JPH10310474A - Silicon carbide-silicon composite ceramic material - Google Patents
Silicon carbide-silicon composite ceramic materialInfo
- Publication number
- JPH10310474A JPH10310474A JP9134288A JP13428897A JPH10310474A JP H10310474 A JPH10310474 A JP H10310474A JP 9134288 A JP9134288 A JP 9134288A JP 13428897 A JP13428897 A JP 13428897A JP H10310474 A JPH10310474 A JP H10310474A
- Authority
- JP
- Japan
- Prior art keywords
- sic
- powder
- ceramic material
- composite ceramic
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば蛍光塗料や
電子部品等を熱処理する焼成炉において、Na、K、P
b、Bi等を含有する高温アルカリガス雰囲気中で優れ
た耐久性を発揮するSiC−Si複合セラミックス材に
関する。[0001] The present invention relates to a baking furnace for heat-treating, for example, fluorescent paints and electronic parts.
The present invention relates to a SiC-Si composite ceramic material exhibiting excellent durability in a high-temperature alkaline gas atmosphere containing b, Bi, and the like.
【0002】[0002]
【従来の技術】蛍光塗料や電子部品又はセラミックス製
品等を熱処理する焼成炉においては、被処理材から発生
するガスあるいは雰囲気調整のために送入されるガス成
分によって、炉内がNa、K、Pb、Bi等を含有する
アルカリガス雰囲気になることが多い。したがって、こ
のような高温のアルカリガス雰囲気中で焼成処理する場
合、被処理材を入れる容器や治具及び各種部材には、高
温アルカリガス雰囲気中において優れた耐久性が要求さ
れる。2. Description of the Related Art In a baking furnace for heat-treating a fluorescent coating, an electronic component, a ceramic product, or the like, the interior of the furnace is Na, K, The atmosphere is often an alkali gas atmosphere containing Pb, Bi, and the like. Therefore, when baking is performed in such a high-temperature alkali gas atmosphere, a container, a jig, and various members for holding the material to be processed are required to have excellent durability in a high-temperature alkali gas atmosphere.
【0003】SiC焼結体は、耐熱性、高温強度、耐熱
衝撃性、耐摩耗性、耐蝕性等の材質特性に優れており、
高温用の各種構造部材として有用されている。通常、S
iC焼結体はSiC粉粒を原料として、成形、焼結する
方法で製造されているが、SiCは共有結合性が強いた
めに焼結性が低く、緻密な焼結体を得ることが困難であ
る。そこで、SiC焼結体の気孔中に溶融したSiを含
浸させて充填し、高緻密化を図ったSiC−Si複合セ
ラミックスが高温用の部材、例えば、焼成用の治具、さ
や、るつぼ、均熱管等として使用されている。[0003] The SiC sintered body has excellent material properties such as heat resistance, high temperature strength, thermal shock resistance, abrasion resistance and corrosion resistance.
It is useful as various structural members for high temperatures. Usually S
The iC sintered body is manufactured by a method of molding and sintering using SiC powder as a raw material. However, it is difficult to obtain a dense sintered body because SiC has a strong covalent bond and thus has low sinterability. It is. Therefore, the SiC-Si composite ceramics in which the pores of the SiC sintered body are impregnated with molten Si and filled to achieve high densification are made of a high-temperature member, for example, a firing jig, a pod, a crucible, Used as heat tubes and the like.
【0004】しかしながら、SiC−Si複合セラミッ
クスはNa、K、Pb、Bi等を含有する高温のアルカ
リガス雰囲気中では酸化による消耗が著しく、耐久性が
低いという欠点がある。すなわち、SiC−Si複合セ
ラミックスは、高温酸化性雰囲気下では表層面がSiO
2 に転化して酸化保護膜として機能するが、高温アルカ
リガス雰囲気では表層面に生成したSiO2 膜がより低
い温度で溶融状態となり、酸素ガスの透過性が大きくな
って耐酸化性が低下する。更に、SiC及びSiが酸化
された際に発生するCOガスやSiOガスにより溶融状
態のSiO2 が泡状となり、激しく発泡しながら酸化消
耗が進行する。[0004] However, SiC-Si composite ceramics have the drawback that they are significantly depleted by oxidation in a high-temperature alkali gas atmosphere containing Na, K, Pb, Bi, etc., and have low durability. That is, the surface of the SiC-Si composite ceramic is SiO 2 under a high-temperature oxidizing atmosphere.
2 and functions as an oxidation protection film, but in a high-temperature alkali gas atmosphere, the SiO 2 film formed on the surface becomes a molten state at a lower temperature, the oxygen gas permeability increases, and the oxidation resistance decreases. . Further, the CO gas or SiO gas generated when SiC and Si are oxidized causes the SiO 2 in a molten state to be foamed, and oxidative consumption proceeds while vigorously foaming.
【0005】このように、SiC−Si複合セラミック
スを蛍光塗料や各種電子部品等を熱処理する焼成容器、
均熱管、治具等の部材として使用すると耐用期間が短
く、また泡状生成物が被処理材に混入して汚染する問題
点がある。したがって、高温のアルカリガス雰囲気中で
安定に使用することのできるセラミックス材の開発が強
く要求されている。[0005] As described above, a firing container for heat-treating SiC-Si composite ceramics with a fluorescent paint, various electronic parts, and the like,
When it is used as a member such as a heat equalizing tube or a jig, there is a problem that the service life is short, and a foamed product is mixed into the material to be treated and is contaminated. Therefore, there is a strong demand for the development of a ceramic material that can be used stably in a high-temperature alkali gas atmosphere.
【0006】[0006]
【発明が解決しようとする課題】本発明者らは、このよ
うな要求に沿ったSiC−Si複合セラミックスを開発
するために、材質成分及び組成について多角的に研究を
重ねた結果、Ca単体又はCa化合物を特定の割合でS
iC−Si複合セラミックスに配合した材質組成とする
と、Na、K、Pb、Bi等を含有するアルカリガス雰
囲気中において、1300℃を越える高温で処理しても
耐久性が向上することを確認した。SUMMARY OF THE INVENTION The present inventors have conducted various studies on material components and compositions in order to develop SiC-Si composite ceramics meeting such demands. Ca compound at a specific ratio to S
It was confirmed that when the material composition was used in the iC-Si composite ceramics, the durability was improved even at a high temperature exceeding 1300 ° C. in an alkali gas atmosphere containing Na, K, Pb, Bi and the like.
【0007】本発明は上記の知見に基づいて開発された
ものであり、その目的はNa、K、Pb、Bi等を含有
する高温のアルカリガス雰囲気下において、酸化による
消耗が少なく、優れた耐久性を発揮するSiC−Si複
合セラミックス材を提供することにある。The present invention has been developed on the basis of the above-mentioned findings, and has as its object to reduce the consumption by oxidation in a high-temperature alkali gas atmosphere containing Na, K, Pb, Bi, etc. and to provide excellent durability. An object of the present invention is to provide a SiC-Si composite ceramic material exhibiting a property.
【0008】[0008]
【課題を解決するための手段】上記の目的を達成するた
めの、本発明によるSiC−Si複合セラミックス材
は、SiC75〜85重量%とSi25〜15重量%と
からなるSiC−Si複合セラミックス100重量部
に、Ca単体又はCa化合物がCa元素に換算して0.
5〜2.0重量部の割合で含有した複合組成から成るこ
とを構成上の特徴とする。In order to achieve the above object, a SiC-Si composite ceramic material according to the present invention comprises a SiC-Si composite ceramic comprising 75 to 85% by weight of SiC and 25 to 15% by weight of Si. In the part, Ca alone or a Ca compound is converted to Ca element in an amount of 0.1%.
It is characterized by being composed of a composite composition containing 5 to 2.0 parts by weight.
【0009】[0009]
【発明の実施の形態】本発明のSiC−Si複合セラミ
ックス材の母材となるセラミックスは、SiCが75〜
85重量%、Siが25〜15重量%の組成割合からな
る複合セラミックスが用いられる。SiCが75重量%
未満、Siが25重量%を越える場合には含浸充填した
Si量が多いために耐クリープ特性や耐摩耗性が低下
し、またSiCが85重量%を越え、Siが15重量%
を下回ると残存する気孔が多くなって、強度特性や耐酸
化性の低下を招くこととなる。BEST MODE FOR CARRYING OUT THE INVENTION The ceramic which is the base material of the SiC-Si composite ceramic material of the present invention has a SiC of 75 to
A composite ceramic having a composition ratio of 85% by weight and 25 to 15% by weight of Si is used. 75% by weight of SiC
When the content of Si is less than 25% by weight, the amount of Si impregnated and filled is large, so that the creep resistance and wear resistance are reduced, and the content of SiC exceeds 85% by weight and the content of Si is 15% by weight.
If it is less than, the number of remaining pores increases, which results in a decrease in strength characteristics and oxidation resistance.
【0010】本発明は、この組成割合のSiC−Si複
合セラミックス100重量部に対して、Ca単体又はC
a化合物がCa元素に換算して0.5〜2.0重量部の
割合で含有する複合組成から成ることを特徴とする。C
a成分の配合量がCa元素に換算して0.5重量部未満
であると、1300℃を越える高温のアルカリガス雰囲
気中における耐久性が劣り、一方2.0重量部を上回る
と高温のアルカリガスとCa成分とが反応して固形物が
析出し、被処理物に混入して汚染を招くこととなるため
である。According to the present invention, Ca alone or C is added to 100 parts by weight of the SiC—Si composite ceramic having the above composition ratio.
The compound a is characterized by comprising a composite composition containing 0.5 to 2.0 parts by weight in terms of Ca element. C
If the amount of the component a is less than 0.5 parts by weight in terms of Ca element, the durability in a high-temperature alkali gas atmosphere exceeding 1300 ° C. is inferior. This is because the gas and the Ca component react with each other to precipitate solids, which are mixed into the object to be treated, thereby causing contamination.
【0011】上述したようにSiC−Si複合セラミッ
クスは、高温アルカリガス雰囲気中では生成したSiO
2 の酸化保護膜がより低温で溶融状態となるために酸素
ガスの透過性が大きくなり、更に、SiC及びSiが酸
化された際に発生するCOガスやSiOガスにより溶融
状態のSiO2 が泡状となって、激しく発泡しながら酸
化消耗が進行する。As described above, SiC—Si composite ceramics are produced from SiO 2 generated in a high-temperature alkaline gas atmosphere.
Since the oxide protective film 2 is in a molten state at a lower temperature, permeability of oxygen gas is increased, and furthermore, SiO 2 in a molten state is bubbled by CO gas or SiO gas generated when SiC and Si are oxidized. As a result, oxidative consumption proceeds while intensely foaming.
【0012】この場合にCa成分が存在すると、酸化保
護膜であるSiO2 との反応により溶融したSiO2 の
粘性が著しく増大し、酸素ガスの透過性を極めて小さく
することができる。その結果、耐久性の向上が図られる
ものと推測される。そして、耐久性の向上効果を充分に
発揮させるためには、Ca成分はSiC−Siセラミッ
クス100重量部に対し、Ca単体又はCa化合物をC
a元素に換算した値が0.5〜2.0重量部の割合で含
有する複合組成とすることが必要である。Ca成分がC
a元素換算値として0.5重量部未満では、溶融状態の
SiO2 の粘性を充分に増大させることができないため
である。その結果、酸素ガスの透過性を低く保持するこ
とが難しく、耐久性を充分に向上させることが困難とな
る。しかしながら、Ca成分がCa元素換算値として
2.0重量部を上回ると、Ca成分が高温アルカリガス
と反応して固形物が析出し、被処理物に混入、汚染する
恐れが生じるためである。In this case, when the Ca component is present, the viscosity of the SiO 2 melted by the reaction with the SiO 2 serving as the oxidation protection film is significantly increased, and the permeability of oxygen gas can be extremely reduced. As a result, it is assumed that the durability is improved. Then, in order to sufficiently exhibit the effect of improving the durability, the Ca component is prepared by adding Ca alone or a Ca compound to 100 parts by weight of the SiC—Si ceramic.
It is necessary to obtain a composite composition containing the element a in a ratio of 0.5 to 2.0 parts by weight in terms of a value. Ca component is C
If the value of the element a is less than 0.5 parts by weight, the viscosity of the molten SiO 2 cannot be sufficiently increased. As a result, it is difficult to keep the oxygen gas permeability low, and it is difficult to sufficiently improve the durability. However, when the Ca component exceeds 2.0 parts by weight in terms of Ca element, the Ca component reacts with the high-temperature alkali gas to precipitate solids, which may be mixed into the object to be processed and contaminated.
【0013】本発明のSiC−Si複合セラミックス材
は、例えば次のようにして製造することができる。Si
C粉末に、所定の割合でCa単体粉末あるいはCa化合
物の粉末を添加混合し、混合粉末をメチルセルロースや
グリセリン等の有機バインダー及び必要に応じ分散剤等
を添加した水中に投入し、充分に撹拌混合してスラリー
を調製する。調製したスラリーを鋳込成形や加圧成形等
の適宜な成形手段で所望形状に成形したのち、水分を乾
燥除去してSiC生成形体を得る。この生成形体をSi
粉末で被包した状態で、アルゴンガス等の不活性雰囲気
中、例えば1800〜2000℃の温度に適宜時間加熱
焼成し、Si粉末を溶融して生成形体中に浸透含浸させ
るとともに焼成することにより本発明のSiC−Si複
合セラミックス材が製造される。The SiC-Si composite ceramic material of the present invention can be manufactured, for example, as follows. Si
C powder is mixed with a simple substance powder or a Ca compound powder at a predetermined ratio, and the mixed powder is poured into water to which an organic binder such as methylcellulose or glycerin and a dispersing agent are added if necessary, and sufficiently stirred and mixed. To prepare a slurry. After the prepared slurry is formed into a desired shape by an appropriate forming means such as cast molding or pressure molding, moisture is dried and removed to obtain a SiC-produced body. This formed form is
In the state of being encapsulated with the powder, the powder is heated and fired in an inert atmosphere such as argon gas, for example, at a temperature of, for example, 1800 to 2000 ° C. for an appropriate time to melt and infiltrate and impregnate the Si powder into the formed body. The SiC-Si composite ceramic material of the invention is manufactured.
【0014】Ca単体粉末としては金属Caの粉末が、
またCa化合物の粉末としては例えば、CaF2 、Ca
C2 、CaCO3 、CaSi2 等の粉末が用いられる。
これらのCa単体粉末やCa化合物粉末は、SiC−S
i複合セラミックスに対してCa元素に換算した値が所
定の割合となる量比で配合される。なおSiC粉末、C
a単体あるいはCa化合物の粉末、及びSi粉末は粒度
調整した粉末を用いることが好ましい。As the Ca simple powder, metal Ca powder is
Examples of the Ca compound powder include CaF 2 , Ca
Powders such as C 2 , CaCO 3 and CaSi 2 are used.
These Ca simple powders and Ca compound powders are made of SiC-S
The i-composite ceramics are blended in a quantitative ratio such that a value converted into a Ca element becomes a predetermined ratio. Note that SiC powder, C
It is preferable to use powder of which the particle size is adjusted as the simple substance a or the powder of the Ca compound and the Si powder.
【0015】[0015]
【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明する。EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples.
【0016】実施例、比較例 SiC粉末(平均粒子径 3.0μm)に、異なる量比でCa
F2 粉末(平均粒子径1.5μm)を配合し、有機バインダ
ーにメチルセルロースを用いて水中に分散混合して均一
なスラリーを調製した。このスラリーを鋳込成形により
直径100mm、高さ150mmのるつぼ状に成形したの
ち、乾燥して生成形体を得た。得られた生成形体を金属
Siの粉末で被包した状態でアルゴンガス雰囲気に保持
された焼成炉に入れ、1900℃の温度に2時間保持し
て加熱焼成した。このようにして、Ca元素量を異なる
割合で含有した複合組成から成るSiC−Si複合セラ
ミックス材を製造した。Examples and Comparative Examples SiC powder (average particle diameter 3.0 μm) was mixed with Ca at different quantitative ratios.
Blended F 2 powder (average particle diameter 1.5 [mu] m), were mixed dispersed in water using a cellulose in an organic binder to prepare a uniform slurry. This slurry was formed into a crucible having a diameter of 100 mm and a height of 150 mm by casting, and then dried to obtain a formed product. The obtained formed body was placed in a firing furnace maintained in an argon gas atmosphere while being wrapped with metal Si powder, and was heated and fired at a temperature of 1900 ° C. for 2 hours. Thus, a SiC-Si composite ceramic material having a composite composition containing different amounts of Ca elements was manufactured.
【0017】これらのSiC−Si複合セラミックス材
についてアルカリガス雰囲気中における耐久性を試験す
るために、3.0容量%のPbOを含むガス雰囲気に調
整保持された焼成炉に入れて、1300℃の温度で50
0時間熱処理した。この熱処理の前後における重量なら
びに曲げ強度を測定してアルカリガス雰囲気中での耐久
性を比較した。また、熱処理後のるつぼの表面状態を目
視観察により、下記の判定基準に従って評価した。 ○…変化が認められない。 △…アルカリガスとの反応により生成した固形物が存在
する。 ×…多量の泡状析出物が存在する。In order to test the durability of these SiC-Si composite ceramic materials in an alkaline gas atmosphere, the materials were placed in a firing furnace adjusted and maintained in a gas atmosphere containing 3.0% by volume of PbO, and heated at 1300 ° C. 50 at temperature
Heat treatment was performed for 0 hours. The weight and bending strength before and after this heat treatment were measured to compare the durability in an alkali gas atmosphere. The surface condition of the crucible after the heat treatment was evaluated by visual observation according to the following criteria. …: No change was observed. Δ: There are solids produced by the reaction with the alkali gas. X: A large amount of foamy precipitates are present.
【0018】このようにして得られた耐久性試験の結果
を、SiC−Si複合セラミックス材中のCa元素量等
とともに表1に示した。The results of the durability test thus obtained are shown in Table 1 together with the amount of Ca element and the like in the SiC-Si composite ceramic material.
【0019】[0019]
【表1】 [Table 1]
【0020】表1の結果から、SiC−Si複合セラミ
ック100重量部に対し、Ca元素量に換算した値が
0.5〜2.0重量部の割合でCaF2 を含有させたR
un.No.3〜5の本発明のSiC−Si複合セラミ
ックス材は、3.0容量%のPbOを含むアルカリガス
雰囲気中で1300℃の温度に500時間熱処理した際
の重量変化率が極めて少なく、また熱処理前後における
室温曲げ強度の変化も小さいことが判る。更に、熱処理
後の表面状態も異常が認められず、アルカリガス雰囲気
中における耐久性に優れていることが判明する。これに
対して、Ca元素量が少ないRun.No.1、2では
アルカリガス雰囲気中において熱処理した場合に消耗量
が多いため重量変化率が大きく、また熱処理に伴う曲げ
強度の低下も著しいことが明らかである。また、熱処理
により多量の泡状析出物が発生している。一方、Ca元
素量が多いRun.No.6では、熱処理時にCa成分
がアルカリガスと反応して固形物が生成することが判
る。From the results shown in Table 1, it is found that R obtained by adding CaF 2 at a ratio of 0.5 to 2.0 parts by weight in terms of the amount of Ca element to 100 parts by weight of the SiC-Si composite ceramic.
un. No. The SiC-Si composite ceramic materials 3 to 5 of the present invention have a very small weight change rate when heat-treated at a temperature of 1300 ° C. for 500 hours in an alkaline gas atmosphere containing 3.0% by volume of PbO, and before and after the heat treatment. It can also be seen that the change in the room temperature bending strength was small. Further, no abnormalities were observed in the surface state after the heat treatment, which indicates that the durability was excellent in an alkali gas atmosphere. On the other hand, Run. No. In Examples 1 and 2, it is clear that the heat treatment in an alkali gas atmosphere causes a large amount of consumption, so that the rate of weight change is large, and the bending strength is significantly reduced due to the heat treatment. Further, a large amount of foam-like precipitates are generated by the heat treatment. On the other hand, Run. No. In the case of No. 6, it is found that the Ca component reacts with the alkali gas during the heat treatment to generate a solid.
【0021】[0021]
【発明の効果】以上のとおり、本発明のSiC−Si複
合セラミックス材によれば、Ca単体又はCa化合物を
Ca元素量として0.5〜2.0重量部の割合で含有さ
せた複合組成とすることにより、高温アルカリガス雰囲
気下において優れた耐久性を付与することができる。し
たがって、Na、K、Pb、Bi等を含むアルカリガス
雰囲気中で蛍光塗料や電子部品等を高温熱処理する際に
用いる、さや、るつぼ等の焼成容器として、あるいは加
熱炉用の均熱管や各種治具として、長時間に亘って安定
に使用することが可能となる。As described above, according to the SiC-Si composite ceramic material of the present invention, a composite composition containing only Ca or a Ca compound in an amount of 0.5 to 2.0 parts by weight as a Ca element amount is obtained. By doing so, excellent durability can be provided in a high-temperature alkaline gas atmosphere. Therefore, it is used as a baking container for pods, crucibles, etc., used for heat treatment of fluorescent paints and electronic components in an alkaline gas atmosphere containing Na, K, Pb, Bi, etc. As a tool, it can be used stably for a long time.
Claims (1)
5重量%とからなるSiC−Si複合セラミックス10
0重量部に、Ca単体又はCa化合物がCa元素に換算
して0.5〜2.0重量部の割合で含有した複合組成か
ら成ることを特徴とするSiC−Si複合セラミックス
材。1. 75% to 85% by weight of SiC and 25% to 1% of Si
SiC-Si composite ceramics 10 comprising 5% by weight
A SiC-Si composite ceramic material comprising a composite composition containing 0 part by weight of Ca alone or a Ca compound in a ratio of 0.5 to 2.0 parts by weight in terms of Ca element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9134288A JPH10310474A (en) | 1997-05-08 | 1997-05-08 | Silicon carbide-silicon composite ceramic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9134288A JPH10310474A (en) | 1997-05-08 | 1997-05-08 | Silicon carbide-silicon composite ceramic material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10310474A true JPH10310474A (en) | 1998-11-24 |
Family
ID=15124786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9134288A Pending JPH10310474A (en) | 1997-05-08 | 1997-05-08 | Silicon carbide-silicon composite ceramic material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10310474A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002081406A1 (en) | 2001-03-30 | 2002-10-17 | Ngk Insulators,Ltd. | Silicon carbide based porous article and method for preparation thereof |
EP1577279A1 (en) * | 2002-12-26 | 2005-09-21 | Ngk Insulators, Ltd. | Method for producing ceramic structure |
US7011803B2 (en) | 2000-04-14 | 2006-03-14 | Ngk Insulators, Ltd. | Honeycomb structure and method for its manufacture |
WO2022049818A1 (en) * | 2020-09-07 | 2022-03-10 | 日本碍子株式会社 | Refractory material |
CN116081951A (en) * | 2022-10-24 | 2023-05-09 | 南昌航空大学 | Core-shell structure composite foaming agent and preparation method thereof, and granite sludge light glazed glass ceramic and preparation method thereof |
-
1997
- 1997-05-08 JP JP9134288A patent/JPH10310474A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7011803B2 (en) | 2000-04-14 | 2006-03-14 | Ngk Insulators, Ltd. | Honeycomb structure and method for its manufacture |
WO2002081406A1 (en) | 2001-03-30 | 2002-10-17 | Ngk Insulators,Ltd. | Silicon carbide based porous article and method for preparation thereof |
JP2002356383A (en) * | 2001-03-30 | 2002-12-13 | Ngk Insulators Ltd | Silicon carbide based porous compact and method for manufacturing the same |
US7037477B2 (en) | 2001-03-30 | 2006-05-02 | Ngk Insulators | Silicon carbide-based porous material and process for production thereof |
EP1577279A1 (en) * | 2002-12-26 | 2005-09-21 | Ngk Insulators, Ltd. | Method for producing ceramic structure |
EP1577279A4 (en) * | 2002-12-26 | 2008-04-09 | Ngk Insulators Ltd | Method for producing ceramic structure |
WO2022049818A1 (en) * | 2020-09-07 | 2022-03-10 | 日本碍子株式会社 | Refractory material |
JPWO2022049818A1 (en) * | 2020-09-07 | 2022-03-10 | ||
CN115956064A (en) * | 2020-09-07 | 2023-04-11 | 日本碍子株式会社 | Refractory material |
TWI821649B (en) * | 2020-09-07 | 2023-11-11 | 日商日本碍子股份有限公司 | Refractory materials |
CN116081951A (en) * | 2022-10-24 | 2023-05-09 | 南昌航空大学 | Core-shell structure composite foaming agent and preparation method thereof, and granite sludge light glazed glass ceramic and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2546872B2 (en) | Method of manufacturing composite object | |
HU204239B (en) | Process for producing self-carrying ceramic products of composed structure first of all for large series | |
KR890002888B1 (en) | Sliding materials | |
US3682686A (en) | Method of manufacturing carbonaceous refractory products | |
ZA200506574B (en) | Method of obtaining surface coating of silicon nitride (SI3N4) on ceramic components and parts | |
JPH10310474A (en) | Silicon carbide-silicon composite ceramic material | |
EP0933439B1 (en) | Composite product, preform for producing the composite product and process of forming the preform | |
JPS6119584B2 (en) | ||
JPS6126550A (en) | Manufacture of refractories containing gllasified material | |
JP2000351679A (en) | Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form | |
JPH0910922A (en) | Carbonaceous refractory member for nonferrous molten metal | |
JPH01286950A (en) | Carbon-containing refractory | |
JP2508511B2 (en) | Alumina composite | |
JPS6374978A (en) | Ceramic composite body | |
JP4217279B2 (en) | Method for producing metal-ceramic composite material | |
JP3358040B2 (en) | Nozzle for continuous casting | |
JPH0345553A (en) | Carbon-containing refractory | |
JP2000302573A (en) | SiC-MoSi2 COMPOSITE MATERIAL AND ITS PRODUCTION | |
JPH05294764A (en) | Carbon-containing refractory | |
JP3176836B2 (en) | Irregular refractories | |
JPH05294763A (en) | Carbon-containing refractory | |
JP2948020B2 (en) | Carbon containing refractories | |
JPH08208313A (en) | Platelike refractory for sliding nozzle | |
JP2687214B2 (en) | Carbon containing refractories | |
JPS5934676B2 (en) | Method for producing a reaction fired product containing β′-Sialon as the main component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040402 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060710 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061027 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070305 |