JPS6176628A - Ceramics-metal composite material - Google Patents

Ceramics-metal composite material

Info

Publication number
JPS6176628A
JPS6176628A JP19669784A JP19669784A JPS6176628A JP S6176628 A JPS6176628 A JP S6176628A JP 19669784 A JP19669784 A JP 19669784A JP 19669784 A JP19669784 A JP 19669784A JP S6176628 A JPS6176628 A JP S6176628A
Authority
JP
Japan
Prior art keywords
ceramics
metal
powder
particle size
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19669784A
Other languages
Japanese (ja)
Inventor
Toshiteru Kaneko
寿輝 金子
Katsuhiro Komuro
勝博 小室
Tetsuo Kuroda
哲郎 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19669784A priority Critical patent/JPS6176628A/en
Publication of JPS6176628A publication Critical patent/JPS6176628A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide a ceramics-metal composite material consisting of ceramics and metal hydride, capable of being sintered at a lower temp. compared with simple substance of ceramics, and yet still having toughness at the same time by using a chemical reaction between them. CONSTITUTION:Ceramics such as Si3N4, SiC, and BN, and metal hydride e.g. TiH2 are mixed selectively in a powdery state to form a ceramics-metal composite material. At this time, in order to attain toughening, the effective amount of the metallic element which is to be added to the ceramics is 2-60%, by weight ratio. And further, the finer the particle size of metal hydride to be used becomes, the higher the sintered density of sintered body also becomes. That is, when the particle size of ceramics is 10mum, for example, the particle size of metal hydride is preferably <=50mum. According to this invention, by the use of hydride-type powder instead of metal powder which is apt to form an oxide film thereon, a ceramics material having high density and toughness equal to those of conventional sintered body which is manufactured at high temp. and pressure can be obtained at lower temp. and pressure.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はセラミツクス−金属複合材料に係るもので、特
に強靭性を必要とする耐熱構造材料に好適で、しかもセ
ラミックスと金属との反応性を利用しているために比較
的低温でかつ常圧焼結可能なセラミツクス−金属複合材
料に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a ceramic-metal composite material, which is particularly suitable for heat-resistant structural materials that require toughness, and which utilizes the reactivity between ceramics and metal. The present invention relates to a ceramic-metal composite material that can be sintered at a relatively low temperature and under normal pressure because of its properties.

〔発明の背景〕[Background of the invention]

従来のセラミツクス−金属複合材料において出発原料粉
の混合法としては.セラミツクス粉末に金属粉末を添加
して機械的に混合する方法が行なわれている(特開昭5
8−194775号)。この方法は簡便ではあるが、最
終的な圧粉体にするまでの過程においで、添加した金属
粉末の表面が酸化する難点がある。この酸化のためにセ
ラミックスと金属との反応が起こりに<<、そのため高
温での加圧焼結が必要である。また混合粉末の作製法と
して金属溶液の形でセラミックス粉末と混合し、還元す
るととくよってセラミツクス−金属の混合粉末をつくる
方法がある( Ceramic BvlletinVo
t、61A9 (1982))。この方法は非常に均一
な混合粉を得ることができるが、酸素との親和力の強い
金属、Cr、Ti、Zrなどは完全に還元することが困
難であり、清浄な金属粉を得ることはできない。
Conventional methods for mixing starting raw material powders in ceramic-metal composite materials include: A method has been used in which metal powder is added to ceramic powder and mixed mechanically (Japanese Patent Application Laid-Open No.
No. 8-194775). Although this method is simple, it has the disadvantage that the surface of the added metal powder oxidizes during the process of forming the final green compact. This oxidation causes a reaction between the ceramic and the metal, which requires pressure sintering at high temperatures. In addition, as a method for producing mixed powder, there is a method of mixing ceramic powder in the form of a metal solution and reducing it to create a ceramic-metal mixed powder (Ceramic Bvlletin Vo.
t, 61A9 (1982)). This method can obtain a very uniform mixed powder, but it is difficult to completely reduce metals that have a strong affinity for oxygen, such as Cr, Ti, and Zr, and it is not possible to obtain a clean metal powder. .

〔発明の目的〕[Purpose of the invention]

本発明の目的はセラミックスと金属水素化物の化学反応
を利用し.セラミツクス単体よりも低温で焼結できて、
なおかつ強靭性を兼ね備えているようなセラミツクス−
金属複合材料を提供することにある。
The purpose of the present invention is to utilize the chemical reaction between ceramics and metal hydrides. It can be sintered at a lower temperature than ceramics alone,
Ceramics that also have toughness
Our objective is to provide metal composite materials.

〔発明の概要〕[Summary of the invention]

セラミックスは耐熱性や耐食性に優れ、特に非酸化物系
セラミックスでS r 3N 4とSiCは高温での機
械的強度が酸化物系セラミックスよシも優れているため
、ガスタービンブレードやノズルのような高温部材とし
ての利用が考えられている。
Ceramics have excellent heat resistance and corrosion resistance. In particular, non-oxide ceramics such as Sr3N4 and SiC have better mechanical strength at high temperatures than oxide ceramics, so they are used for applications such as gas turbine blades and nozzles. It is being considered for use as a high-temperature member.

しかしこれらのセラミックスは金属と比較すると破壊靭
性値が1ケタ以上も低いために構造材料として適用でき
るまでに至っていない。このようなセラミックスを強靭
化することができれば構造材料として大幅に拡大適用で
きる。
However, since these ceramics have fracture toughness values that are more than one order of magnitude lower than metals, they have not reached the point where they can be used as structural materials. If such ceramics can be made tougher, they can be widely used as structural materials.

セラミックスを強靭化する方法の1つとしてセラミック
スに金属粉末を添加して複合材料化することが考えられ
る。しかし添加する金属は一般に酸素との親和力も非常
に強く、表面は薄い表面酸素膜で覆われている。この酸
化膜は非常に安定で、セラミックスと金属とを反応させ
る場合、特に低温で反応させる場合には大きな障害とな
る。また添加した金属をセラミックス中に均一に分散さ
せるには混合に長時間を要し、表面の酸化等により粉末
はかなり汚染されるようになる。
One possible method for toughening ceramics is to add metal powder to ceramics to make them into composite materials. However, the added metal generally has a very strong affinity for oxygen, and the surface is covered with a thin surface oxygen film. This oxide film is extremely stable and becomes a major hindrance when reacting ceramics and metals, especially at low temperatures. Further, it takes a long time to mix the added metal to uniformly disperse it in the ceramic, and the powder becomes considerably contaminated due to surface oxidation.

このような観点から金遣粉末を活性に保つため本発明を
考案した。以下に本発明の詳細な説明する。金属表面を
活性に保つために用いられている純Tiや純Zrではな
く TiT、、ZrH,のような水素化物の添加を試み
た。この水素化物粉末の表面は室温では安定であるため
、長時間の混合を行なっても粉末表面酸化の心配はない
。しかし水素化物は4゛50℃〜500℃で分解するこ
とがら圧粉体中の水素化物系粉末は焼結温度上昇中に分
解され、清浄な表面の金属粉末となる。焼結時に金属表
面を活性に保つことができるので従来の高い焼結温度に
比較して低温度で焼結可能となる。
From this point of view, the present invention was devised to keep money powder active. The present invention will be explained in detail below. Instead of pure Ti or pure Zr, which are used to keep metal surfaces active, we tried adding hydrides such as TiT and ZrH. Since the surface of this hydride powder is stable at room temperature, there is no fear of powder surface oxidation even if mixing is performed for a long time. However, since hydrides decompose at temperatures of 4.50 DEG C. to 500 DEG C., the hydride-based powder in the green compact is decomposed during the rise in sintering temperature and becomes metal powder with a clean surface. Since the metal surface can be kept active during sintering, it is possible to sinter at a lower temperature than conventional high sintering temperatures.

またこのような水素化物は純金属よシ比重が軽く、かつ
粒径が十分に細い。セラミックスの比重は約3 g /
 cm”程度であるのに対して従来添加されている金属
の比重は4.5〜9 g / c m”程度と大きな差
がある。そこで従来の添加金属を水素化物に代替するこ
とによってT i (4,51g/cm” )−+Ti
H,(3,76g/cm”) 、Z r (6,49g
/cm2) −+ZrH,(5,6g / cm” )
と金属とセラミックスの比重差を縮めることができる。
Further, such hydrides have a lighter specific gravity than pure metals, and a sufficiently small particle size. The specific gravity of ceramics is approximately 3 g/
cm", whereas the specific gravity of conventionally added metals is about 4.5 to 9 g/cm", which is a large difference. Therefore, by replacing the conventional additive metal with hydride, Ti (4,51g/cm”)−+Ti
H, (3,76g/cm”), Z r (6,49g
/cm2) −+ZrH, (5,6g/cm”)
The difference in specific gravity between metal and ceramics can be reduced.

粉末の比重差が少ない程短時間で均一に混合できるので
、水素化物に代替することにより、同一混合条件でもよ
り均一に混合される。しかしいくら水素化物系粉末の表
面が安定でも酸素との親和力は非常に強いために部分的
に表面が酸化することが考えられることから混合中の酸
素との接触はなるべく避けた方が良い。酸化させないた
めには混合中の空気との接触を抑えるために湿式混合し
、その時の溶剤もなるべく水分や酸素の固溶度の小さい
ものを選ぶと良い。このよう咳して活性を保持した金属
とセラミックスの混合粉体を窒素中または真空中で焼結
する。
The smaller the difference in the specific gravity of the powder, the more uniformly the powder can be mixed in a shorter time, so by substituting a hydride, the powder can be mixed more uniformly even under the same mixing conditions. However, no matter how stable the surface of the hydride powder is, it has a very strong affinity for oxygen, so it is possible that the surface may be partially oxidized, so it is better to avoid contact with oxygen during mixing as much as possible. In order to prevent oxidation, it is best to perform wet mixing to suppress contact with air during mixing, and select a solvent that has as low a solid solubility of water and oxygen as possible. The mixed powder of metal and ceramics, which has been coughed to retain its activity, is sintered in nitrogen or vacuum.

添加金属としては、それ自身融点が高く.セラミツクス
と反応して高融点の炭化物や窒化物を生成する元素で、
なおかつ活性化処理された粉末として水素化物系粉末を
選びセラミックスとの反応性企考慮して’I’ iHv
及びZ r)(、粉末について検討した。セラミックス
粉末は一般に耐熱セラミックスに用いられている炭化物
系、窒化物系粉末のうち、SiS N4 + 8 ’ 
CT人tN、BNを選んだ。
As an additive metal, it itself has a high melting point. An element that reacts with ceramics to produce high melting point carbides and nitrides.
In addition, a hydride-based powder was selected as the activated powder, and 'I' iHv was selected in consideration of reactivity with ceramics.
and Zr) (, powders were studied. Ceramic powders include SiS N4 + 8' among carbide-based and nitride-based powders that are generally used for heat-resistant ceramics.
CT people chose tN and BN.

焼結密度は種々の条件で検討し九結果セラミックスと金
属が起こシ始める温度から急激に高くなることがわかっ
た。st、N、にTiHlを添加した場合次のような反
応が起こる。まず400℃付近で Ttax→T l + Ht つづいてtoooC付近から SisN4+4’l’i→4TiN+38iのようにs
t、N、から分解してTiNと3iを生成する。SiC
にTrHtを添加した場合5ic−+’ri4 ’ii
c+si のようにSiCが分解してTiCとSif、生成する。
The sintered density was investigated under various conditions and it was found that the sintered density increases rapidly from the temperature at which ceramics and metals start to form. When TiHl is added to st, N, the following reaction occurs. First, Ttax → T l + Ht around 400℃, then s like SisN4+4'l'i → 4TiN+38i from around tooC.
TiN and 3i are generated by decomposing t and N. SiC
When TrHt is added to 5ic-+'ri4'ii
SiC decomposes to produce TiC and Sif as shown in c+si.

この反応時において生成した3iは全部が単独で存在す
るのではなく、一部はTiと反応してTiSi、を生成
する。実際の焼結温度は1400℃〜1600℃である
。この時TiSi、は溶融しておシ、この液相を利用し
て液相焼結が起こり、焼結密度が向上する。
Not all of the 3i produced during this reaction exists alone, but a portion reacts with Ti to produce TiSi. The actual sintering temperature is 1400°C to 1600°C. At this time, TiSi is melted and liquid phase sintering occurs using this liquid phase, improving the sintered density.

セラミツクス−金属複合材料を高靭化するためにはセラ
ミックスの種類と添加する金属元素の組合わせ以外に金
属元素の添加量が重要である。添加金属元素の量が重量
比で2%以下では焼結密度は上がらない。また60wt
1以上添加するとT i 3N4が全部反応してしまう
。このことからセラミックス中に添加される金属元素量
は重量比で2〜60%の範凹が強靭化に有効である。
In order to improve the toughness of a ceramic-metal composite material, in addition to the type of ceramic and the combination of metal elements added, the amount of metal elements added is important. If the amount of the added metal element is less than 2% by weight, the sintered density will not increase. Also 60wt
If one or more is added, all of the T i 3N4 will react. From this, it is effective for the amount of metal elements added to ceramics to be in the range of 2 to 60% by weight for toughening.

−吉川いる粉末の粒径も強靭化に大きく影響する。セラ
ミックス粉末の粒径が10μm以上になると、焼結して
も焼結孔が多く、90%以上の焼結密度にはならない。
- Yoshikawa The particle size of the powder also has a large effect on toughening. If the particle size of the ceramic powder is 10 μm or more, there will be many sintered holes even after sintering, and a sintered density of 90% or more will not be achieved.

粒径か細い程焼結密度は上昇し、結晶粒も微細化する。The smaller the grain size, the higher the sintered density and the finer the crystal grains.

ことから強度的にも有効である。金属粉末の粒径は用い
るセラミックス粉末の粒径により決定されるが、例えば
セラミックス粒径が10μmの場合、添加する金属粉末
の粒径が50μm以上になるとセラミックス粉末との粒
径差が大きくなシすぎて均一に混合することが困難であ
り、その上金属粉末とセラミックス粉末との接触面積が
小さくなり、十分両者の反応を利用した焼結ができない
。一方添加する金属水素化物の粒径が微細になると、焼
結体の焼結密度が上がることがわかった。したがって用
いるセラミックス粉末及び金属粉末の粒径は微細になる
と強靭化に有効に作用する。
Therefore, it is also effective in terms of strength. The particle size of the metal powder is determined by the particle size of the ceramic powder used. For example, if the ceramic particle size is 10 μm, if the particle size of the metal powder added is 50 μm or more, the difference in particle size from the ceramic powder will be large. This makes it difficult to mix uniformly, and furthermore, the contact area between the metal powder and the ceramic powder becomes small, making it impossible to sinter by fully utilizing the reaction between the two. On the other hand, it was found that as the particle size of the metal hydride added becomes finer, the sintered density of the sintered body increases. Therefore, the finer the particle size of the ceramic powder and metal powder used, the more effective the toughening will be.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面により説明する。 An embodiment of the present invention will be described below with reference to the drawings.

実施例1゜ 粒径0.5μmのSi、N、粉末に重量比で50wt 
%、平均粒径5μmのTi粉末を添加し、ライカイ機で
1時間混合の後2 t o n / cm” で金型小
形し、1500℃、真空雰囲気中で常圧焼結した結果、
焼結密度は相対密度で69.4%であった。
Example 1゜Si, N, powder with a particle size of 0.5 μm and a weight ratio of 50 wt.
%, Ti powder with an average particle size of 5 μm was added, mixed for 1 hour in a Raikai machine, molded at 2 tons/cm”, and sintered at 1500°C under normal pressure in a vacuum atmosphere.
The sintered density was 69.4% in relative density.

このように一般に行なわれている焼結温度に比べ160
0℃と低いと焼結温度であると、焼結密度はほとんど上
昇しないことがわかる。
Compared to the commonly used sintering temperature, the temperature is 160°C.
It can be seen that when the sintering temperature is as low as 0° C., the sintered density hardly increases.

実施例2 粒径0.5μmのS;、N4粉末に重量比で50wt4
の平均粒径5μmのTiH1粉末を添加し、ライカイ機
で1時間混合した後、2ton で金型成形し、150
0℃、真空雰囲気中で常圧焼結した結果、焼結密度は9
0.9%に達した。このように実施例1と比較してもわ
かるようにTiH2粉末を用いることによって低い焼結
温度でも焼結相対密度は大きく上昇するのがわかる。
Example 2 S with a particle size of 0.5 μm; weight ratio of 50wt4 to N4 powder
TiH1 powder with an average particle size of 5 μm was added, mixed for 1 hour in a Raikai machine, molded in a 2 ton mold, and
As a result of pressureless sintering in a vacuum atmosphere at 0°C, the sintered density was 9.
It reached 0.9%. As can be seen from the comparison with Example 1, the use of TiH2 powder significantly increases the sintered relative density even at a low sintering temperature.

実施例3゜ 粒径0.5 μm(7)Si3N4粉末に平均粒径5μ
mのTi粉末及び平均粒径5μm+7)TiH,粉末を
それぞれ重量比で5Qwt%添加し、真空中、常圧焼結
した場合の各焼結温度での焼結密度を相対密度に変換し
て第1図に示す。第1図に示すように金属Tlを添加し
た成形体の焼結密度は高温でも上がらないのに対して、
TiH2を添加した成形体の焼結密度は1300℃付近
から密度が上昇し、焼結温度1500℃〜1600℃で
90−以上の焼結相対密度に達する。このようにTiH
1粉末を用いることにより、金属Ti粉末添加の場合よ
シ低温度で焼結可能であることがわかる。
Example 3゜Particle size: 0.5 μm (7) Average particle size: 5 μm for Si3N4 powder
The sintered density at each sintering temperature when 5Qwt% of Ti powder and 7) TiH powder with an average particle diameter of 5 μm + 7) was added in a weight ratio and sintered in vacuum at normal pressure was converted to a relative density. Shown in Figure 1. As shown in Figure 1, the sintered density of the molded body added with metal Tl does not increase even at high temperatures;
The sintered density of the molded body to which TiH2 is added increases from around 1300°C, and reaches a sintered relative density of 90- or more at a sintering temperature of 1500°C to 1600°C. In this way, TiH
It can be seen that by using 1 powder, sintering can be performed at a lower temperature than in the case of adding metal Ti powder.

実施例4゜ 実施例2と同様の組成を実施例2と同様の方法で混合し
た粉末をさちに遣パ゛、ボールミル−I494底間混合
し、焼結性に及ぼす混合法の影響を検討した。これらの
粉末を2ton/cm”で金型成形し、1600℃真空
中焼結した結果、焼結密度は99.8係に達した。ライ
カイ機混合後、さらに遠心ボールミル混合を行なった方
がライカイ機混合に比べ、はるかに焼結相対密度は向上
することがわかる。
Example 4 Powder with the same composition as in Example 2 was mixed in the same manner as in Example 2 and then mixed in the bottom of a ball mill-I494 to examine the effect of the mixing method on sinterability. . These powders were formed into a mold at 2 ton/cm" and sintered in a vacuum at 1600°C, resulting in a sintered density of 99.8. It can be seen that the sintered relative density is much improved compared to machine mixing.

実施例5゜ 粒径0.5μmのSiC粉末に重量比で50 w tチ
の、平均粒径5μmのTiH,及び平均粒径5μmの金
属Tiをそれぞれ添加し、実施例1と同様の方法で混合
した後、2 ton/cm”で成形し、真空中で150
0℃×2時間の常圧焼結を行なった結果、Ti)it系
焼結材は焼結密度91係であるのに対し、て、金属Ti
系焼結材の焼結密度は75%と低り、Si・C粉末にも
水素化物添加が有効であることがわかる。
Example 5 TiH with an average particle size of 5 μm and metal Ti with an average particle size of 5 μm were added in a weight ratio of 50 wt to SiC powder with a particle size of 0.5 μm, and the same method as in Example 1 was carried out. After mixing, it was molded at 2 ton/cm" and heated at 150 ton/cm in vacuum.
As a result of pressureless sintering at 0°C for 2 hours, it was found that the Ti)IT-based sintered material had a sintered density of 91%, whereas the metal Ti
The sintered density of the system sintered material is as low as 75%, indicating that hydride addition is also effective for Si/C powder.

実施例6゜ 粒径0.5μmのs t、 N、粉末に平均粒径5μm
のTi粉末及び平均粒径5μmのTiH,粉末をそれぞ
れ重量比で0.5,10,20,30,40゜50.6
0%添加し、ライカイ機で1時間混合後、遠心ボールミ
ルで244時間混して、真空雰囲気で1600℃、2時
間の焼結を行ない5ENB法にて破壊靭性値、に+cを
測定した。その結果を第2図に示す。(a)がT iH
2添加、(b)がTi添加の場合である。これによ、9
TiH,添加の方がTi添加よ)もはるかに効果的であ
り、その添加量も30チ程度で最高値を示すことがわか
る。
Example 6゜St with a particle size of 0.5 μm, N, powder with an average particle size of 5 μm
of Ti powder and TiH powder with an average particle size of 5 μm at a weight ratio of 0.5, 10, 20, 30, 40°50.6, respectively.
0% was added, mixed for 1 hour in a Raikai machine, mixed for 244 hours in a centrifugal ball mill, sintered in a vacuum atmosphere at 1600°C for 2 hours, and the fracture toughness value +c was measured using the 5ENB method. The results are shown in FIG. (a) is T iH
(b) is the case where Ti is added. This is it, 9
It can be seen that addition of TiH (addition of Ti is much more effective than addition of Ti), and its addition amount reaches its maximum value at about 30 Ti.

実施例7゜ 粒径0.5μmのSi、N、粉末に重量比で50wt4
の平均粒径5μmのzrI(、及び平均粒径5μmの金
属7.rをそれぞれ添加し、実施例工な同様の5方法で
混合した後、2ton/cm2で成形し、真空中で16
00℃で2時間の常圧焼結を行なった結果、ZrH2添
加セラミックスは焼結密度90%でちるのに対して、金
属7.r添加セラミックスは焼結密度が70%と低く、
Zr添加において水素化物添加が効果的であることがわ
かる。
Example 7 Si, N, powder with a particle size of 0.5 μm and a weight ratio of 50wt4
ZrI (with an average particle size of 5 μm) and metal 7.r with an average particle size of 5 μm were added, mixed in the same manner as in the example, molded at 2 tons/cm2, and
As a result of pressureless sintering at 00°C for 2 hours, ZrH2-added ceramics had a sintered density of 90%, whereas metals had a sintered density of 7. R-added ceramics have a low sintered density of 70%,
It can be seen that hydride addition is effective in Zr addition.

〔発明の効果〕〔Effect of the invention〕

従来のセラミツクス−金属複合材料製造方法はセラミッ
クス中へ添加する金属粉末の表面が酸化膜で覆われてい
るため、成形体を加圧しながら高温で焼結し、高密度セ
ラミックス材料を得ていた。
In conventional methods for producing ceramic-metal composite materials, the surface of the metal powder added to the ceramic is covered with an oxide film, so the molded body is sintered at high temperature while being pressurized to obtain a high-density ceramic material.

本発明によれば粉末表面に酸化膜が生成しゃすい金属粉
末に代って水素化物系粉末を用いることによシ、従来の
加圧、高温焼結体と同等の高密度強靭性セラミックス材
料を低温、無加圧で得ることができる。
According to the present invention, by using a hydride-based powder instead of a metal powder that tends to form an oxide film on the powder surface, a high-density and tough ceramic material equivalent to that of conventional pressurized and high-temperature sintered bodies can be produced. It can be obtained at low temperature and without pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の8 ’ a N4  T 
iHを複合材料の各温度での焼結密度を示すグラフ、第
2図は同じ< s is N4−T iHs及びTi複
合材料の破壊靭性値の金属添加量依存性を示す線図であ
る (a)・・・TtH,添加の場合、(b)・・・Ti添
加の場合。
FIG. 1 shows an example of an 8'a N4T of the present invention.
iH is a graph showing the sintered density of the composite material at each temperature, and Figure 2 is a graph showing the dependence of the fracture toughness value of the iHs and Ti composite materials on the amount of metal added (a )...In the case of TtH addition, (b)...In the case of Ti addition.

Claims (1)

【特許請求の範囲】[Claims] 1. セラミツクス粉末と金属粉末から成るセラミツク
ス−金属複合材料において、金属ではなく金属水素化物
を添加することを特徴とするセラミツクス−金属複合材
料。
1. A ceramic-metal composite material comprising ceramic powder and metal powder, characterized in that a metal hydride is added instead of a metal.
JP19669784A 1984-09-21 1984-09-21 Ceramics-metal composite material Pending JPS6176628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19669784A JPS6176628A (en) 1984-09-21 1984-09-21 Ceramics-metal composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19669784A JPS6176628A (en) 1984-09-21 1984-09-21 Ceramics-metal composite material

Publications (1)

Publication Number Publication Date
JPS6176628A true JPS6176628A (en) 1986-04-19

Family

ID=16362080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19669784A Pending JPS6176628A (en) 1984-09-21 1984-09-21 Ceramics-metal composite material

Country Status (1)

Country Link
JP (1) JPS6176628A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0672489A1 (en) * 1994-03-18 1995-09-20 Asulab S.A. Titanium based article with high hardness and high gloss process for preparing and process for hardening and colouring the surface of this article
FR2718376A1 (en) * 1994-04-11 1995-10-13 Asulab Sa Sintered titanium-based decorative article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0672489A1 (en) * 1994-03-18 1995-09-20 Asulab S.A. Titanium based article with high hardness and high gloss process for preparing and process for hardening and colouring the surface of this article
FR2718376A1 (en) * 1994-04-11 1995-10-13 Asulab Sa Sintered titanium-based decorative article

Similar Documents

Publication Publication Date Title
JPH0139989B2 (en)
JPS6152108B2 (en)
JPS6152111B2 (en)
JPH09268072A (en) Production of silicon nitride sintered compact
JPH07172932A (en) Preparation of silicon nitride base material, material prepared by this method and its use
JPS6176628A (en) Ceramics-metal composite material
JPH0212893B2 (en)
US5114889A (en) Silicon nitride sintered body and process for preparation thereof
JP2742619B2 (en) Silicon nitride sintered body
JPH03183660A (en) Production of silicon nitride sintered body
JPH10231174A (en) Composite ceramic including dispersed solid lubricant and its production
JPH10310474A (en) Silicon carbide-silicon composite ceramic material
JPS589882A (en) Super hard heat-resistant ceramics and manufacture
JPH0435436B2 (en)
JPH02221160A (en) Production of high-density silicon nitride sintered body
KR950014356B1 (en) Method of manufacturing composite materials of iron-siliconcarbide
JPS63255329A (en) Manufacture of oxidation-resistant tungsten-base sintered alloy
JPS6126566A (en) Method of sintering sic composite body
JP2000096161A (en) Production of titanium carbonitride sintered body
JPH01219062A (en) Production of silicon nitride sintered body
JP2946593B2 (en) Silicon nitride sintered body and method for producing the same
JPH11302078A (en) Composite material and its production
JPH05201769A (en) Combined ceramic material and its production
JPS6126565A (en) Manufacture of sic sintered body
JPS58110656A (en) Composite material and its manufacture