KR950014356B1 - Method of manufacturing composite materials of iron-siliconcarbide - Google Patents

Method of manufacturing composite materials of iron-siliconcarbide Download PDF

Info

Publication number
KR950014356B1
KR950014356B1 KR1019930031661A KR930031661A KR950014356B1 KR 950014356 B1 KR950014356 B1 KR 950014356B1 KR 1019930031661 A KR1019930031661 A KR 1019930031661A KR 930031661 A KR930031661 A KR 930031661A KR 950014356 B1 KR950014356 B1 KR 950014356B1
Authority
KR
South Korea
Prior art keywords
iron
silicon carbide
sintering
green compact
siliconcarbide
Prior art date
Application number
KR1019930031661A
Other languages
Korean (ko)
Other versions
KR950017020A (en
Inventor
장삼규
Original Assignee
포항종합제철주식회사
조말수
재단법인산업과학기술연구소
백덕현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철주식회사, 조말수, 재단법인산업과학기술연구소, 백덕현 filed Critical 포항종합제철주식회사
Priority to KR1019930031661A priority Critical patent/KR950014356B1/en
Publication of KR950017020A publication Critical patent/KR950017020A/en
Application granted granted Critical
Publication of KR950014356B1 publication Critical patent/KR950014356B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/10Carbide
    • B22F2302/105Silicium carbide (SiC)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)

Abstract

The iron-silicon carbide based composite material is manufactured by (a) mixing methanol with the mixed powders of less than 30 vol% silicon carbide and more than 70 vol% iron powder, (b) drying the mixture in nonoxidative state, (c) pressing the dried body under more than 50kg/mm2 of pressure and at room temperature to make a green compact, (d) sintering the green compact at 900-950 deg.C for 1-1.5 hrs.

Description

철-실리콘 카바이드(Fe-SiC) 복합재료의 제조방법Manufacturing method of iron-silicon carbide (Fe-SiC) composite material

제1도는 철-실리콘 카바이드 계면의 결합상태를 보여주는 조직 확대 사진1 is a close-up of the tissue showing the binding state of the iron-silicon carbide interface

제2도는 철-실리콘 카바이드 복합재료의 조직 확대 사진이다.2 is an enlarged photograph of the structure of the iron-silicon carbide composite.

본 발명은 철-실리콘 카바이드(Fe-SiC) 복합재료의 제조방법에 관한 것이다. 산업에 가장 널리 사용되고 있는 철재료는 알루미늄과 같은 경쟁금속에 비하여 무겁다는 것이 가장 큰 단점이다. 따라서, 철의 특성을 강화시킴과 동시에 보다 가벼운 그러한 재료를 만드는 것이 많은 사람들이 추구하는 바이었다.The present invention relates to a method for producing an iron-silicon carbide (Fe-SiC) composite material. The most disadvantage is that iron materials, which are most widely used in the industry, are heavier than competing metals such as aluminum. Thus, many people pursued to strengthen the properties of iron and at the same time make such materials lighter.

그러나, 종래 철금속에 합금원소를 첨가하여 철의 용융상태에서 철과 합금원소를 화학반응에 의하여 합금화시키는 방법에 대해서는 많은 연구가 있었으나, 철금속에 합금원소가 아닌 세라믹과 같은 경량물질을 복합화시켜 제조하는 기술은 아직 소개된 적이 없다.However, there have been many studies on the method of alloying iron and alloying elements by chemical reaction in the molten state of iron by adding alloying elements to the conventional ferrous metals. Manufacturing techniques have not been introduced yet.

본 발명의 목적은 철금속에 실리콘 카바이드를 첨가하여 가벼우면서도 강한 철 복합재료의 제조방법을 제공하는 것이다.It is an object of the present invention to provide a method for producing a light yet strong iron composite by adding silicon carbide to ferrous metals.

상기 목적 달성을 의한 본 발명은 철분말에 부피%로, 30% 이하의 실리콘 카바이드 분말을 첨가한 후 이를 메탄올에 혼합시키는 단계 ; 상기 혼합물을 산화되지 않는 조건하에서 건조시킨 후, 상온에서 50kg/㎟ 이상의 압력으로 가압하여 그린 콤팩트(Green Compact)를 성형시키는 단계 ; 및 성형된 그린콤팩트를 900-950℃에서 1-1.5시간 소결하는 단계를 포함하는 철-실리콘 카바이드 복합재료의 제조방법에 관한것이다.The present invention by achieving the above object is a volume% to the iron powder, adding a silicon carbide powder of 30% or less and then mixing it with methanol; Drying the mixture under a condition that is not oxidized, and then pressing at a pressure of 50 kg / mm 2 or more at room temperature to form a green compact; And it relates to a method for producing an iron-silicon carbide composite material comprising the step of sintering the molded green compact at 900-950 ℃ 1-1.5 hours.

이하 실시예에 의거 본 발명을 설명한다.The present invention will be described based on the following examples.

[실시예 1]Example 1

표 1에 나타난 바와같은 철과 실리콘 카바이드의 분말을 선택하였다. 이들 분말을 시중에서 상품으로 판매되고 있는 입자형 분말로서, 입도는 변도로 한정하지 않았다.Powders of iron and silicon carbide as shown in Table 1 were selected. These powders are particulate powders that are commercially available as products, and the particle size is not limited to the degree of variation.

[표 1]TABLE 1

이철분말과 실리콘 카바이드 분말을 부피비로, 80.20으로 하여 메탄올(메틸알코올)에 혼합시켜 저속회전의 혼합기(Mixer)에서 충분히 블랜딩(blending)한 후 200℃의 무산화로에서, 산화되지 않는 조건으로 건조시켰다. 이때 건조온도와 시간은 별도로 한정하지 않았다.The ferrous powder and silicon carbide powder were mixed in a volume ratio of 80.20 in methanol (methyl alcohol), sufficiently blended in a low speed mixer (Mixer), and then dried in an anoxic furnace at 200 ° C. without oxidation. . At this time, the drying temperature and time was not limited separately.

또한, 상기 분말원료에 메탄올을 가하는 이유는 실리콘 카바이드 분말이 유해하기 때문에 혼합시 분진발생을 방지하기 위함이다. 따라서, 이를 위해 메탄올 뿐만 아니라 휘발성 용액을 가해도 무방하다.In addition, the reason for adding methanol to the powder raw material is to prevent dust generation when mixing because the silicon carbide powder is harmful. Thus, for this purpose, not only methanol but also a volatile solution may be added.

건조된 혼합분말의 가능한 기공을 최소화하기 위하여 상온에서 50kg/㎟ 이상의 압력을 가하여 그린 콤팩트(Green Compact)를 성형한 후 이것을 다시 아르곤 분위기로에서 800-1000℃ 범위에서 1시간-2시간범위로 소결하였다. 철과 실리콘 카바이드를 복합시킴에 있어 가장 중요한 것은 두물질 사이에 계면 반응이 일어나는지를 확인하는 것이다. 두 물질 사이에 계면반응이 일어나지 않을 경우에는 계면의 결합력이 약하여 잘부스러지기 쉽다.In order to minimize the possible porosity of the dried mixed powder, green compact was formed by applying a pressure of 50kg / mm2 or more at room temperature and then sintered in an argon atmosphere for 1 hour-2 hours in the range of 800-1000 ° C. It was. The most important thing in the combination of iron and silicon carbide is to see if an interfacial reaction occurs between the two materials. If no interfacial reaction occurs between the two materials, the interfacial bonding strength is weak and easily breaks.

상기 공정에서 제조된 그린 큼팩트를 소결한 후 계면 반응여부를 측정하였다.After sintering the green bulk pact prepared in the above process, the interface reaction was measured.

표 2는 그 측정결과를 나타낸 것이다.Table 2 shows the measurement results.

[표 2]TABLE 2

표 2로부터 알 수 있듯이, 소결온도가 850℃ 이하인 경우에 소결시간을 1시간 또는 2시간으로 하였을때 반응이 미흡하여 계면활성 상태가 불량이었고, 소결온도가 950℃에서 소결시간을 2시간 이상으로 하거나, 또는 소결온도를 1000℃ 이상으로 하는 경우에는 SiC가 과용해되어, 역시 계면 결합상태가 불량이었다.As can be seen from Table 2, when the sintering temperature is 850 ℃ or less, when the sintering time was 1 hour or 2 hours, the reaction was insufficient, and the surface active state was poor, and the sintering time was sintering at 950 ℃ for 2 hours or more. Or, when the sintering temperature is at least 1000 ° C., SiC is excessively dissolved, and the interface bonding state is also poor.

따라서, 소결온도를 900-950℃, 소결시간을 1-1.5시간으로 하는 것이 가장 바람직하였다.Therefore, it was most preferable to set the sintering temperature to 900-950 degreeC and the sintering time to 1-1.5 hours.

한편, 그린큼팩트를 950℃에서 1시간 소결하여 주사전자현미경으로 관찰한 결과 철입자와 실리콘 카바이드 입자 사이에 반응물질이 생성되어 두물질이 서로 강하게 결합된다는 사실을 확인할 수 있다. 제1도는 상기 그린콤팩트의 조직 확대 사진이다. 제1도의 A상(Fe)과 B상(SiC) 사이에 있는 X상이 반응상으로서, 엑스선 회전분석에서 Fe3Si로 밝혀졌다. 이는 SiC중의 Si 원자가 Fe 기지로 확산해 들어감으로써 Fe와 반응하여 생성된 것으로, 다음과 같은 반응식으로 나타낼 수 있다.Meanwhile, as a result of sintering the green coarse pact at 950 ° C. for 1 hour using a scanning electron microscope, it can be seen that a reactant is formed between the iron particles and the silicon carbide particles, thereby strongly binding the two materials to each other. 1 is an enlarged photograph of the tissue of the green compact. The X phase between the A phase (Fe) and the B phase (SiC) in FIG. 1 is a reaction phase, which was found to be Fe 3 Si in X-ray rotation analysis. This is produced by reacting with Fe as Si atoms in SiC diffuse into the Fe matrix, which can be represented by the following scheme.

3Fe + SiC = Fe3Si+C (graphite)3Fe + SiC = Fe 3 Si + C (graphite)

[실시예 2]Example 2

Fe에 대하여 SiC를 부피비로 각각 10%, 20%, 30% 첨가한 혼합성분을 실시예 1의 공정을 거치도록 하여 그린콤팩트를 제조하고, 이 그린 콤팩트를 900-950℃에서 1-1.5시간 소결한 후, 그 물리적 성질을 측정하였다. 이때, 실리콘 카바이드를 너무 많이 첨가하면 재료가 취약할 가능성이 있기 때문에 SiC의 첨가범위를 부피비로 30%까지 한정하였다.A green compact was prepared by subjecting Fe to 10%, 20%, and 30% of SiC in a volume ratio, respectively, by the process of Example 1, and sintering the green compact at 900-950 ° C. for 1-1.5 hours. After that, its physical properties were measured. At this time, if the silicon carbide is added too much, the material may be fragile, so the SiC addition range was limited to 30% by volume.

표 3은 상기 물리적 성질을 측정한 결과이다.Table 3 shows the results of measuring the physical properties.

[표 3]TABLE 3

표 3에서 보듯이, 실리콘 카바이드를 첨가하지 않은 비교재의 밀도는 5.97g/㎤이며, 부피비로 10%의 실리콘 카바이드를 첨가한 경우는 밀도가 5.37g/㎤으로서, 11%의 중량감소의 효과를 가져왔다. 그리고, 20% 및 30%의 실리콘 카바이드를 첨가하였을 경우에는 각각 16% 및 30%의 중량 감소를 보였다.As shown in Table 3, the density of the comparative material without addition of silicon carbide was 5.97 g / cm 3, and when the 10% silicon carbide was added by volume ratio, the density was 5.37 g / cm 3, resulting in an 11% weight loss effect. Brought. In addition, the addition of 20% and 30% silicon carbide showed a weight loss of 16% and 30%, respectively.

한편, 경도(Hv)에 있어서도, 실리콘 카바이드가 첨가되지 않은 철의 경우에는 경도가 60임에 비하여, 실리콘 카바이드가 10%, 20% 및 30% 첨가됨에 따라, 각각 96(60% 증가), 119(약 100% 증가) 및 132(120% 증가)로서, 경도가 현저히 항상됨을 알 수 있었다.In the hardness (Hv), on the other hand, in the case of iron without silicon carbide, the hardness is 60, whereas silicon carbide is added 10%, 20% and 30%, respectively, 96 (60% increase) and 119, respectively. (About 100% increase) and 132 (120% increase), it was found that the hardness was always significant.

제2도는 본 발명 재료의 조직 확대 사진으로서, 실리콘 카바이드 입자들이 조직내에 균일하게 분포되어 있음을 보여준다.2 is an enlarged photograph of the tissue of the present invention, showing that the silicon carbide particles are uniformly distributed in the tissue.

본 발명은 철금속에 세라믹 물질인 실리콘 카바이드를 복합화 한 것으로서, 값비싼 합금원소를 첨가하지 않고도 강도가 높은 철재료를 제공할 수 있도록 하는 것인바, 향후 철강산업에 미치는 파급효과가 매우 클것으로 기대된다.The present invention is a composite of silicon carbide, a ceramic material in ferrous metal, to provide a high-strength iron material without the addition of expensive alloying elements, it is expected that the ripple effect on the steel industry will be very large in the future do.

Claims (1)

철분말에 부피%로, 30% 이하의 실리콘 카바이드 분말을 험가한 후 이를 메탄올에 혼합시키는 단계, 상기 혼합물을 산화되지 않는 조건하에서 건조시킨 후, 상온에서 50kg/㎟ 이상의 압력으로 가압하여 그린큼팩트를 성형시키는 단계 ; 및 성형된 그린콤팩트를 900-950℃에서 1-1.5시간 소결하는 단계를 포함하는 철-실리콘 카바이드 복합재료 제조방법.After adding a volume of silicon carbide powder of 30% or less to iron powder, and mixing it with methanol, drying the mixture under non-oxidizing conditions, and then pressing it at a pressure of 50 kg / mm2 or above at room temperature to increase the size of the green carbide. Shaping; And sintering the molded green compact at 900-950 ° C. for 1-1.5 hours.
KR1019930031661A 1993-12-30 1993-12-30 Method of manufacturing composite materials of iron-siliconcarbide KR950014356B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930031661A KR950014356B1 (en) 1993-12-30 1993-12-30 Method of manufacturing composite materials of iron-siliconcarbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930031661A KR950014356B1 (en) 1993-12-30 1993-12-30 Method of manufacturing composite materials of iron-siliconcarbide

Publications (2)

Publication Number Publication Date
KR950017020A KR950017020A (en) 1995-07-20
KR950014356B1 true KR950014356B1 (en) 1995-11-25

Family

ID=19374598

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930031661A KR950014356B1 (en) 1993-12-30 1993-12-30 Method of manufacturing composite materials of iron-siliconcarbide

Country Status (1)

Country Link
KR (1) KR950014356B1 (en)

Also Published As

Publication number Publication date
KR950017020A (en) 1995-07-20

Similar Documents

Publication Publication Date Title
US4195066A (en) Process for the production of dense sintered shaped articles of polycrystalline boron carbide by pressureless sintering
KR890002888B1 (en) Sliding materials
US5720910A (en) Process for the production of dense boron carbide and transition metal carbides
US5773733A (en) Alumina-aluminum nitride-nickel composites
JPS5918349B2 (en) Titanium carbonitride-metal boride ceramic materials
EP0170889B1 (en) Zrb2 composite sintered material
JPH07118070A (en) Silicon nitride ceramic sintered compact
GB1602821A (en) Ceramic powder material and method for manufacturing the same
US5164344A (en) Borosilazanes as binders for the preparation of sintered silicon carbide monoliths
KR950014356B1 (en) Method of manufacturing composite materials of iron-siliconcarbide
CA1221710A (en) Preparation and composition of sialon grain and powder
US6156238A (en) Liquid phase-sintered, electrically conductive and oxidation-resistant ceramic material, a process for producing it and its use
JPS6212663A (en) Method of sintering b4c base fine body
JPS6212664A (en) Method of sintering b4c base composite body
Tuan et al. Preparation of Al2O3–AlN–Ni composites
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same
JPH01167279A (en) Sintered polycrystalline containing aluminium nitride as main component and method for its manufacture
JPS6389462A (en) Manufacture of silicon nitride base sintered body
JP2627768B2 (en) Method for producing sialon-non-oxide sintered body
JPH06279124A (en) Production of silicon nitride sintered compact
JP2001192751A (en) Metal matrix composite material and producing method therefor
JPH10231174A (en) Composite ceramic including dispersed solid lubricant and its production
JP3439027B2 (en) Method for producing BN-based sintered body
JP2784280B2 (en) Ceramic composite sintered body, method for producing the same, and sliding member
KR900008984B1 (en) Method for producing siliconcarbide ceramic

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20001101

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee