessary for contact stabilization only needs to be within the contact window, the unnecessary barrier layer is removed by etching.

これによりAt配線層中へ入り込むバリア層の過剰St
は激減する。従って上記の瞬間的なアニールを用いて、
At配線層のSt基板へのコンタクト特性を劣化させな
いで、At配線層へのポリSi結晶の析出をより完全に
防止できるようになる。
This causes excess St in the barrier layer to enter the At wiring layer.
decreases dramatically. Therefore, using the instantaneous annealing described above,
Precipitation of poly-Si crystals on the At wiring layer can be more completely prevented without deteriorating the contact characteristics of the At wiring layer to the St substrate.

〔実施例〕〔Example〕

第1図+a)乃至(C)は本発明によるバリア層を有す
る半導体装置の製造方法を工程順に示す断面図である。
FIGS. 1A to 1C are cross-sectional views showing the method of manufacturing a semiconductor device having a barrier layer according to the present invention in order of steps.

第1図(a)において、1はp型St基板で、フィール
ド酸化領域2によって画定された素子形成領域にMOS
)ランジスタが形成される。3,4はソース・ドレイン
領域、5はゲート、6はSiO□層、7はPSG層を表
し、ここまでは通常の工程により形成される。
In FIG. 1(a), reference numeral 1 denotes a p-type St substrate, in which a MOS is formed in an element formation region defined by a field oxidation region 2.
) a transistor is formed. Reference numerals 3 and 4 represent source/drain regions, 5 a gate, 6 a SiO□ layer, and 7 a PSG layer, which are formed by normal steps up to this point.

つぎにバリア層8として、スパッタにより厚さ150〜
300人のMoSi、層を基板全面に被着する。
Next, a barrier layer 8 is formed by sputtering to a thickness of 150~
A layer of 300 MoSi is deposited over the entire substrate.

つぎに通常のりソゲラフイエ程を用いてコンタクト窓以
外のバリア層8をエツチングして除去する。
Next, the barrier layer 8 other than the contact window is etched and removed using a normal glue etching process.

つぎに900℃で10秒間の瞬間的なハロゲンランプに
よるアニールを行う。
Next, instantaneous annealing is performed using a halogen lamp at 900° C. for 10 seconds.

第1回出)において、配線層9として、蒸着により厚さ
1oooo人の^ISi層を基板全面に被着する。
In the first issue), as the wiring layer 9, a 1000-thick ^ISi layer is deposited over the entire surface of the substrate by vapor deposition.

第1図(0)において、配線層9をパターニングして素
子形成を終わる。
In FIG. 1(0), the wiring layer 9 is patterned to complete the element formation.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、AI配線層
とSi基板間のコンタクト特性を低下させないで、AI
配線層中へのポリSt結晶の析出を防止でき、従って半
導体装置の信頼性を向上することができる。
As explained in detail above, according to the present invention, the AI wiring layer and the Si substrate can be
Precipitation of polySt crystals into the wiring layer can be prevented, and therefore the reliability of the semiconductor device can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al乃至(C)は本発明によるバリア層を有す
る半導体装置の製造方法を工程順に示す断面図、第2図
(a)乃至(C)は従来例によるバリア層を有する半導
体装置の製造方法を工程順に示す断面図である。 図において、 1はp型St基板、 2はフィールド酸化領域、 3.4はソース・ドレイン領域、 5はゲート、    6はSiO□層、7はPSG層、
    8はバリア層、9は配線層 を示す。 一つnり−
FIGS. 1A to 1C are cross-sectional views showing the manufacturing method of a semiconductor device having a barrier layer according to the present invention in order of process, and FIGS. 2A to 2C are cross-sectional views of a semiconductor device having a barrier layer according to a conventional example. It is a sectional view showing the manufacturing method in the order of steps. In the figure, 1 is a p-type St substrate, 2 is a field oxidation region, 3.4 is a source/drain region, 5 is a gate, 6 is a SiO□ layer, and 7 is a PSG layer. ,
8 represents a barrier layer, and 9 represents a wiring layer. One nri-

Claims (1)

【特許請求の範囲】[Claims]  基板上にコンタクト領域を覆って高融点金属のシリサ
イド層を被着し、該コンタクト領域以外の該シリサイド
層を除去後、配線層を形成することを特徴とする半導体
装置の製造方法。
1. A method of manufacturing a semiconductor device, comprising depositing a silicide layer of a high melting point metal on a substrate to cover a contact region, and forming a wiring layer after removing the silicide layer other than the contact region.
JP19834184A 1984-09-21 1984-09-21 Manufacture of semiconductor device Pending JPS6177340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19834184A JPS6177340A (en) 1984-09-21 1984-09-21 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19834184A JPS6177340A (en) 1984-09-21 1984-09-21 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6177340A true JPS6177340A (en) 1986-04-19

Family

ID=16389506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19834184A Pending JPS6177340A (en) 1984-09-21 1984-09-21 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6177340A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138053A (en) * 1982-02-12 1983-08-16 Nec Corp Semiconductor device and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138053A (en) * 1982-02-12 1983-08-16 Nec Corp Semiconductor device and manufacture thereof

Similar Documents

Publication Publication Date Title
JPH0456325A (en) Manufacture of semiconductor device
JP2609267B2 (en) Method of manufacturing self-aligned gallium arsenide device
JPS6056293B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS59175726A (en) Manufacture of semiconductor device
JPS6177340A (en) Manufacture of semiconductor device
JPH0556016B2 (en)
JPS6266679A (en) Manufacture of semiconductor device
JPS61156872A (en) Semiconductor device
JPS62291146A (en) Manufacture of semiconductor device
JPS6384154A (en) Manufacture of semiconductor device
JPS59161072A (en) Semiconductor device
JPS62114231A (en) Semiconductor device
JPS63316477A (en) Semiconductor device and manufacture thereof
KR930001896B1 (en) Metal line structure of semiconductor apparatus and building method thereof
JPS6213032A (en) Manufacture of semiconductor device
JPH03214735A (en) Manufacture of semiconductor device
JPS62104078A (en) Manufacture of semiconductor integrated circuit device
JPS6182456A (en) Manufacture of semiconductor device
JP2705092B2 (en) Method for manufacturing semiconductor device
JPS60123026A (en) Manufacture of semiconductor device
JP2638285B2 (en) Method for manufacturing semiconductor device
JPS62143422A (en) Manufacture of semiconductor device
JPS6254469A (en) Manufacture of semiconductor device
JPS61220468A (en) Semiconductor device
JPH0330423A (en) Laminated wiring forming method