JPS61256627A - Charged particle exposure equipment - Google Patents

Charged particle exposure equipment

Info

Publication number
JPS61256627A
JPS61256627A JP60097510A JP9751085A JPS61256627A JP S61256627 A JPS61256627 A JP S61256627A JP 60097510 A JP60097510 A JP 60097510A JP 9751085 A JP9751085 A JP 9751085A JP S61256627 A JPS61256627 A JP S61256627A
Authority
JP
Japan
Prior art keywords
deflection
sub
charged particle
pattern
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60097510A
Other languages
Japanese (ja)
Inventor
Yasuo Munakata
宗形 泰夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60097510A priority Critical patent/JPS61256627A/en
Publication of JPS61256627A publication Critical patent/JPS61256627A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Abstract

PURPOSE:To enable continuously correcting the variation of the dimensions of a pattern by providing a sub-deflection control equipment which controls a sub-deflection control equipment which controls a sub-deflection equipment to change the scanning speed of a charged particle beam by a main deflection equipment near the boundary of the non-exposure region and the exposure region of a pictured pattern. CONSTITUTION:The correction of pattern dimensions depends upon a sub- deflection control signal SC generated by a sub-deflection driving equipment 19. The sub-deflection control signal SC has a pulse which has the same timing of the two pulses contained in an edge detection signal ED. The polarity and the gain of the pulse, however, are varied according to the quantity of correction of the dimensions. For example, suppose if the sub-deflection control signal is SC1, i.e., the first pulse is negative and the second pulse is positive, the dimensions are corrected in the longitudinal like a pattern P1. Since the pulse gain can continuously be varied as analog quantity, the quantity of the correction can also be varied continuously.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は荷電粒子露光装置、特に半導体装置の製造に用
いる微細パターンを形成Jるための荷電粒子露光装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a charged particle exposure apparatus, and particularly to a charged particle exposure apparatus for forming fine patterns used in the manufacture of semiconductor devices.

(発明の技術的背景) 従来のいわゆるラスク式荷電粒子露光装置の構成を第4
図に示す。荷電粒子ビーム1はブランキング電極2およ
び偏向電極3を通って走査面4上に照射される。偏向電
極3に印加された電圧により荷電粒子ビーム1は偏向し
、走査面4上でX方向に走査線5が得られる。走査面4
はステージ上で一走査ごとにY方向に移動し、走査面4
上に2次元パターンが得られることになる。第5図(a
)はX方向へのビームの走査とY方向へのステージの移
動を示す説明図である。ここで一点鎖線は走査の方向を
示し、直線で区切られた帯状の領域は一走査によってビ
ームのスポット6が照射される領域を示す。ステージは
一走査終了後、Y方向にΔYだけ移動することになる。
(Technical background of the invention) The configuration of the conventional so-called Rusk type charged particle exposure apparatus is
As shown in the figure. A charged particle beam 1 passes through a blanking electrode 2 and a deflection electrode 3 and is irradiated onto a scanning surface 4 . The charged particle beam 1 is deflected by the voltage applied to the deflection electrode 3, and a scanning line 5 is obtained on the scanning plane 4 in the X direction. Scanning plane 4
moves in the Y direction for each scan on the stage, and
A two-dimensional pattern will be obtained on the top. Figure 5 (a
) is an explanatory diagram showing beam scanning in the X direction and movement of the stage in the Y direction. Here, the dashed line indicates the scanning direction, and the band-shaped area separated by straight lines indicates the area to which the beam spot 6 is irradiated by one scanning. After completing one scan, the stage moves by ΔY in the Y direction.

第5図(a)ではビームのスポット6を円で表わしてい
るが、実際にはビーム照射地点における荷電粒子照射密
度は第5図(b)に示すようなガウス分布となる。以後
の説明では、便宜上第5図(a)に示すように、ビーム
のスポットを円で表わすことにする。いま、第5図(a
)に示すように4角形のパターン7を描画する場合を考
えると、この描画領域をビームが走査するとぎだけビー
ムがONとなり、それ以外の領域ではビームがOFFと
なる。従って図の白抜きの円で示したスポット位置では
、実際には荷電粒子の照射は行われず、ハツチングを施
した円で示したスポット位置においてのみ荷電粒子の照
射が行われることになる。ビームの0N10FFはブラ
ンキング電極2に与える電圧によって制御される。
Although the beam spot 6 is represented by a circle in FIG. 5(a), the charged particle irradiation density at the beam irradiation point actually has a Gaussian distribution as shown in FIG. 5(b). In the following description, for convenience, the beam spot will be represented by a circle as shown in FIG. 5(a). Now, Figure 5 (a
), the beam is turned on only when the beam scans this drawing area, and is turned off in other areas. Therefore, irradiation with charged particles is not actually performed at the spot positions indicated by the open circles in the figure, but irradiation with charged particles is performed only at the spot positions indicated by the hatched circles. The 0N10FF of the beam is controlled by the voltage applied to the blanking electrode 2.

再び第4図を参照して描画動作の説明を行う。The drawing operation will be explained with reference to FIG. 4 again.

パターン記憶装置8には描画のための二次元パターンが
記憶されている。パターンデータ信号発生装置9は、こ
の描画パターンに基づいて、一走査線上における露光非
露光の情報を表わすパターンデータ信号PDを発生する
。即ち、信号PDは二次元のパターンデータをシリアル
信号に変換したものとなる。一方、位置測定回路10は
ステージのY方向の移動を検出する回路で、検出した信
号を同期回路11に与える。同期回路11はこの検出信
号を受け、Y方向の移動終了時に同期パルスSPを発生
し、ブランキング回路12および偏向回路13にこれを
与える。ブランキング回路12は、この同期パルスSP
にトリガされて、信号PDに基づくブランキング信号B
Lをブランキング電極2に与えてブランキング動作を行
う。また、偏向回路13は同期パルスSPにトリガされ
て偏向信号DFを偏向電極3に与えてビーム1の走査を
行う。第5図(a)に示すパターン7を描画する場合の
一走査における各信号の関係を第6図に示す。
The pattern storage device 8 stores two-dimensional patterns for drawing. The pattern data signal generator 9 generates a pattern data signal PD representing exposure/non-exposure information on one scanning line based on this drawing pattern. That is, the signal PD is obtained by converting two-dimensional pattern data into a serial signal. On the other hand, the position measurement circuit 10 is a circuit that detects the movement of the stage in the Y direction, and provides the detected signal to the synchronization circuit 11. The synchronization circuit 11 receives this detection signal, generates a synchronization pulse SP at the end of the movement in the Y direction, and supplies it to the blanking circuit 12 and the deflection circuit 13. The blanking circuit 12 uses this synchronization pulse SP
blanking signal B based on signal PD
A blanking operation is performed by applying L to the blanking electrode 2. Further, the deflection circuit 13 is triggered by the synchronization pulse SP to apply a deflection signal DF to the deflection electrode 3 to scan the beam 1. FIG. 6 shows the relationship among the signals in one scan when drawing the pattern 7 shown in FIG. 5(a).

〔背景技術の問題点〕[Problems with background technology]

従来の荷電粒子露光装置を用いて第7図(a)に示すよ
うな4角形のパターン7を描画する場合、走査は同図(
b)に示す一点鎖線のようにX方向に行われ、これをY
方向に数回繰返すこととなる。
When drawing a rectangular pattern 7 as shown in FIG. 7(a) using a conventional charged particle exposure device, scanning is performed as shown in FIG.
b) is carried out in the X direction as shown by the dashed line, and this is
You will have to repeat this direction several times.

このため、最終的に形成される描画パターンは第7図(
a)に示す4角形のパターン7とはならずに、同図(C
)に示ずようなパターン7′なる。
For this reason, the drawing pattern that is finally formed is shown in Figure 7 (
The square pattern 7 shown in a) is not the same as that shown in the same figure (C
) as shown in pattern 7'.

即ち輪郭線上において、X方向についてはほぼ忠実にパ
ターンが再現されるが、Y方向については荷電粒子密度
分布がぎざぎざとなり、精度よいパターンの再現ができ
ない。これはX方向については連続的な走査を行うのに
対し、Y方向については離散的なステージ移動を行うた
めである。従って試料中の荷電粒子密度をX方向とY方
向とで比べると、第7図(C)に示すようにY方向につ
いては輪郭線からパターン内部にかけての荷電粒子密度
の立上りが急峻なのに対し、X方向についてはこの立上
りが非常に緩慢となり、パターンに寸法変動が生じるこ
とになる。従来、このX方向の寸法変動を補正するため
に、次のような処理が行われている。即ち、第8図に示
すようにパターンデータ信号PDに対して遅延時間dだ
け遅らせた遅延データ信号PDDを作り、これら両信号
の論理和(PD)OR(PDD)または論理積(PD)
AND (PDD)の信号に基づいてブランキング動作
を行うのである。これによってパターン幅Wは、論理和
信号を用いた場合、W+ΔWと長くなり、論理積信号を
用いた場合W−ΔWと短くなる。
That is, on the contour line, the pattern is almost faithfully reproduced in the X direction, but the charged particle density distribution becomes jagged in the Y direction, making it impossible to accurately reproduce the pattern. This is because continuous scanning is performed in the X direction, whereas discrete stage movement is performed in the Y direction. Therefore, when we compare the charged particle density in the sample in the In this direction, this rise becomes very slow, resulting in dimensional variations in the pattern. Conventionally, the following process has been performed to correct this dimensional variation in the X direction. That is, as shown in FIG. 8, a delayed data signal PDD is generated by delaying the pattern data signal PD by a delay time d, and the logical sum (PD), OR (PDD), or logical product (PD) of these two signals is performed.
The blanking operation is performed based on the AND (PDD) signal. As a result, the pattern width W becomes longer as W+ΔW when the OR signal is used, and becomes shorter as W−ΔW when the AND signal is used.

ところが従来装置によるこのような処理は精度よい補正
を行うことができないという欠点がある。
However, such processing by conventional devices has the drawback that accurate correction cannot be performed.

これはパターンデータ信号PDがデジタル信号であり、
遅延時間dはデジタル信号の桁シフトという形で作られ
ることに起因する。即ち、遅延時間dは連続的に可変な
量とすることができず、離散的な値をとることになる。
This is because the pattern data signal PD is a digital signal,
The delay time d is caused by the fact that it is created in the form of a digit shift of the digital signal. That is, the delay time d cannot be a continuously variable amount, but takes discrete values.

従って従来装置による精度補正は0.1μm単位の補正
が限界となる。
Therefore, the limit of accuracy correction by the conventional device is correction in units of 0.1 μm.

また、遅延回路dを大きく変える場合には、遅延回路に
用いるROM自体を差換えな番プればならず、操作が非
常に不便であった。
Furthermore, if the delay circuit d is to be changed significantly, the ROM itself used for the delay circuit must be replaced, which is very inconvenient to operate.

〔発明の目的〕[Purpose of the invention]

そこで本発明はパターンの寸法変動の補正を連続的に行
うことのできる荷電粒子露光装置を提供することを目的
とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a charged particle exposure apparatus that can continuously correct dimensional variations in a pattern.

(発明の概要〕 。(Summary of the invention).

本発明の特徴は、荷電粒子ビームを走査して走査面上に
描画パターンを形成さける荷電粒子露光装置において、
描画パターンを記憶するためのパターン記憶装置と、荷
電粒子ビームを一定査線に沿って一定速度で走査するた
めに偏向する主偏向装置と、荷電粒子ビームを主偏向装
置による偏向方向と同じ方向に偏向する副偏向装置と、
描画パターンに基づいて荷電粒子ビームのブランキング
を行うブランキング装置と、描画パターンの非露光領域
と露光領域との境界近傍において、主偏向装置による荷
電粒子ビームの走査速度を変化させるように副偏向装置
を制御する副偏向制御装置と、を設け、寸法変動の補正
をブランキング動作ではなく副偏向により行うようにし
、連続的な補正を行うことができるようにした点にある
The present invention is characterized by a charged particle exposure apparatus that scans a charged particle beam to form a drawing pattern on a scanning surface.
a pattern storage device for storing a drawing pattern; a main deflection device for deflecting the charged particle beam to scan it at a constant speed along a constant scanning line; and a main deflection device for deflecting the charged particle beam in the same direction as the deflection direction by the main deflection device. a sub-deflection device that deflects;
A blanking device that blanks the charged particle beam based on the drawing pattern, and a sub-deflection device that changes the scanning speed of the charged particle beam by the main deflection device near the boundary between the non-exposed area and the exposed area of the drawing pattern. A sub-deflection control device for controlling the apparatus is provided, and correction of dimensional variations is performed by sub-deflection rather than blanking operation, thereby making it possible to perform continuous correction.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を図示する一実施例に基づいて説明する。第
1図はこの一実施例に係る荷電粒子露光装置のブロック
図である。この装置はパターン記憶装置8、パターンデ
ータ信号発生装置9、遅延装置14、エツジ検出袋@1
5、ブランキング装@16、主偏向装置17、副偏向装
置18および副偏向駆動袋@19から構成される。パタ
ーン記憶装置8には描画のための二次元パターンが記憶
されており、パターンデータ信号発生装@9は、この描
画パターンに基づいて、一走査線上における露光非露光
の情報を表わすパターンデータ信号PDを発生する。こ
の信号PDは遅延装置14およびエツジ検出装置15に
与えられる。遅延装置14はこの信号PDを所定の時間
dだけ遅延させ、遅延データ信号PDDとしてエツジ検
出装置15およびブランキング装置16に与える。信号
PDと信号PDDの関係は第2図に示すようになる。
The present invention will be described below based on an illustrated embodiment. FIG. 1 is a block diagram of a charged particle exposure apparatus according to this embodiment. This device includes a pattern storage device 8, a pattern data signal generation device 9, a delay device 14, an edge detection bag @1
5. Consists of a blanking device @16, a main deflection device 17, a sub-deflection device 18, and a sub-deflection drive bag @19. A two-dimensional pattern for drawing is stored in the pattern storage device 8, and a pattern data signal generator @9 generates a pattern data signal PD representing exposure/non-exposure information on one scanning line based on this drawing pattern. occurs. This signal PD is applied to delay device 14 and edge detection device 15. Delay device 14 delays this signal PD by a predetermined time d and supplies it to edge detection device 15 and blanking device 16 as delayed data signal PDD. The relationship between signal PD and signal PDD is as shown in FIG.

ブランキング装N16はブランキング回路12とブラン
キング電極2から成り、遅延データ信号PDDに基づい
てブランキング動作を行う。従って形成されるパターン
はパターンデータ信号PDに基づいてブランキング動作
を行った場合と比較すると、遅延時間dだけずれること
になるが、全パターンが同じだけずれることになるが、
全パターンが同じだけずれることになるので問題は生じ
ない。
The blanking device N16 consists of a blanking circuit 12 and a blanking electrode 2, and performs a blanking operation based on the delayed data signal PDD. Therefore, compared to the case where the blanking operation is performed based on the pattern data signal PD, the formed pattern will be shifted by the delay time d, but all patterns will be shifted by the same amount.
No problem will occur because all patterns will be shifted by the same amount.

本装置の特徴は、ビームの走査を主偏向装置17と副偏
向装置18の2つの偏向装置で行う点である。主偏向袋
@17は主偏向回路゛13aと主偏向電極3aから構成
される。主偏向回路13aは第2図に示すような主偏向
信号DFaを主偏向電極3aに与え、ビーム走査を行う
。副偏向装置18は副偏向回路13bと副偏向電極3b
から構成される。副偏向回路13bは、後述する副偏向
信号DFbを副偏向電極3bに与え、ビーム走査を行う
。結局ビームは、主偏向信号DFaと副偏向信号DFb
とを重畳した偏向信号OFに従って走査される。
The feature of this device is that beam scanning is performed by two deflection devices, a main deflection device 17 and a sub-deflection device 18. The main deflection bag @17 is composed of a main deflection circuit 13a and a main deflection electrode 3a. The main deflection circuit 13a applies a main deflection signal DFa as shown in FIG. 2 to the main deflection electrode 3a to perform beam scanning. The sub-deflection device 18 includes a sub-deflection circuit 13b and a sub-deflection electrode 3b.
It consists of The sub-deflection circuit 13b applies a sub-deflection signal DFb, which will be described later, to the sub-deflection electrode 3b to perform beam scanning. In the end, the beam is divided into the main deflection signal DFa and the sub deflection signal DFb.
is scanned according to a deflection signal OF superimposed with

次に副偏向信号DFbの発生過程について説明する。エ
ツジ検出装置15はパターンデータ信号発生装置9から
パターンデータ信号PDを、また、遅延装置14から遅
延信号PDDを入力し、第2図に示すように信号PDD
の立上り、即ち非露光を示す状態から露光を示す状態へ
の変化にトリガされて所定幅の第1のパルスを発生し、
信号PDの立下り、即ら露光を示ず状態から非露光を示
す状態の変化にトリガされて所定幅の第2のパルスを発
生する。この2つのパルスを有するエツジ検出信号ED
は副偏向駆動装置19に与えられる。
Next, the process of generating the sub-deflection signal DFb will be explained. The edge detection device 15 inputs the pattern data signal PD from the pattern data signal generator 9 and the delay signal PDD from the delay device 14, and outputs the signal PDD as shown in FIG.
generating a first pulse of a predetermined width triggered by the rise of , that is, a change from a state indicating non-exposure to a state indicating exposure;
A second pulse of a predetermined width is generated triggered by the fall of the signal PD, that is, a change from a state indicating no exposure to a state indicating non-exposure. Edge detection signal ED having these two pulses
is applied to the sub-deflection drive device 19.

副偏向駆動装置19は、このエツジ検出信号EDに基づ
いて副偏向制御信号SCを発生して副偏向回路13bに
与え、副偏向回路13bはこの副偏向制御信号SCに基
づいて副偏向信号DFbを発生する。
The sub-deflection drive device 19 generates a sub-deflection control signal SC based on this edge detection signal ED and provides it to the sub-deflection circuit 13b, and the sub-deflection circuit 13b generates a sub-deflection signal DFb based on this sub-deflection control signal SC. Occur.

パターンの寸法補正は副偏向駆動装置19の発生する副
偏向制御信号SCに依存して定まる。副偏向制御信号S
Cは、エツジ検出信号EDの有する2つのパルスと同じ
タイミングのパルスを有する。ただそのパルスの極性お
よびゲインは寸法補正量に応じて変化する。例えば第2
図に示すように、副偏向制御信号を5C(1)としたと
き、即ち第1のパルスを負のパルスとし、第2のパルス
を正のパルスとしたときは、パターンP(1)のように
寸法が長い方向に補正されることになる。
The size correction of the pattern is determined depending on the sub-deflection control signal SC generated by the sub-deflection drive device 19. Sub-deflection control signal S
C has pulses with the same timing as the two pulses of the edge detection signal ED. However, the polarity and gain of the pulse change depending on the amount of dimensional correction. For example, the second
As shown in the figure, when the sub-deflection control signal is set to 5C(1), that is, when the first pulse is a negative pulse and the second pulse is a positive pulse, the pattern P(1) is obtained. The dimensions will be corrected in the longer direction.

この原理を第3図を用いて説明する。副偏向制御信号5
G(1)に基づいて発生する副偏向制御信号DFbは、
副偏向電極3bに印加するための電圧値を有する信号で
あるが、その波形はほぼ信号5C(1)と同じである。
This principle will be explained using FIG. 3. Sub-deflection control signal 5
The sub-deflection control signal DFb generated based on G(1) is
Although this signal has a voltage value to be applied to the sub-deflection electrode 3b, its waveform is almost the same as the signal 5C(1).

ただ偏向系の時定数に従ってパルス部分はややなまるこ
とになる。結局荷電粒子ビームの偏向は、信号DFaと
信号DFbとの重畳信号である偏向信号D「によって支
配されることになる。ここで信号DFの時間微分を求め
ると第3図dDF/dtに示ず波形となる。偏向信号O
Fは荷電粒子ビームの走査位置に対応した量であるから
、その時間微分dDF/dtは荷電粒子ビームの走査速
度に対応した吊となる。前述のようにブランキング装置
16は遅延信号PDDに基づいてブランキング動作を行
うから、実際にビーム照射が行われる区間は第3図の区
間1−Nの間である。ここで走査速度は区間!〜Jでは
遅く、区間J〜にでは速く、区間に−Lでは定常となり
、区間L−Mでは速く、区間M〜Nでは遅くなることが
わかる。即ち、ビーム照射区間■〜Nについて考えると
、区間の両端の部分において走査速度が遅くなる。荷電
粒子ビーム強度は一定であるから、走査速度が遅いとい
うことは照射部分の荷電粒子密度が高まるということに
なる。従ってビーム照射による近接効果の影響も大きく
なり、実際に形成されるパターンP(1)は、第2図に
示すとおり露光部分寸法が11となる。この寸法はブラ
ンキング動作で露光非露光を制御する寸法(第2図の信
号PDDの寸法し)に比べて長くな゛る。
However, the pulse portion will be slightly rounded depending on the time constant of the deflection system. In the end, the deflection of the charged particle beam is controlled by the deflection signal D, which is a superimposed signal of the signal DFa and the signal DFb.The time differential of the signal DF is calculated as shown in Fig. 3, dDF/dt. waveform.Deflection signal O
Since F is a quantity corresponding to the scanning position of the charged particle beam, its time differential dDF/dt is a value corresponding to the scanning speed of the charged particle beam. As described above, since the blanking device 16 performs the blanking operation based on the delay signal PDD, the section in which beam irradiation is actually performed is between sections 1-N in FIG. 3. Here, the scanning speed is an interval! It can be seen that it is slow in ~J, fast in interval J~, steady in interval -L, fast in interval LM, and slow in interval M~N. That is, when considering the beam irradiation sections (1) to (N), the scanning speed becomes slow at both ends of the section. Since the charged particle beam intensity is constant, a slower scanning speed means that the charged particle density in the irradiated area increases. Therefore, the influence of the proximity effect due to beam irradiation becomes large, and the pattern P(1) actually formed has an exposed portion size of 11 as shown in FIG. This dimension is longer than the dimension for controlling exposure/non-exposure in the blanking operation (the dimension of the signal PDD in FIG. 2).

同様に副偏向制御信号をSG<2)としたとき、即ち第
1のパルスを正のパルスとし、第2のパルスを負のパル
スとしたときは、パターンP(2)のように露光P(2
)のように露光部分寸法L2は寸法りより短くなる。こ
のように、パターンの寸法を長くする補正を行う場合に
は、第1のパルスを負、第2のパルスを正とし、パター
ンの寸法を短くする補正を行う場合には、第1のパルス
を正、第2のパルスを負とし、各パルスのゲインh1.
h2は補正の程度によって調整すればよいことになる。
Similarly, when the sub-deflection control signal is set to SG<2, that is, when the first pulse is a positive pulse and the second pulse is a negative pulse, exposure P( 2
), the exposed portion dimension L2 is shorter than the dimension. In this way, when making corrections to lengthen the pattern dimensions, the first pulse is negative and the second pulse is positive; when making corrections to shorten the pattern dimensions, the first pulse is positive, the second pulse is negative, and the gain of each pulse h1.
h2 may be adjusted depending on the degree of correction.

このパルスゲインはアナログ囲として連続して変えるこ
とができるため、補正量も連続して変えることができる
Since this pulse gain can be changed continuously as an analog range, the correction amount can also be changed continuously.

〔発明の効果〕〔Effect of the invention〕

以上のとおり本発明よれば、荷電粒子露光装置において
、荷電粒子ビームを走査する主偏向装置と、パターンの
エツジ部分でのビーム走査速度を変える副偏向装置と、
を設けるようにしたため、寸法変動の補正を連続的に行
うことができるようになる。
As described above, according to the present invention, in a charged particle exposure apparatus, a main deflection device that scans a charged particle beam, a sub deflection device that changes a beam scanning speed at an edge portion of a pattern,
Since this is provided, it becomes possible to continuously correct dimensional variations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る荷電粒子露光装置のブロック図、
第2図および第3図は第1図に示す装置の動作を示1信
号波形図、第4図は従来の荷電粒子露光装置のブロック
図、第5図(a)(b)は第4図に示す装置による走査
を示す説明図、第6図は第4図に示す装置の動作を示す
信号波形図、第7図(a)(b)(c)は第4図に示ず
装置によって形成されるパターンの説明図、第8図は第
4図に示す装置による寸法補正の説明図である。 1・・・荷電粒子ビーム、2・・・ブランキング電極、
3・・・偏向電極、3a・・・主偏向電極、3b・・・
副偏向電極、4・・・走査面、5・・・走査線、6・・
・スボツ1〜.7・・・4角形のパターン、8・・・パ
ターン記憶装置、9・・・パターンデータ信号発生装置
、10・・・位置測定回路、11・・・同期回路、12
・・・ブランキング回路、13・・・偏向回路、13a
・・・主偏向回路、13b・・・副偏向回路、14・・
・遅延装置、15・・・エツジ検出装置、16・・・ブ
ランキンタ装置、17・・・1偏。 自装置、18・・・副偏向装置、19・・・副偏向駆動
装置、PD・・・パターンデータ信号、PDD・・・遅
延信号、BL・・・ブランキング信号、DF・・・偏向
信号、DFa・・・主偏向信号、DFb・・・副偏向信
号。 第3図 (α)            ○:ヒーム0FFO゛
ビーム0N (b) 馬5図 ((1)              (b)ぜ 第7図 第8図
FIG. 1 is a block diagram of a charged particle exposure apparatus according to the present invention,
2 and 3 are signal waveform diagrams showing the operation of the device shown in FIG. 1, FIG. 4 is a block diagram of a conventional charged particle exposure device, and FIGS. FIG. 6 is a signal waveform diagram showing the operation of the device shown in FIG. 4, and FIG. FIG. 8 is an explanatory diagram of the dimensional correction by the apparatus shown in FIG. 4. 1... Charged particle beam, 2... Blanking electrode,
3... Deflection electrode, 3a... Main deflection electrode, 3b...
Sub-deflection electrode, 4...scanning surface, 5...scanning line, 6...
・Subots 1~. 7... Quadrilateral pattern, 8... Pattern storage device, 9... Pattern data signal generator, 10... Position measurement circuit, 11... Synchronization circuit, 12
... Blanking circuit, 13 ... Deflection circuit, 13a
...Main deflection circuit, 13b...Sub deflection circuit, 14...
- Delay device, 15... Edge detection device, 16... Blanking device, 17... 1 bias. Own device, 18...Sub-deflection device, 19...Sub-deflection drive device, PD...Pattern data signal, PDD...Delay signal, BL...Blanking signal, DF...Deflection signal, DFa...Main deflection signal, DFb...Sub deflection signal. Figure 3 (α) ○:Heam 0FFO゛Beam 0N (b) Horse Figure 5 ((1) (b) Figure 7 Figure 8

Claims (1)

【特許請求の範囲】 1、荷電粒子ビームを走査して走査面上に描画パターン
を形成させる荷電粒子露光装置であつて、描画パターン
を記憶するためのパターン記憶装置と、前記荷電粒子ビ
ームを一走査線に沿って一定速度で走査するために偏向
する主偏向装置と、前記荷電粒子ビームを前記主偏向装
置による偏向方向と同じ方向に偏向する副偏向装置と、
前記描画パターンに基づいて前記荷電粒子ビームのブラ
ンキングを行うブランキング装置と、前記描画パターン
の非露光領域と露光領域との境界近傍において、前記主
偏向装置による前記荷電粒子ビームの走査速度を変化さ
せるように前記副偏向装置を制御する副偏向制御装置と
、をそなえることを特徴とする荷電粒子露光装置。 2、副偏向制御装置が、パターン記憶装置に記憶されて
いる描画パターンに基づいて一走査線上における露光非
露光の情報を表わすパターンデータ信号を発生するパタ
ーンデータ信号発生装置と、前記パターンデータ信号を
入力しこの信号を所定の時間だけ遅延させた遅延データ
信号を出力する遅延装置と、前記遅延データ信号の非露
光を示す状態から露光を示す状態への変化にトリガされ
て第1のパルスを出力し、前記パターンデータ信号の露
光を示す状態から非露光を示す状態への変化にトリガさ
れて第2のパルスを出力するエッジ検出装置と、前記第
1のパルスおよび前記第2のパルスが出力されたときに
、所望の方向に所望の量だけ偏向を行わせるように副偏
向装置を駆動する副偏向駆動装置と、を有することを特
徴とする特許請求の範囲1項記載の荷電粒子露光装置。 3、主偏向装置および副偏向装置がそれぞれ偏向電極を
有し、この偏向電極に電圧を印加して偏向を行うことを
特徴とする特許請求の範囲第1項または第2項記載の荷
電粒子露光装置。 4、エッジ検出装置が微分回路を有することを特徴とす
る特許請求の範囲第1項乃至第3項のいずれかに記載の
荷電粒子露光装置。
[Scope of Claims] 1. A charged particle exposure apparatus that scans a charged particle beam to form a drawing pattern on a scanning surface, the apparatus comprising: a pattern storage device for storing the drawing pattern; and a pattern storage device for storing the drawing pattern; a main deflection device that deflects the beam to scan at a constant speed along a scanning line; a sub-deflection device that deflects the charged particle beam in the same direction as the deflection direction by the main deflection device;
a blanking device that blanks the charged particle beam based on the drawing pattern; and a scanning speed of the charged particle beam by the main deflection device in the vicinity of a boundary between a non-exposed area and an exposed area of the drawing pattern. A charged particle exposure apparatus comprising: a sub-deflection control device that controls the sub-deflection device so that the sub-deflection device 2. The sub-deflection control device includes a pattern data signal generation device that generates a pattern data signal representing exposure/non-exposure information on one scanning line based on the drawing pattern stored in the pattern storage device; a delay device that outputs a delayed data signal obtained by delaying the input signal by a predetermined time; and a delay device that outputs a first pulse triggered by a change in the delayed data signal from a state indicating non-exposure to a state indicating exposure. an edge detection device that outputs a second pulse triggered by a change in the pattern data signal from a state indicating exposure to a state indicating non-exposure; 2. The charged particle exposure apparatus according to claim 1, further comprising: a sub-deflection drive device that drives the sub-deflection device so as to deflect the sub-deflection device by a desired amount in a desired direction when the charged particle exposure device is deflected by a desired amount in a desired direction. 3. Charged particle exposure according to claim 1 or 2, wherein the main deflection device and the sub-deflection device each have a deflection electrode, and the deflection is performed by applying a voltage to the deflection electrode. Device. 4. The charged particle exposure apparatus according to any one of claims 1 to 3, wherein the edge detection device has a differential circuit.
JP60097510A 1985-05-08 1985-05-08 Charged particle exposure equipment Pending JPS61256627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60097510A JPS61256627A (en) 1985-05-08 1985-05-08 Charged particle exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60097510A JPS61256627A (en) 1985-05-08 1985-05-08 Charged particle exposure equipment

Publications (1)

Publication Number Publication Date
JPS61256627A true JPS61256627A (en) 1986-11-14

Family

ID=14194253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60097510A Pending JPS61256627A (en) 1985-05-08 1985-05-08 Charged particle exposure equipment

Country Status (1)

Country Link
JP (1) JPS61256627A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200051746A (en) * 2017-09-08 2020-05-13 가부시키가이샤 니콘 Pattern drawing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200051746A (en) * 2017-09-08 2020-05-13 가부시키가이샤 니콘 Pattern drawing device

Similar Documents

Publication Publication Date Title
US5369282A (en) Electron beam exposure method and system for exposing a pattern on a substrate with an improved accuracy and throughput
US6262429B1 (en) Raster shaped beam, electron beam exposure strategy using a two dimensional multipixel flash field
US4853870A (en) Electron beam exposure system
US4870286A (en) Electron beam direct drawing device
US4251821A (en) Character recording device
JP2614884B2 (en) Electron beam exposure method and apparatus
JPH0513037A (en) Charged particle beam device and control thereof
JP3310400B2 (en) Electron beam exposure method and exposure apparatus
US6570155B1 (en) Bi-directional electron beam scanning apparatus
US5030836A (en) Method and apparatus for drawing patterns using an energy beam
KR100304446B1 (en) Charged particle beam exposure apparatus
US4891524A (en) Charged particle beam exposure system and method of compensating for eddy current effect on charged particle beam
JPS61256627A (en) Charged particle exposure equipment
US4530064A (en) Exposure method utilizing an energy beam
US6781140B1 (en) Method of and machine for pattern writing by an electron beam
JPS61256628A (en) Charged particle exposure equipment
US4943730A (en) Charged particle beam lithography method
JPH07312338A (en) Method and apparatus for charged-particle-beam exposure
KR20010042267A (en) Charged particle beam exposure apparatus and exposure method
JP3161101B2 (en) Charged particle beam drawing system
JPH07226361A (en) Method of positioning and adjusting size and position of rectangular beam for charged particle beam lithography
JPH0423315A (en) Electron beam lithography equipment
JPS6231488B2 (en)
JPS60130031A (en) Pulse beam generating device
JPS5916401B2 (en) Electron beam exposure equipment