JPH05294764A - Carbon-containing refractory - Google Patents

Carbon-containing refractory

Info

Publication number
JPH05294764A
JPH05294764A JP4125391A JP12539192A JPH05294764A JP H05294764 A JPH05294764 A JP H05294764A JP 4125391 A JP4125391 A JP 4125391A JP 12539192 A JP12539192 A JP 12539192A JP H05294764 A JPH05294764 A JP H05294764A
Authority
JP
Japan
Prior art keywords
refractory
raw material
pts
resistance
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4125391A
Other languages
Japanese (ja)
Inventor
Takeshi Matsui
剛 松井
Hatsuo Taira
初雄 平
Kazuhiko Takeuchi
和彦 竹内
Atsushi Nakao
淳 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4125391A priority Critical patent/JPH05294764A/en
Publication of JPH05294764A publication Critical patent/JPH05294764A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5046Spinels, e.g. magnesium aluminate spinels
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0087Uses not provided for elsewhere in C04B2111/00 for metallurgical applications

Abstract

PURPOSE:To improve oxidation resistance by impregnation treating a refractory, obtained by kneading each of a specific quantity of an Al2O3-kind fire-proofing raw material, a SiC-kind fire-proofing raw material and graphite, molding and firing in a non-oxidizing atmosphere at a prescribed temp., with multiple alkoxide. CONSTITUTION:The Al2O3-kind fire-proofing raw material of 60-90 pts.wt. (hereafter pts.) having >=95% purity, the SiC-kind fire-proofing raw material of 5-20 pts. having >=90% purity and graphite of 5-20 pts. having >=90% purity where particle diameter of these raw materials is <=150mum are compounded. As the oxides having <=150mum particle diameter, 1.5-10 pts. sum total of a metallic powder high in fire resistance and a glass powder low in softening point are added and mixed into the powdery compound of 100 pts. Next, the mixture is kneaded, molded and is fired in the non-oxidizing atmosphere such as Ar at >=600 deg.C. After that, the multiple alkoxide having magnesium-aluminum spinel composition is impregnated into the fired material, is uniformly dispersed inside of the fired material and by heat treating, magnesium-aluminum spinel is formed and the carbon-containing refractory excellent in oxidation resistance and corrosion resistance is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶融金属処理用容器、
特に溶銑予備処理炉等の内張り炭素含有耐火物に関する
ものである。
FIELD OF THE INVENTION The present invention relates to a container for treating molten metal,
In particular, it relates to a refractory material containing carbon contained in a hot metal pretreatment furnace.

【0002】[0002]

【従来の技術】溶融金属処理用容器の内張り耐火物とし
ては、耐スラグ性、耐熱衝撃性に優れたAl23−Si
C−炭素系耐火物が適用され、高耐用化が図られている
(例えば特開昭58−64261号公報、特開昭60−
42273号公報)。さらに、これらの耐火物の高温で
の耐酸化性の向上を図るために各種金属の添加或いは金
属、ガラス等の併用添加が行われている(特開昭62−
132767号公報、特開昭63−117955号公
報)。また、電磁鋼板の連続焼鈍用ハースロールとして
使用されている黒鉛ロールの耐酸化性の向上を図るため
に、アルコキシド含浸(特開平03−211219号公
報)が提案されている。
2. Description of the Related Art As a refractory lining for a molten metal processing container, Al 2 O 3 -Si having excellent slag resistance and thermal shock resistance is used.
A C-carbon type refractory is applied to achieve high durability (for example, JP-A-58-64261 and JP-A-60-).
42273). Further, in order to improve the oxidation resistance of these refractories at high temperatures, various metals have been added or metals, glass and the like have been added in combination (JP-A-62-62).
132767, JP-A-63-117955). Further, in order to improve the oxidation resistance of a graphite roll used as a hearth roll for continuous annealing of electromagnetic steel sheets, alkoxide impregnation (Japanese Patent Laid-Open No. 03-211219) has been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、溶融金
属処理用容器の内張り耐火物として使用されているAl
23−SiC−炭素系耐火物は、高温での耐酸化性に弱
点を有している。これを改善するために各種金属の添加
或いは金属、ガラス等の併用添加が行われているが、金
属あるいはガラスは、何れも粉末の形態で添加されただ
けなので、耐火物組織内部では偏在しており、均一分布
という点で問題を有している。本発明は、従来の金属添
加あるいは金属、ガラス併用添加だけでは得られなかっ
た炭素含有耐火物を改善したもので、均一な組織を有
し、耐酸化性、耐食性の極めて優れた炭素含有耐火物を
提供することにある。
However, Al used as a refractory lining for molten metal processing containers.
2 O 3 -SiC-carbon refractory has a weak point in oxidation resistance at high temperatures. In order to improve this, various metals are added or metal, glass, etc. are added in combination, but since metal or glass is only added in the form of powder, it is unevenly distributed inside the refractory structure. However, there is a problem in terms of uniform distribution. The present invention is an improvement of a carbon-containing refractory that could not be obtained only by conventional metal addition or metal-glass combination addition, has a uniform structure, and is extremely excellent in oxidation resistance and corrosion resistance. To provide.

【0004】[0004]

【課題を解決するための手段】本発明は、アルミナ質耐
火原料65〜90重量部、炭化珪素質耐火原料5〜15
重量部および黒鉛5〜20重量部からなる耐火原料を混
練成形した後に、非酸化性雰囲気中で600℃以上の温
度で焼成した耐火物をマグネシウム・アルミニウムスピ
ネル組成の複合アルコキシドで含浸処理してなることを
特徴とする。
According to the present invention, there are provided 65 to 90 parts by weight of an alumina refractory raw material, and 5 to 15 silicon carbide refractory raw materials.
Parts of graphite and 5 to 20 parts by weight of graphite are kneaded and molded, and then the refractory is fired at a temperature of 600 ° C. or higher in a non-oxidizing atmosphere and impregnated with a composite alkoxide of magnesium / aluminum spinel composition. It is characterized by

【0005】さらに、本発明は、アルミナ質耐火原料6
5〜90重量部、炭化珪素質耐火原料5〜15重量部お
よび黒鉛5〜20重量部からなる耐火原料100重量部
に対して、耐火原料用の金属粉末及びガラス粉末を合計
で1.5〜10重量部添加した配合物を混練成形した後
に、600℃以上の温度で焼成した耐火物を、マグネシ
ウム・アルミニウムスピネル組成の複合アルコキシドで
含浸処理してなることを特徴とする。
Further, the present invention relates to an alumina refractory raw material 6
5 to 90 parts by weight, 5 to 15 parts by weight of a silicon carbide refractory raw material, and 5 to 20 parts by weight of graphite, to 100 parts by weight of a refractory raw material, the total amount of metal powder and glass powder for the refractory raw material is 1.5 to The composition is characterized in that after 10 parts by weight of the compound added is kneaded and molded, a refractory material fired at a temperature of 600 ° C. or higher is impregnated with a composite alkoxide having a magnesium-aluminum spinel composition.

【0006】本発明におけるマグネシウム・アルミニウ
ムスピネル組成の複合アルコキシドとは、マグネシウム
・アルミニウムスピネル組成となるようにマグネシウム
アルコキシド溶液の加水分解によって得られるマグネシ
ウム元素だけを含むゾル溶液とアルミニウムアルコキシ
ド溶液の加水分解によって得られるアルミニウム元素だ
けを含むゾル溶液とを混合したゾル溶液ではなく、分子
式がMg[Al(OR)42であるアルコキシドのこと
であり、加水分解や熱処理により直接マグネシウム・ア
ルミニウムスピネル酸化物に結晶化する。分子式におけ
るOは酸素、Rは炭化水素基である。
The composite alkoxide having a magnesium-aluminum spinel composition in the present invention is obtained by hydrolysis of a sol solution containing only magnesium element and an aluminum alkoxide solution obtained by hydrolysis of a magnesium alkoxide solution so as to have a magnesium-aluminum spinel composition. It is not a sol solution obtained by mixing with the obtained sol solution containing only aluminum element, but an alkoxide having a molecular formula of Mg [Al (OR) 4 ] 2 and directly converted into magnesium / aluminum spinel oxide by hydrolysis or heat treatment. Crystallize. In the molecular formula, O is oxygen and R is a hydrocarbon group.

【0007】本発明者らは、この特性に着目し、炭素含
有耐火物にアルコキシド含浸させることにより耐酸化性
や耐食性の向上に効果があると考え、本発明に至った。
The inventors of the present invention have paid attention to this characteristic and thought that impregnating a carbon-containing refractory material with an alkoxide has an effect of improving oxidation resistance and corrosion resistance, and arrived at the present invention.

【0008】本発明に用いる金属粉末とは、Al,S
i,Ti,Al−Mg等を指し、粒径が150μm以下
で、生成した金属酸化物の耐火度が高いことが望まし
い。これらの金属粉末は、800℃以上で高温域では黒
鉛よりも酸素親和力が高いために黒鉛よりも容易に酸化
されて金属酸化物となり、黒鉛の酸化を防止する。ま
た、金属酸化物生成時の体積膨張によりアルコキシド含
浸では完全に塞ぐことのできない気孔を塞ぐことによ
り、耐火物内部への酸化性ガス及びスラグの侵入を抑制
し耐酸化性、耐食性を向上させる。
The metal powder used in the present invention means Al, S
It means i, Ti, Al-Mg, etc., and it is desirable that the particle size is 150 μm or less and the generated metal oxide has a high fire resistance. Since these metal powders have a higher oxygen affinity than graphite in the high temperature range of 800 ° C. or higher, they are more easily oxidized to graphite and become metal oxides, and prevent oxidation of graphite. Further, by closing the pores that cannot be completely closed by the alkoxide impregnation due to the volume expansion at the time of forming the metal oxide, invasion of the oxidizing gas and slag into the refractory is suppressed, and the oxidation resistance and the corrosion resistance are improved.

【0009】本発明に用いられるガラス粉末とは、水ガ
ラス、ホウケイ酸ガラス、燐酸ガラス等を指し、粒径が
150μm以下で、軟化点の低いものが望ましい。これ
らのガラス粉末は、800℃以上で高温域では軟化溶融
し、アルコキシド含浸では完全にコーティングすること
のできない炭素粒子をコーティングすることが可能とな
ることとアルコキシド含浸では完全に塞ぐことのできな
い気孔を塞ぐことが可能となり、耐酸化性が向上する。
また、ガラス粉末は、800℃以上の高温域では軟化溶
融することにより、温度変動に起因して耐火物に発生す
る熱応力を緩和することによって耐熱衝撃性の向上をも
たらす。
The glass powder used in the present invention refers to water glass, borosilicate glass, phosphate glass, etc., and preferably has a particle size of 150 μm or less and a low softening point. These glass powders are softened and melted in a high temperature range of 800 ° C. or higher, and it becomes possible to coat carbon particles that cannot be completely coated by alkoxide impregnation and pores that cannot be completely closed by alkoxide impregnation. It becomes possible to close it and oxidation resistance is improved.
Further, the glass powder softens and melts in a high temperature range of 800 ° C. or higher, thereby relaxing the thermal stress generated in the refractory due to the temperature fluctuation, thereby improving the thermal shock resistance.

【0010】アルミナの含有量を60〜90重量部とし
たのは、耐食性、耐熱衝撃性に優れるからである。アル
ミナが60重量部未満では、耐食性に劣り、90重量部
を越えると耐熱衝撃性に劣るからである。アルミナ質耐
火原料は、電融品、焼結品等が使用可能であるが、純度
が95%以上で嵩比重、結晶粒径の大きいものが望まし
い。
The content of alumina is 60 to 90 parts by weight because it is excellent in corrosion resistance and thermal shock resistance. This is because if the amount of alumina is less than 60 parts by weight, the corrosion resistance is poor, and if it exceeds 90 parts by weight, the thermal shock resistance is poor. As the alumina-based refractory raw material, an electromelted product, a sintered product or the like can be used, but a material having a purity of 95% or more, a bulk specific gravity and a large crystal grain size is desirable.

【0011】炭化珪素の含有量を5〜20重量部とした
のは、耐食性、耐酸化性に優れるからである。炭化珪素
が5重量部未満では耐酸化性に劣り、20重量部を越え
ると耐食性に劣るからである。炭化珪素質耐火原料は、
α−SiCを使用し、純度が90%以上で結晶粒径が1
50μm以下のものが望ましい。
The content of silicon carbide is set to 5 to 20 parts by weight because it is excellent in corrosion resistance and oxidation resistance. This is because if the amount of silicon carbide is less than 5 parts by weight, the oxidation resistance is poor, and if it exceeds 20 parts by weight, the corrosion resistance is poor. Silicon carbide refractory raw material,
Uses α-SiC and has a purity of 90% or more and a crystal grain size of 1
It is preferably 50 μm or less.

【0012】黒鉛の含有量を5〜20重量部としたの
は、耐スラグ浸潤性、耐熱衝撃性に優れるからである。
黒鉛が5重量部未満では、耐スラグ浸潤性、耐熱衝撃性
に劣り、20重量部を越えると耐酸化性に劣るためであ
る。黒鉛は、天然または人造黒鉛、メソフェーズカーボ
ン、コークス等を指し、純度は90%以上で粒径が50
0μm以下のものが望ましい。
The graphite content is set to 5 to 20 parts by weight because it is excellent in slag infiltration resistance and thermal shock resistance.
This is because if the amount of graphite is less than 5 parts by weight, the slag infiltration resistance and thermal shock resistance are poor, and if it exceeds 20 parts by weight, the oxidation resistance is poor. Graphite refers to natural or artificial graphite, mesophase carbon, coke, etc., and has a purity of 90% or more and a particle size of 50.
It is preferably 0 μm or less.

【0013】金属粉末及びガラス粉末の添加量を合計で
1.5〜10重量部としたのは、耐酸化性、耐食性、耐
熱衝撃性に優れるからである。金属粉末及びガラス粉末
の添加量が合計で1.5重量部未満では、耐酸化性、耐
食性、耐熱衝撃性に劣り、金属粉末及びガラス粉末の添
加量が合計で10重量部を越えると耐食性、耐熱衝撃性
に劣るからである。
The total amount of the metal powder and the glass powder added is set to 1.5 to 10 parts by weight because they are excellent in oxidation resistance, corrosion resistance and thermal shock resistance. If the total amount of the metal powder and the glass powder added is less than 1.5 parts by weight, the oxidation resistance, the corrosion resistance and the thermal shock resistance are inferior, and if the total amount of the metal powder and the glass powder exceeds 10 parts by weight, the corrosion resistance, This is because it is inferior in thermal shock resistance.

【0014】炭素含有耐火物を焼成する雰囲気として
は、Ar,N2,CO,CO2等の非酸化性雰囲気である
ことが望ましい。雰囲気を非酸化性とするのは、黒鉛の
酸化を防止するためである。雰囲気が酸化性雰囲気であ
ると、600℃以上の温度では黒鉛が酸化するためであ
る。
The atmosphere for firing the carbon-containing refractory is preferably a non-oxidizing atmosphere such as Ar, N 2 , CO or CO 2 . The atmosphere is made non-oxidizing in order to prevent oxidation of graphite. This is because graphite is oxidized at a temperature of 600 ° C. or higher when the atmosphere is an oxidizing atmosphere.

【0015】焼成温度を600℃以上としたのは、耐火
物中にアルコキシドが容易に侵入するための気孔を耐火
物中に生成するためである。焼成温度が600℃未満で
は、耐火物中に生成する気孔が少ないためにアルコキシ
ドが耐火物中に侵入しないからである。
The firing temperature is set to 600 ° C. or higher because pores are formed in the refractory so that the alkoxide can easily penetrate into the refractory. This is because if the firing temperature is lower than 600 ° C., the alkoxide does not penetrate into the refractory because there are few pores generated in the refractory.

【0016】炭素含有耐火物にアルコキシドを含浸させ
るには、大気中または減圧及び/または加圧下で炭素含
有耐火物をアルコキシド溶液中に浸漬する方法、炭素含
有耐火物表面にアルコキシドを均一に塗布する方法等が
用いられる。アルコキシド溶液中への浸漬時間は、耐火
物の寸法により適宜選択すれば良く、例えば40×40
×40mmの場合、通常10分程度であればアルコキシ
ドは十分中心まで浸透する。
To impregnate the carbon-containing refractory with the alkoxide, a method of immersing the carbon-containing refractory in an alkoxide solution in the air or under reduced pressure and / or pressure, or uniformly coating the carbon-containing refractory surface. The method etc. are used. The immersion time in the alkoxide solution may be appropriately selected depending on the size of the refractory material, for example, 40 × 40.
In the case of × 40 mm, the alkoxide sufficiently penetrates to the center in about 10 minutes.

【0017】[0017]

【作用】非酸化性雰囲気中で600℃以上の温度で焼成
した炭素含有耐火物に含浸処理したマグネシウム・アル
ミニウムスピネル組成の複合アルコキシドは、(1)式
のような反応によって耐酸化性、耐食性の向上をもたら
す。
The composite alkoxide of the magnesium-aluminum spinel composition impregnated into the carbon-containing refractory fired at a temperature of 600 ° C. or higher in the non-oxidizing atmosphere has the oxidation resistance and the corrosion resistance by the reaction shown in the formula (1). Bring improvement.

【0018】[0018]

【化1】 Al2O3-SiC-C + Mg[Al(OR)4]2 → Al2O3-SiC-C + MgAl2O4 (1)[Chemical formula 1] Al 2 O 3 -SiC-C + Mg [Al (OR) 4 ] 2 → Al 2 O 3 -SiC-C + MgAl 2 O 4 (1)

【0019】マグネシウム・アルミニウムスピネル組成
の複合アルコキシドは炭素材料に対して非常に濡れ易
く、耐火物の気孔を介して容易に耐火物内部へ侵入す
る。耐火物内部に侵入したマグネシウム・アルミニウム
スピネル組成の複合アルコキシドは、炭素と濡れ易いこ
とから、耐火物内部に均一に分布するとともに、熱処理
によってマグネシウム・アルミニウムスピネルを生成す
る。このマグネシウム・アルミニウムスピネルは非常に
微細な結晶からなっており、耐火物内部の気孔を充填す
るとともに、炭素粒子の表面をコーティングする。
The complex alkoxide of magnesium-aluminum spinel composition is very wettable with the carbon material and easily penetrates into the refractory through the pores of the refractory. Since the complex alkoxide having a magnesium-aluminum spinel composition that has penetrated into the refractory is easily wet with carbon, it is uniformly distributed inside the refractory and heat-treated to generate magnesium-aluminum spinel. This magnesium-aluminum spinel is composed of very fine crystals and fills the pores inside the refractory and coats the surface of the carbon particles.

【0020】気孔内部を充填したマグネシウム・アルミ
ニウムスピネルは組織を緻密化することによって、耐火
物内部への酸化性ガス及びスラグの侵入を抑制し、耐酸
化性、耐食性を向上させる。さらに、マグネシウム・ア
ルミニウムスピネルが炭素粒子表面をコーティングする
ことから、酸化性ガスと炭素の接触を遮断し、耐酸化性
の向上をもたらす。
The magnesium-aluminum spinel filling the inside of the pores densifies the structure, thereby suppressing the penetration of oxidizing gas and slag into the refractory and improving the oxidation resistance and corrosion resistance. Further, since magnesium-aluminum spinel coats the surface of the carbon particles, the contact between the oxidizing gas and carbon is blocked, and the oxidation resistance is improved.

【0021】さらに、本発明の炭素含有耐火物は、添加
した金属粉末及びガラス粉末の耐火物内部で(2)式の
反応により耐食性、耐酸化性、耐熱衝撃性の向上をもた
らす。ここでは、金属粉末としてAl、ガラス粉末とし
てホウケイ酸ガラスを用いた場合を例にとり説明する。
Further, the carbon-containing refractory material of the present invention improves the corrosion resistance, the oxidation resistance and the thermal shock resistance by the reaction of the formula (2) inside the refractory material of the added metal powder and glass powder. Here, the case where Al is used as the metal powder and borosilicate glass is used as the glass powder will be described as an example.

【0022】[0022]

【化2】 Al2O3-SiC-C + Al + B2O3-SiO2 + Mg[Al(OR)4]2 → Al2O3-SiC-C + Al2O3 + B2O3-SiO2-Al2O3-MgO + MgAl2O4 (2)Embedded image Al 2 O 3 -SiC-C + Al + B 2 O 3 -SiO 2 + Mg [Al (OR) 4 ] 2 → Al 2 O 3 -SiC-C + Al 2 O 3 + B 2 O 3- SiO 2 -Al 2 O 3 -MgO + MgAl 2 O 4 (2)

【0023】添加した金属Al、ホウケイ酸ガラスは反
応してAl23およびB23−SiO2−Al23−M
gO系ガラスを生成する。Al23 生成時の体積膨張
によりアルコキシド含浸では完全に塞ぐことのできない
気孔を塞ぐことにより、耐火物内部への酸化性ガス及び
スラグの侵入を抑制し耐酸化性、耐食性を向上させる。
生成したB23−SiO2−Al23−MgO 系ガラス
は、800℃以上の高温域では軟化溶融し、アルコキシ
ド含浸では完全にコーティングすることのできない炭素
粒子をコーティングすることが可能となることとアルコ
キシド含浸では完全に塞ぐことのできない気孔を塞ぐこ
とが可能となり、耐酸化性が向上する。また、800℃
以上の高温域では軟化溶融することにより、温度変動に
起因して耐火物に発生する熱応力を緩和することによっ
て耐熱衝撃性の向上をもたらす。
The added metal Al and borosilicate glass react to react with Al 2 O 3 and B 2 O 3 --SiO 2 --Al 2 O 3 --M.
Produces gO-based glass. By blocking the pores that cannot be completely blocked by the alkoxide impregnation due to the volume expansion at the time of Al 2 O 3 formation, the oxidation gas and the slag are prevented from entering the refractory and the oxidation resistance and the corrosion resistance are improved.
The produced B 2 O 3 —SiO 2 —Al 2 O 3 —MgO type glass softens and melts in a high temperature range of 800 ° C. or higher, and it is possible to coat carbon particles that cannot be completely coated by alkoxide impregnation. In addition, it becomes possible to close the pores that cannot be completely closed by the alkoxide impregnation, and the oxidation resistance is improved. Also, 800 ℃
By softening and melting in the above-mentioned high temperature range, the thermal stress generated in the refractory due to the temperature fluctuation is relaxed, thereby improving the thermal shock resistance.

【0024】[0024]

【実施例】以下、実施例に基づき本発明について説明す
る。
EXAMPLES The present invention will be described below based on examples.

【0025】実施例1 溶融金属処理用容器の内張り耐火物として本発明のAl
23−SiC−炭素系耐火物のアルコキシド含浸の実施
例を表1に示す。
Example 1 Al of the present invention was used as a refractory lining for a molten metal processing container.
Table 1 shows examples of alkoxide impregnation of 2 O 3 —SiC—carbon refractory.

【0026】[0026]

【表1】 [Table 1]

【0027】表1に示す原料組成にそれぞれ液状のフェ
ノール系バインダーを適量添加して、混練、真空フリク
ション成形、乾燥(90℃×24hrs.)、硬化処理
(250℃×10hrs.)を実施してAl23−Si
C−Cれんがを得た。この耐火物を表1に示す各々の条
件で熱処理した後、大気中でマグネシウム・アルミニウ
ムスピネル組成の複合アルコキシド溶液中に10分間浸
漬した。その後、この耐火物を取り出し室温で24時間
程度保持し、150℃以下の温度で24時間程度乾燥を
実施した。
An appropriate amount of liquid phenolic binder was added to each raw material composition shown in Table 1, and kneading, vacuum friction molding, drying (90 ° C. × 24 hrs.), And curing treatment (250 ° C. × 10 hrs.) Were carried out. Al 2 O 3 -Si
C-C brick was obtained. This refractory was heat-treated under the conditions shown in Table 1 and then immersed in a composite alkoxide solution having a magnesium-aluminum spinel composition for 10 minutes in the air. Then, the refractory was taken out, kept at room temperature for about 24 hours, and dried at a temperature of 150 ° C. or lower for about 24 hours.

【0028】ここでアルミナ質耐火原料は電融アルミナ
を使用し、炭化珪素質耐火原料はα−SiCを使用し、
黒鉛は純度99%の天然黒鉛を使用した。アルコキシド
含浸処理を施したAl23−SiC−Cれんがについ
て、見掛気孔率の測定、耐酸化性試験、耐食性試験を実
施し、結果を表1に併載した(実施例)。また、本発明
のアルコキシド含浸処理を施さないAl23−SiC−
Cれんがについて実施した見掛気孔率の測定、耐酸化性
試験、耐食性試験の結果も表1に併せて示した(比較
例)。
Here, the alumina-based refractory raw material uses fused alumina, and the silicon carbide-based refractory raw material uses α-SiC.
As the graphite, natural graphite having a purity of 99% was used. For Al 2 O 3 -SiC-C bricks subjected to alkoxide impregnation, the measurement of the apparent porosity, oxidation resistance test, carried out corrosion tests, the results were併載in Table 1 (Example). Further, Al 2 O 3 —SiC— which is not subjected to the alkoxide impregnation treatment of the present invention.
The results of the apparent porosity measurement, the oxidation resistance test, and the corrosion resistance test performed on the C bricks are also shown in Table 1 (Comparative Example).

【0029】ここで、耐酸化性試験は、空気中1400
℃の温度で3時間焼成することにより行った。耐酸化性
指数は、焼成後の脱炭層の厚みを測定し、未含浸れんが
を100として示した。耐酸化性は、耐酸化性指数が小
さいものほど優れている。
Here, the oxidation resistance test is conducted in air at 1400.
It was performed by firing at a temperature of ° C for 3 hours. For the oxidation resistance index, the thickness of the decarburized layer after firing was measured and the unimpregnated brick was set to 100. The smaller the oxidation resistance index, the better the oxidation resistance.

【0030】耐食性試験は、1600℃、3時間の回転
侵食法により行った。スラグ組成は、CaO/SiO2
=3.3,CaF2=10%,T.Fe=18%であ
る。耐食性指数は、侵食試験後の最大溶損部の溶損量を
測定し、未含浸れんがを100として示した。耐食性
は、耐食性指数が小さいものほど優れている。
The corrosion resistance test was carried out by a rotary erosion method at 1600 ° C. for 3 hours. Slag composition is CaO / SiO 2
= 3.3, CaF 2 = 10%, T.I. Fe = 18%. For the corrosion resistance index, the amount of erosion loss in the maximum erosion portion after the erosion test was measured, and the unimpregnated brick was shown as 100. The smaller the corrosion resistance index, the better the corrosion resistance.

【0031】本発明のアルコキシド含浸処理を施したA
23−SiC−Cれんがは、表1に示すように、極め
て優れた耐酸化性とともに優れた耐食性を示した。一
方、比較例は、耐酸化性は優れるが、耐食性は劣るか、
あるいは耐酸化性および耐食性の両方の特性に優れるも
のではなかった。
A subjected to the alkoxide impregnation treatment of the present invention
As shown in Table 1, the 1 2 O 3 —SiC—C brick showed excellent corrosion resistance as well as extremely excellent oxidation resistance. On the other hand, the comparative example is excellent in oxidation resistance but inferior in corrosion resistance,
Alternatively, it was not excellent in both properties of oxidation resistance and corrosion resistance.

【0032】実施例2Example 2

【0033】[0033]

【表2】 [Table 2]

【0034】表2に示す原料組成にそれぞれ液状のフェ
ノール系バインダーを適量添加して、混練、真空フリク
ション成形、乾燥(90℃×24hrs.)、硬化処理
(250℃×10hrs.)を実施してAl23−Si
C−Cれんがを得た。この耐火物を表2に示す各々の条
件で熱処理した後、大気中でマグネシウム・アルミニウ
ムスピネル組成の複合アルコキシド溶液中に10分間浸
漬した。その後、この耐火物を取り出し室温で24時間
程度保持し、150℃以下の温度で24時間程度乾燥を
実施した。ここでアルミナ質耐火原料は電融アルミナを
使用し、炭化珪素質耐火原料はα−SiCを使用し、黒
鉛は純度99%の天然黒鉛を使用した。
An appropriate amount of liquid phenolic binder was added to each of the raw material compositions shown in Table 2, kneading, vacuum friction molding, drying (90 ° C. × 24 hrs.), And curing treatment (250 ° C. × 10 hrs.) Were carried out. Al 2 O 3 -Si
C-C brick was obtained. This refractory was heat-treated under the conditions shown in Table 2 and then immersed in a composite alkoxide solution having a magnesium-aluminum spinel composition for 10 minutes in the air. Then, the refractory was taken out, kept at room temperature for about 24 hours, and dried at a temperature of 150 ° C. or lower for about 24 hours. Here, fused alumina was used as the alumina refractory raw material, α-SiC was used as the silicon carbide refractory raw material, and natural graphite having a purity of 99% was used as the graphite.

【0035】アルコキシド含浸処理を施したAl23
SiC−Cれんがについて、見掛気孔率の測定、実施例
1と同一条件で耐酸化性試験、耐食性試験を行い、さら
に耐熱衝撃性試験も実施し、結果を表2に併載した。
Al 2 O 3 − impregnated with alkoxide
With respect to the SiC-C brick, the apparent porosity was measured, the oxidation resistance test and the corrosion resistance test were performed under the same conditions as in Example 1, and the thermal shock resistance test was also performed. The results are also shown in Table 2.

【0036】ここで、耐熱衝撃性試験は、1600℃の
溶銑90秒浸漬後、30秒水冷して、次いで10分空冷
の繰り返しを行って耐熱衝撃性を評価した。耐熱衝撃性
の評価は、1回の熱衝撃試験で耐火物に亀裂が生じたも
のを不良、2〜4回の熱衝撃試験で耐火物に亀裂が生じ
たものを良、4回の熱衝撃試験で耐火物に亀裂が生じな
かったものを優とした。本発明のアルコキシド含浸処理
を施したAl23−SiC−Cれんがは、表2に示すよ
うに、極めて優れた耐酸化性、耐食性、耐熱衝撃性を示
した。
In the thermal shock resistance test, the thermal shock resistance was evaluated by repeating immersion of hot metal at 1600 ° C. for 90 seconds, water cooling for 30 seconds, and then air cooling for 10 minutes. The thermal shock resistance was evaluated as follows: one with a crack in the refractory in one thermal shock test is bad, one with a crack in the refractory in two to four thermal shock tests is good, four thermal shocks The case where the refractory did not crack in the test was rated as excellent. As shown in Table 2, the Al 2 O 3 —SiC—C bricks subjected to the alkoxide impregnation treatment of the present invention exhibited extremely excellent oxidation resistance, corrosion resistance, and thermal shock resistance.

【0037】比較例 本発明のアルコキシド含浸処理を施さないAl23−S
iC−Cれんがについて実施した見掛気孔率の測定、耐
酸化性試験、耐食性試験、耐熱衝撃性試験の結果も表2
に併せて示した。比較例は、表2に示すように耐酸化
性、耐食性、耐熱衝撃性のいずれか1つまたは2つの特
性に優れるが、耐酸化性、耐食性、耐熱衝撃性の3つの
特性に優れるものではなかった。
Comparative Example Al 2 O 3 -S not subjected to the alkoxide impregnation treatment of the present invention
Table 2 also shows the results of the apparent porosity measurement, the oxidation resistance test, the corrosion resistance test, and the thermal shock resistance test performed on the iC-C bricks.
Are also shown. As shown in Table 2, the comparative example is excellent in any one or two of oxidation resistance, corrosion resistance, and thermal shock resistance, but is not excellent in three characteristics of oxidation resistance, corrosion resistance, and thermal shock resistance. It was

【0038】[0038]

【発明の効果】本発明によって、耐酸化性、耐食性が従
来の金属添加あるいは金属、ガラス併用添加だけからな
る炭素含有耐火物に対して飛躍的に向上したことは炉体
寿命延長、炉材コスト削減につながり、非常に有効であ
る。
EFFECTS OF THE INVENTION According to the present invention, the oxidation resistance and the corrosion resistance are remarkably improved as compared with the conventional carbon-containing refractories containing only the addition of metal or the combination of metal and glass. It leads to reduction and is very effective.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年7月1日[Submission date] July 1, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】本発明に用いる金属粉末とは、Al,S
i,Ti,Al−Mg等を指し、粒径が150μm以下
で、生成した金属酸化物の耐火度が高いことが望まし
い。これらの金属粉末は、800℃以上の高温域では黒
鉛よりも酸素親和力が高いために黒鉛よりも容易に酸化
されて金属酸化物となり、黒鉛の酸化を防止する。ま
た、金属酸化物生成時の体積膨張によりアルコキシド含
浸では完全に塞ぐことのできない気孔を塞ぐことによ
り、耐火物内部への酸化性ガス及びスラグの侵入を抑制
し耐酸化性、耐食性を向上させる。
The metal powder used in the present invention means Al, S
It means i, Ti, Al-Mg, etc., and it is desirable that the particle size is 150 μm or less and the generated metal oxide has a high fire resistance. Since these metal powders have a higher oxygen affinity than graphite in a high temperature range of 800 ° C. or higher, they are more easily oxidized and become metal oxides than graphite, and prevent oxidation of graphite. Further, by closing the pores that cannot be completely closed by the alkoxide impregnation due to the volume expansion at the time of forming the metal oxide, invasion of the oxidizing gas and slag into the refractory is suppressed, and the oxidation resistance and the corrosion resistance are improved.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】本発明に用いられるガラス粉末とは、水ガ
ラス、ホウケイ酸ガラス、燐酸ガラス等を指し、粒径が
150μm以下で、軟化点の低いものが望ましい。これ
らのガラス粉末は、800℃以上の高温域では軟化溶融
し、アルコキシド含浸では完全にコーテイングすること
のできない炭素粒子をコーテイングすることが可能とな
ることとアルコキシド含浸では完全に塞ぐことのできな
い気孔を塞ぐことが可能となり、耐酸化性が向上する。
また、ガラス粉末は、800℃以上の高温域では軟化溶
融することにより、温度変動に起因して耐火物に発生す
る熱応力を緩和することによって耐熱衝撃性の向上をも
たらす。
The glass powder used in the present invention refers to water glass, borosilicate glass, phosphate glass, etc., and preferably has a particle size of 150 μm or less and a low softening point. These glass powders are softened and melted in a high temperature range of 800 ° C or higher, and it becomes possible to coat carbon particles that cannot be completely coated by alkoxide impregnation, and pores that cannot be completely closed by alkoxide impregnation. It becomes possible to close it and oxidation resistance is improved.
Further, the glass powder softens and melts in a high temperature range of 800 ° C. or higher, thereby relaxing the thermal stress generated in the refractory due to the temperature fluctuation, thereby improving the thermal shock resistance.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0033[Correction target item name] 0033

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0033】[0033]

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中尾 淳 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Atsushi Nakao 20-1 Shintomi, Futtsu City, Chiba Nippon Steel Corporation Corporate Technology Development Division

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルミナ質耐火原料60〜90重量部、
炭化珪素質耐火原料5〜20重量部および黒鉛5〜20
重量部からなる耐火原料を混練成形した後に、非酸化性
雰囲気中で600℃以上の温度で焼成した耐火物を、マ
グネシウム・アルミニウムスピネル組成の複合アルコキ
シドで含浸処理してなることを特徴とする炭素含有耐火
物。
1. Alumina refractory raw material 60 to 90 parts by weight,
5-20 parts by weight of silicon carbide refractory raw material and 5-20 graphite
Carbon that is obtained by kneading and molding parts by weight of a refractory raw material and then impregnating a refractory that is fired at a temperature of 600 ° C. or higher in a non-oxidizing atmosphere with a composite alkoxide having a magnesium-aluminum spinel composition. Containing refractories.
【請求項2】 アルミナ質耐火原料60〜90重量部、
炭化珪素質耐火原料5〜20重量部及び黒鉛5〜20重
量部からなる耐火原料100重量部に対して、耐火物原
料用の金属粉末及びガラス粉末を合計で1.5〜10重
量部添加した配合物を混練成形した後に、非酸化性雰囲
気中で600℃以上の温度で焼成した耐火物を、マグネ
シウム・アルミニウムスピネル組成の複合アルコキシド
で含浸処理してなることを特徴とする炭素含有耐火物。
2. Alumina refractory raw material 60 to 90 parts by weight,
1.5 to 10 parts by weight of metal powder and glass powder for refractory raw material were added to 100 parts by weight of refractory raw material composed of 5 to 20 parts by weight of silicon carbide refractory raw material and 5 to 20 parts by weight of graphite. A carbon-containing refractory material obtained by subjecting a refractory material that has been kneaded and molded in a non-oxidizing atmosphere to a temperature of 600 ° C. or higher and impregnated with a composite alkoxide having a magnesium-aluminum spinel composition, after kneading and molding the composition.
JP4125391A 1992-04-20 1992-04-20 Carbon-containing refractory Withdrawn JPH05294764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4125391A JPH05294764A (en) 1992-04-20 1992-04-20 Carbon-containing refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4125391A JPH05294764A (en) 1992-04-20 1992-04-20 Carbon-containing refractory

Publications (1)

Publication Number Publication Date
JPH05294764A true JPH05294764A (en) 1993-11-09

Family

ID=14908982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4125391A Withdrawn JPH05294764A (en) 1992-04-20 1992-04-20 Carbon-containing refractory

Country Status (1)

Country Link
JP (1) JPH05294764A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996040602A1 (en) * 1995-06-07 1996-12-19 Saint-Gobain Industrial Ceramics, Inc. Ceramic-coated support for powder metal sintering

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996040602A1 (en) * 1995-06-07 1996-12-19 Saint-Gobain Industrial Ceramics, Inc. Ceramic-coated support for powder metal sintering
US5773147A (en) * 1995-06-07 1998-06-30 Saint-Gobain/Norton Industrial Ceramics Corp. Ceramic-coated support for powder metal sintering

Similar Documents

Publication Publication Date Title
US3682686A (en) Method of manufacturing carbonaceous refractory products
JPH05294764A (en) Carbon-containing refractory
JPH05294763A (en) Carbon-containing refractory
JP2948020B2 (en) Carbon containing refractories
JPS6119584B2 (en)
JPH06287057A (en) Carbon-containing refractory
RU2817660C1 (en) Composition for obtaining protective coating on graphitated electrodes
JPH10310474A (en) Silicon carbide-silicon composite ceramic material
JPH0345553A (en) Carbon-containing refractory
JPH01286950A (en) Carbon-containing refractory
JPS5818346B2 (en) Heat-resistant silicon carbide refractories under nitrogen atmosphere
JPH08119719A (en) Brick containing carbon and aluminum silicon carbide
JP2000107839A (en) Manufacture of plate for slide gate
JPH0510299B2 (en)
JP3176689B2 (en) Refractory lining containing carbon in molten metal refining furnace
JP3176836B2 (en) Irregular refractories
JPH04231371A (en) Carbon-containing refractory
JPS59107963A (en) Carbon-containing refractories
JP2765458B2 (en) Magnesia-carbon refractories
JPH05319902A (en) Carbon-containing basic refractory
JPH02267150A (en) Carbon-containing refractory for iron melting
JP2000095556A (en) Magnesia-carbon refractory material
JPH05286755A (en) High alumina brick
JPH05170519A (en) Magnesia-carbonaceous refractory
JPH02274370A (en) Refractories for vessel for pretreatment of molten iron

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706