JPS6175520A - Pattern formation - Google Patents

Pattern formation

Info

Publication number
JPS6175520A
JPS6175520A JP59197931A JP19793184A JPS6175520A JP S6175520 A JPS6175520 A JP S6175520A JP 59197931 A JP59197931 A JP 59197931A JP 19793184 A JP19793184 A JP 19793184A JP S6175520 A JPS6175520 A JP S6175520A
Authority
JP
Japan
Prior art keywords
data
deflection
frame
width
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59197931A
Other languages
Japanese (ja)
Other versions
JPH0793250B2 (en
Inventor
Yasuo Munakata
宗形 泰夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59197931A priority Critical patent/JPH0793250B2/en
Publication of JPS6175520A publication Critical patent/JPS6175520A/en
Publication of JPH0793250B2 publication Critical patent/JPH0793250B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To improve accuracy of pattern drawn by making shorter the frame feeding in the beam deflecting direction than the beam deflecting width and setting the overlap portion in beam deflection generated thereby to the beam OFF condition. CONSTITUTION:Data 21-23 respectively indicate data of n frame (n+1) frame, (n+2) frame, while data 24, 25 are data of beam ON and beam OFF. The feed width 26, deflection width 27 respectively show the substantials frame feed width (w) and deflection width (w+DELTAw) in such a case that the deflection width is increased by DELTAw. Moreover, the portion 28 indicates the region where the data of beam OFF is newly added by increasing the deflection width by W.After forming a pattern data, the data 21 of an frame is scanned on the basis of such data and thereafter a stage is moved as much as W in the beam deflecting direction in order to align the points P and P'. Then, the data 22 of (n+1) frame is scanned. Thereafter this process is repeated. As a result, the regions A-C are patterned respectively to the positions of regions A'-C'.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、電子ビーム等による露光装置を用いたパター
ン形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a pattern forming method using an exposure apparatus using an electron beam or the like.

〔発明の技術的背景〕[Technical background of the invention]

従来、ラスタ一式電子ビーム露光装置の描画方法として
は、以下に示す例が知られている。
Conventionally, the following example is known as a drawing method using a raster set electron beam exposure apparatus.

即ち、第3図のモデル図に示すように、試料の載置され
たテーブルをY方向に連続定速移動させながら、直径a
の電子ビームのスポット1を定速で、X方向に偏向させ
るるこのとき、描画する図形データ2に従って、電子ビ
ームの0N10FFを制御する。これにより、Yステー
ジが電子ビームのスポットの大きさく直径a)と同じ長
さ、ΔY移動するごとに、X方向の偏向が繰り返され、
sX、、SX、、SX、、・・・SX  の順にスキャ
ンされる。なお、一般に、一度のスキャンによって実効
的に描くことのできる描画幅Wは数+μmから数百μm
であり、これをフレームと定義する。そして、1フレ一
ム分のスキャンF1が終了すると、X方向にステージが
1フレーム分即ちW移動した後、次のフレームのX方向
のスキャンF2が行われ、この繰り返しによ!1llF
3.・・・Fnの順に試料の描画が行われる。
That is, as shown in the model diagram of Fig. 3, while moving the table on which the sample is placed continuously in the Y direction at a constant speed,
When the spot 1 of the electron beam is deflected in the X direction at a constant speed, the 0N10FF of the electron beam is controlled according to the graphic data 2 to be drawn. As a result, the deflection in the X direction is repeated every time the Y stage moves by ΔY by a length equal to the diameter a) of the electron beam spot.
sX, SX, SX, . . . SX are scanned in this order. In general, the drawing width W that can be effectively drawn with one scan is from several μm to several hundred μm.
, and this is defined as a frame. Then, when the scan F1 for one frame is completed, the stage moves in the X direction by one frame, that is, W, and then the scan F2 in the X direction for the next frame is performed, and this repeats! 1llF
3. ...The samples are drawn in the order of Fn.

第4図に、描画の際、電子ビームのスポット1をX方向
に偏向させるX偏向波形WSと、図形データ2に従って
電子ビームを0N10FFさせる信号の関係を示す。同
図において、H8はテーブルがY方向にΔ移動する毎に
X偏向を開始させる同期信号を、WSはこれに同期して
電子ビームをX方向に偏向させる鋸歯状波形を、SXC
,、5XC2,SXC,、5XC4,SXC,は夫々第
3図のSX1〜SX、のスキャンに対応するブランキン
グ信号である。例えば、SX3のスキャンにおいて、描
画されるパターンの位置及びパターンの幅は、tI I
t2 、t3 +j4の時間で制御される。また、X方
向の偏向を開始させる同期信号の発する時間と、図形デ
ータに基づく実質描画を行々う時間の差tsは、del
ay 1ineによυ調節する。
FIG. 4 shows the relationship between the X deflection waveform WS that deflects the spot 1 of the electron beam in the X direction during drawing, and the signal that causes the electron beam to turn 0N10FF according to the graphic data 2. In the same figure, H8 is a synchronization signal that starts X deflection every time the table moves by Δ in the Y direction, WS is a sawtooth waveform that deflects the electron beam in the X direction in synchronization with this, and SXC
, , 5XC2, SXC, , 5XC4, SXC are blanking signals corresponding to the scans of SX1 to SX in FIG. 3, respectively. For example, in scanning SX3, the position and width of the pattern to be drawn are tI I
It is controlled at times t2 and t3 +j4. In addition, the difference ts between the time when the synchronization signal to start the deflection in the X direction and the time when actual drawing is performed based on the graphic data is del
Adjust υ by ay 1ine.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、従来技術によれば、電子ビームを偏向さ
せる鋸歯状波偏向波形が、偏向アンプなど偏向径の特性
により直線的にならず、特に偏向開始及び終了時歪む。
However, according to the prior art, the sawtooth waveform for deflecting the electron beam is not linear due to the characteristics of the deflection diameter of the deflection amplifier, and is distorted especially at the start and end of deflection.

その結果、例えば第5図に示すように、電子ビームを偏
向させる鋸歯状波偏向波形が、VS、のように理想的に
直線的である場合・(ターン11が描画されるとすると
、VS2のように歪んだ波形ではパターン幅、・ぐター
ン位置ともにずれた・ヤターン12が得られる。
As a result, for example, as shown in FIG. 5, if the sawtooth wave deflection waveform for deflecting the electron beam is ideally linear like VS, (if turn 11 is drawn, then VS2 With such a distorted waveform, a pattern width 12 is obtained in which both the pattern width and the position of the pattern are shifted.

とのように、従来電子ビーム露光装置では上記した歪み
がかならず発生し、特に偏向開始あるいは偏向終了点の
近くに発生し易い。そのため、例えば偏向開始時の歪み
は第4図に示すtsを調節してその部分をカットする方
法が取られているが、歪み部分の長さに対しt8の時間
の調節には限界があシ、実質描画部にその歪みがかかっ
てしまう。
As described above, in conventional electron beam exposure apparatuses, the above-mentioned distortion always occurs, and is particularly likely to occur near the deflection start or deflection end point. Therefore, for example, the distortion at the start of deflection can be reduced by adjusting ts shown in Figure 4 and cutting that part, but there is a limit to adjusting the time t8 relative to the length of the distorted part. , the distortion is applied to the actual drawing part.

〔発明の目的〕[Purpose of the invention]

本発明は、上記実施例に鑑みて力されたもので、電子ビ
ームなどを偏向させる際、偏向開始と終了時の偏向波形
の歪みの部分をカットすることにより、描画パターン精
度を向上し得る・9ターン形成方法を提供することを目
的とするものである。
The present invention has been developed in view of the above-mentioned embodiments, and when deflecting an electron beam or the like, it is possible to improve the precision of drawn patterns by cutting the distorted part of the deflection waveform at the start and end of deflection. The purpose of this invention is to provide a method for forming nine turns.

〔発明の概要〕[Summary of the invention]

本発明は、ビーム偏向方向のフレーム送シをビーム偏向
幅より(偏向歪みを生じている長さ分相射的に)短クシ
、それによって生じるビーム偏向型なり部分をビームO
FFの状態にすることにより、描画・ぞターン精度の向
上を図ったものである。
In the present invention, the frame feed in the beam deflection direction is made shorter than the beam deflection width (by the length that causes deflection distortion), and the resulting beam deflection type portion is
By setting it in the FF state, the accuracy of drawing and turning is improved.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図を参照して説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

実施例1 第6図のような・(ターンを描く場合、従来の方法では
、例えば1フレームWの幅でパターンデータを分割し、
■フレーム描くごとにビーム偏向方向に1フレ一ム分W
を送り、次のフレームをスキャンしていくが、本発明で
は例えば偏向幅をΔW長くする。そして、とのΔWをビ
ームOFFの状態として第1図のようなパターンデータ
を作る。同図において、21〜23は夫々nフレームの
データ、(n+1)フレーf予−タ、(n+2)のデー
タを示す。24.25は夫々ビームONのデータ、ビー
ムOFFのデータを示す。また、26.27は夫々偏向
幅をΔW増やした場合の実質フレーム送り幅(W)、偏
向幅(W十ΔW)を示す。更に、28は偏向幅をΔW増
やすことにより新たにビームOFFのデータを追加した
部分を示す。パターンデータを作った後、このデータに
基づいてnフレームのデータ21のスキャン終了後、点
Pと点P′が一致するようにビーム偏向方向にステージ
をW移動させ、(n+1)フレームのデータ22のスキ
ャンを開始する。
Embodiment 1 When drawing a turn as shown in FIG.
■One frame in the beam deflection direction for each frame drawn
is sent and the next frame is scanned, but in the present invention, for example, the deflection width is increased by ΔW. Then, pattern data as shown in FIG. 1 is created with ΔW between and in the beam OFF state. In the figure, 21 to 23 indicate n frame data, (n+1) frame f forecast, and (n+2) frame data, respectively. 24 and 25 indicate beam ON data and beam OFF data, respectively. Moreover, 26.27 shows the actual frame feed width (W) and deflection width (W + ΔW) when the deflection width is increased by ΔW, respectively. Further, 28 indicates a portion where beam OFF data is newly added by increasing the deflection width by ΔW. After creating the pattern data, after scanning n frames of data 21 based on this data, move the stage W in the beam deflection direction so that point P and point P' match, and scan (n+1) frames of data 22. Start scanning.

以後、これを繰返す。この結果、第2図に示すようなパ
ターンを形成できる。なお、第1図、第2図の夫々にお
いて、領域A、B、Cは夫々領域に B/ 、 CIの
位置にパターン化された。
Repeat this from now on. As a result, a pattern as shown in FIG. 2 can be formed. In addition, in each of FIG. 1 and FIG. 2, regions A, B, and C are patterned at the positions of B/ and CI, respectively.

しかして、本発明によれば、偏向幅をΔW長くし、との
ΔWをビームOFFの状態とすることにより、偏向開始
、終了時の歪みをビームOFFの状態としてカットでき
る。従って、描画ノ9ターン精度を向上できる。
Therefore, according to the present invention, by increasing the deflection width by ΔW and setting ΔW between and in the beam OFF state, the distortion at the start and end of deflection can be cut by making the beam OFF state. Therefore, the accuracy of drawing nine turns can be improved.

実施例2 実施例1では、偏向幅を変えた場合について述べたが、
これに限らず、実質的にフレーム幅を短くシ、そのフレ
ーム分を偏向方向に送り、描画することによっても同様
な効果を得ることができる。この際の実施例を、第7図
〜第9図を参照して弱明する。第7図において、31〜
33Fi従来のフレーム・ぐターン分割によるn、(n
+1)、(n+2 )フレームである。一方、34〜3
6は本発明の偏向幅を変えずに実質的フレーム幅を短く
する場合のn、(n+1)、(n+2)フレームである
。第8図の37〜39は、夫々前記フレーム34〜36
に対応するn、(n+1)、(n+2)フレームのデー
タである。このデータに基づき第9図の如き、偏向幅W
、フレーム送りW−ΔVで描画を行なう。しかるに、実
施例2の場合も実施例1と同様な効果を有する。
Example 2 In Example 1, the case where the deflection width was changed was described.
The same effect is not limited to this, but the same effect can be obtained by substantially shortening the frame width, sending that frame in the deflection direction, and drawing. This embodiment will be briefly explained with reference to FIGS. 7 to 9. In Figure 7, 31~
33Fi conventional frame/turn division n, (n
+1), (n+2) frames. On the other hand, 34-3
6 indicates frames n, (n+1), and (n+2) when the substantial frame width is shortened without changing the deflection width according to the present invention. Reference numerals 37 to 39 in FIG. 8 refer to the frames 34 to 36, respectively.
This is the data of frames n, (n+1), and (n+2) corresponding to . Based on this data, the deflection width W as shown in FIG.
, drawing is performed at frame advance W-ΔV. However, the second embodiment also has the same effects as the first embodiment.

以下、上記効果について4μmのラインアンドスペース
パターンを描画し、そのピッチ変動をグラフ化した結果
に基づいて第10図〜第14図を参照して説明する。
The above effect will be described below with reference to FIGS. 10 to 14 based on the results of drawing a 4 μm line-and-space pattern and graphing its pitch variation.

第10図は、従来の偏向幅256μmに対し、32μm
増やして288μmとし、フレーム送りを288μm即
ち偏向幅とフレーム送りが一致する従来の方法で描画し
た場合のずれ量特性図である。ここで、横軸は偏向方向
距離(2フレ一ム分)を、縦軸は理想の♂ッチからのず
れ量を示す。また、図中の41.42は夫々偏向幅28
8μmに対しピッチ変動の大きい偏向開始、終了付近を
除いたピッチ変動の小さい第1の範囲、Wlはフレーム
幅(288μm)である。
Figure 10 shows a deflection width of 32 μm, compared to the conventional deflection width of 256 μm.
It is a shift amount characteristic diagram when drawing is performed using a conventional method in which the deflection width is increased to 288 μm and the frame advance is 288 μm, that is, the deflection width and the frame advance are the same. Here, the horizontal axis indicates the distance in the deflection direction (two frames), and the vertical axis indicates the amount of deviation from the ideal male pitch. In addition, 41 and 42 in the figure are respectively deflection widths of 28
Wl, which is the first range where the pitch variation is small, excluding the vicinity of the start and end of deflection where the pitch variation is large compared to 8 μm, is the frame width (288 μm).

第11図は、実施例1の如く偏向幅288μmに対しフ
レーム送りを256μmとし、その重なり部分をビーム
OFFにt−で描画した場合のずれ量特性図である。な
お、図中の41’、42’は夫夫ずれ量の大きい部分を
カットしだ前記第1の範囲41.42に対応した第2の
範囲、W2はフレーム幅(256μm)である。
FIG. 11 is a deviation amount characteristic diagram when the deflection width is 288 μm and the frame advance is 256 μm as in Example 1, and the overlapping portion is drawn at t- with the beam OFF. In addition, 41' and 42' in the figure are the second ranges corresponding to the first ranges 41 and 42 from which the portions with a large amount of misalignment are cut, and W2 is the frame width (256 μm).

第12図は、偏向幅を変えずに従来の方法で描画した場
合のずれ量特性図である。なお、図中の43.44は夫
々偏向幅256μmに対しずれ量の大きい偏向開始、終
了付近を除いたずれ量の小さい第3の範囲を、45は偏
向開始時のずれ量が大きい部分を、46は偏向終了どき
のずれ量の大きい部分を示す。また、Lは4μmである
FIG. 12 is a deviation amount characteristic diagram when drawing is performed by the conventional method without changing the deflection width. In addition, 43 and 44 in the figure respectively indicate the third range where the deviation amount is small excluding the vicinity of the deflection start and end where the deviation amount is large with respect to the deflection width of 256 μm, and 45 is the part where the deviation amount is large at the beginning of deflection. 46 indicates a portion where the amount of deviation is large at the end of deflection. Further, L is 4 μm.

第13図は、実施例2の如く実質的フレーム幅、フレー
ム送シを偏向幅よシ短くして描画した場合のずれ量特性
図である。なお、図中の43’、44’は夫々ずれ量の
大きい部分をカットした前記第3の範囲に対応した第4
の範囲を、W、はフレーム幅(192μm)を示す。
FIG. 13 is a shift amount characteristic diagram when drawing is performed with the actual frame width and frame feed shorter than the deflection width as in the second embodiment. In addition, 43' and 44' in the figure correspond to the fourth range corresponding to the third range, which is obtained by cutting the portion with a large amount of deviation.
W indicates the frame width (192 μm).

前記第10図〜第13図において、2フレ一ム間のずれ
量の様子が多少異なるのは、偏向方向と垂直のY方向の
送シと返し時の特性の違いによる。また、第1の範囲4
1.42と第2の範囲41’+42’、及び第3の範囲
43.44と第4の範囲43’、44’のずれ量の様子
が完全に一致しないのは、各々別個に描画し測定を行な
ったことによるバラツキのためである。以上により、第
11図の45.46で示すように、従来方法の描画で現
われたスキャン開始及び終了での著しいずれ量が、本願
実施例による方法で描画した第13図では極めて小さく
なっていることが確認できる。これにより、本発明によ
れば、描画パターン精度を向上できることが明らかであ
る。
In FIGS. 10 to 13, the difference in the amount of deviation between the two frames is due to the difference in the characteristics during feeding and returning in the Y direction perpendicular to the deflection direction. Also, the first range 4
1.42 and the second range 41'+42', and the third range 43.44 and the fourth ranges 43' and 44' do not match completely, because they were drawn and measured separately. This is due to the variation caused by the process. As a result, as shown at 45.46 in FIG. 11, the significant amount of deviation at the start and end of the scan that appeared in the drawing using the conventional method is extremely small in FIG. 13 drawn using the method according to the embodiment of the present application. I can confirm that there is. As a result, it is clear that according to the present invention, the precision of drawn patterns can be improved.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、従来と比べ描画パタ
ーン精度を著しく向上できる・ぐターン形成方法を提供
できるものである。
As described in detail above, according to the present invention, it is possible to provide a pattern forming method that can significantly improve the precision of drawn patterns compared to the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は実施例1に係る・ヤターン形成方法
を説明するための平面図、第3図はラスタ一式電子ビー
ム露光装置の描画方法を説明するための平面図、第4図
は第3図の描画方法に係る周期信号、X偏向波形、ブラ
ンキング信号の関係を示すタイミング図、第5図は偏向
波形が歪んだときの描画・ヤターンの位置ずれ、寸法ず
れの説明図、第6図は従来のパターンデータを説明する
ための平面図、第7図は従来のフレームパターン分割と
実施例2の偏向幅を変えない方法での比較を説明するた
めの図、第8図及び第9図は実施例2の・ヤターン形成
方法を説明するための平面図、第10図は従来の偏向幅
を増やした描画方法によるずれ量特性図、第11図は実
施例1に対応したずれ量を増やした描画方法によるずれ
量特性図、第12図は従来の偏向幅を変えない描画方法
のずれ量特性図、第13図は実施例2に対応した偏向幅
を変えない描画方法のずれ量特性図である。 21.37・・・nフレームのデータ、22.38・・
・(n+1)フレームのデータ、23.39・・・(n
+2)フレームのデータ、24・・・ビームONのデー
タ、25・・・ビームOFFのデータ、26・・・送り
幅、27・・・偏向幅、28・・・ビームOFFのデー
タを追加した部分、34・・・nフレーム、35・・・
(n+1)フレーム、36・・・(n+2)フレーム、
45・・・偏向開始時のずれ量が大きい部分、46・・
・偏向終了時のずれ量が大きい部分。 出願人代理人  弁理士 鈴 江 武 彦−糎圧一東 ゝ  ゛   ×
1 and 2 are plan views for explaining the pattern forming method according to Example 1, FIG. 3 is a plan view for explaining the drawing method of a raster set electron beam exposure apparatus, and FIG. Fig. 3 is a timing diagram showing the relationship between the periodic signal, the X deflection waveform, and the blanking signal according to the drawing method; 6 is a plan view for explaining conventional pattern data, FIG. 7 is a diagram for explaining a comparison between the conventional frame pattern division and the method of Example 2 without changing the deflection width, and FIGS. Figure 9 is a plan view for explaining the pattern forming method of Example 2, Figure 10 is a characteristic diagram of the amount of deviation due to the conventional drawing method with an increased deflection width, and Figure 11 is the amount of deviation corresponding to Example 1. Fig. 12 is a deviation characteristic diagram for the conventional drawing method that does not change the deflection width, and Fig. 13 shows the deviation amount for the drawing method that does not change the deflection width corresponding to Example 2. It is a characteristic diagram. 21.37...n frame data, 22.38...
・(n+1) frame data, 23.39...(n
+2) Frame data, 24...beam ON data, 25...beam OFF data, 26...feed width, 27...deflection width, 28...beam OFF data added part , 34...n frames, 35...
(n+1) frame, 36...(n+2) frame,
45... Portion where the amount of deviation is large at the start of deflection, 46...
・Parts where the amount of deviation is large at the end of deflection. Applicant's agent Patent attorney Takehiko Suzue - Pressure Ichitoゝ゛ ×

Claims (1)

【特許請求の範囲】[Claims]  電子ビームもしくはイオンビームによる露光装置で描
画してパターンを形成する方法において、ビーム偏向方
向のフレーム送りをビーム偏向幅より短くし、それによ
って生じるビーム偏向重なり部分をビームOFFの状態
にすることを特徴とするパターン形成方法。
A method of forming a pattern by drawing with an exposure device using an electron beam or an ion beam, characterized by making the frame advance in the beam deflection direction shorter than the beam deflection width, and thereby turning the overlapping portion of beam deflection into a beam OFF state. A pattern forming method.
JP59197931A 1984-09-21 1984-09-21 Pattern formation method Expired - Fee Related JPH0793250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59197931A JPH0793250B2 (en) 1984-09-21 1984-09-21 Pattern formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59197931A JPH0793250B2 (en) 1984-09-21 1984-09-21 Pattern formation method

Publications (2)

Publication Number Publication Date
JPS6175520A true JPS6175520A (en) 1986-04-17
JPH0793250B2 JPH0793250B2 (en) 1995-10-09

Family

ID=16382663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59197931A Expired - Fee Related JPH0793250B2 (en) 1984-09-21 1984-09-21 Pattern formation method

Country Status (1)

Country Link
JP (1) JPH0793250B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472683A (en) * 1977-11-01 1979-06-11 Buelow Fred K Electron beam device and method of using same
JPS5534424A (en) * 1978-08-31 1980-03-11 Toshiba Corp Electron beam exposing device
JPS6059732A (en) * 1983-09-13 1985-04-06 Toshiba Corp Method for electronic beam drawing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472683A (en) * 1977-11-01 1979-06-11 Buelow Fred K Electron beam device and method of using same
JPS5534424A (en) * 1978-08-31 1980-03-11 Toshiba Corp Electron beam exposing device
JPS6059732A (en) * 1983-09-13 1985-04-06 Toshiba Corp Method for electronic beam drawing

Also Published As

Publication number Publication date
JPH0793250B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
US6069364A (en) Electron beam drawing apparatus and method of the same
US5030836A (en) Method and apparatus for drawing patterns using an energy beam
US4363953A (en) Electron beam scribing method
JP5904998B2 (en) Increased throughput in ion implanters where the beam is scanned
US5134300A (en) Method and apparatus for controlling charged particle beams in charged particle beam exposure system
JPS6175520A (en) Pattern formation
JPS6261328A (en) Charged beam exposure device
JP3027072B2 (en) Ion beam processing method
EP0153864B1 (en) A method of electron beam exposure
JP2002260982A (en) Drawing method using variable area electron beam lithography device
JPS637024B2 (en)
JP3236162B2 (en) Charged particle beam exposure method and apparatus
JPS54108580A (en) Electron-beam exposure device
JPH05102018A (en) Electron beam lithography apparatus
JPS60168104A (en) Electron beam exposing method
JP2000182937A (en) Charged particle beam plotting apparatus
JPS6244406B2 (en)
US6989536B2 (en) Electron-beam writing device and electron-beam writing method
JP2786661B2 (en) Charged beam drawing method
JP3450437B2 (en) Electron beam exposure method, developing method and apparatus
JPH0485919A (en) Electric charged particle beam lithography
JPH01286310A (en) Charged beam exposure method
JPH1027749A (en) Charged particle beam lithography method
JPS61256627A (en) Charged particle exposure equipment
JPH10163088A (en) Alignment method, light-exposure mask and electron beam exposing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees