JPS60168104A - Electron beam exposing method - Google Patents

Electron beam exposing method

Info

Publication number
JPS60168104A
JPS60168104A JP2396284A JP2396284A JPS60168104A JP S60168104 A JPS60168104 A JP S60168104A JP 2396284 A JP2396284 A JP 2396284A JP 2396284 A JP2396284 A JP 2396284A JP S60168104 A JPS60168104 A JP S60168104A
Authority
JP
Japan
Prior art keywords
electron beam
shape
exposed
respect
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2396284A
Other languages
Japanese (ja)
Other versions
JPH0466321B2 (en
Inventor
Mamoru Nakasuji
護 中筋
Yoshio Suzuki
鈴木 美雄
Izumi Kasahara
笠原 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP2396284A priority Critical patent/JPS60168104A/en
Publication of JPS60168104A publication Critical patent/JPS60168104A/en
Publication of JPH0466321B2 publication Critical patent/JPH0466321B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To draw a pattern in a remarkably short time, and to raise remarkably a throughput by controlling an intensity distribution, a shape, etc. of a beam, and exposing one pitch of a diffraction grating, a Fresnel lens, etc. by a scan of once. CONSTITUTION:A shape of a forming beam is made a right-angled triangle which is long in the X direction. Subsequently, an area to be exposed of a sample 17 is divided into (n) pieces as frames 1, 2-(n) whose X direction is prescribed by a length in the long side direction of a beam 22. In this state, the frame 1 is exposed by a beam scan of once, the frame 2 is exposed by the next beam scan, and also the frames 3-(n) are exposed successively. In this way, by making a beam shape a triangle, one pitch of a diffraction grating can be brought to picture-drawing by a beam scan of once, an exposure time can be shortened, and a throughput is raised remarkably. The shape of the forming beam is not limited to a right-angled triangle.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、回折格子やフレネルレンズ等を能率良く描画
するだめの電子ビーム露光方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an electron beam exposure method for efficiently drawing diffraction gratings, Fresnel lenses, etc.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、エシェレット形回折格子或いはフレネルレンズを
作製する場合、第1図に示す如。く被加工物1上のレジ
スト2をその断面が鋸歯状波形状となるようにパターニ
ングする必要がある。
Conventionally, when producing an echelette diffraction grating or a Fresnel lens, the process is as shown in FIG. It is necessary to pattern the resist 2 on the workpiece 1 so that its cross section has a sawtooth wave shape.

このため、レジストを電子ビームで露光する際、レジス
トに与えるドーズ量を鋸歯状波形状に変化させる必要が
あシ、これを実現するため高ドーズを与える部分には複
数回の多重露光を行っていた。
For this reason, when exposing a resist with an electron beam, it is necessary to change the dose applied to the resist in a sawtooth waveform, and to achieve this, multiple exposures are performed multiple times in the areas where a high dose is applied. Ta.

しかしながら、この種の方法では多重露光を必要とする
ことから、1枚の回折格子或いは1個のフレネルレンズ
を露光するのに数10時間を要し、スルーグツトが極め
て低いものであった。さらに、システムの長時間安定性
が直ちに製作精度に影響を及ばすと云う問題があった。
However, since this type of method requires multiple exposures, it takes several tens of hours to expose one diffraction grating or one Fresnel lens, and the throughput is extremely low. Furthermore, there is a problem in that the long-term stability of the system immediately affects manufacturing accuracy.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、回折格子やフレネルレンズ等の1ピツ
チを1回のビーム走査で露光することができ、これらの
製作精度及びスループットの向上をはかシ得る電子ビー
ム露光方法を提供することにある。
An object of the present invention is to provide an electron beam exposure method that can expose one pitch of a diffraction grating, Fresnel lens, etc. with one beam scan, and can improve the manufacturing accuracy and throughput of these. be.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、ビームの強度分布やビームの形状等を
制御して、回折格子やフレネルレンズ等の1ピツチを1
回のビーム走査で露光することにある。
The gist of the present invention is to control the beam intensity distribution, beam shape, etc. so that one pitch of a diffraction grating, Fresnel lens, etc.
The purpose is to perform exposure using multiple beam scans.

即ち本発明は、被加工物上のレジストに′電子ビームを
照射して該レジストを露光する電子ビーム露光方法にお
いて、ビーム強度が第1の方向に対して一次関数的に変
化、或いは第1の方向′と直交する第2の方向のビーム
幅が第1の方向に対して一次関数的に変化する電子ビー
ムを形成し、このビームを第1の方向に対し該方向のビ
ーム長さと等しいピッチを置いて、第1の方向と交差す
る直線上若しくは曲線上を前記被加工物に対して相対的
に順次走査するようにした方法である。
That is, the present invention provides an electron beam exposure method in which a resist on a workpiece is irradiated with an electron beam to expose the resist. An electron beam is formed in which the beam width in a second direction perpendicular to the direction ' changes linearly with respect to the first direction, and the beam is spread at a pitch equal to the beam length in the first direction. In this method, the workpiece is sequentially scanned relative to the workpiece on a straight line or a curved line intersecting the first direction.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来の多重露光を行う方法に比べ数1
0分の1の時間で回折格子や7レネルレンズを描画する
ことができ、スループットの大幅な向上をはかり得る。
According to the present invention, compared to the conventional method of performing multiple exposure,
Diffraction gratings and 7-renel lenses can be drawn in 1/0 of the time, and throughput can be significantly improved.

しかも、露光時間が短くて済むので、システムの長時間
安定性が多少悪くても高精度な露光を行い得る。また、
階段近似ではなく正確な鋸歯状波ドーズグロフイイルを
得ることができ、このため回折格子やフレネルレンズの
作製に絶大なる効果を発揮する。
Moreover, since the exposure time is short, highly accurate exposure can be performed even if the long-term stability of the system is somewhat poor. Also,
It is possible to obtain an accurate sawtooth wave dosing profile rather than a staircase approximation, which is extremely effective in the production of diffraction gratings and Fresnel lenses.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明の一実施例方法に使用した電子ビーム露
光装置を示す概略構成図である。図中11は電子銃で、
この電子銃11から放射された電子ビームはコンデンサ
レンズ12を介してビーム成形用アパーチャマスク13
.14に照射される。マスク13.14は例えば機械的
駆動機構によシ光軸回9に微小回転可能な構造となって
おシ、これによシ後述する成形ビームの頂角θ及びXY
座標系に対する相対角度が可変されるものとなっている
。マスク13.14の各アパーチャ13a、14aを通
過して成形されたビームは、縮小レンズ15によシ縮小
されたのち対物レンズ16により試料(被加工物)17
上に結像される。ここで、試料17は例えばニジエレン
ト形回折格子を作る母体となるもので、その上にはポジ
型レジストが塗布されている。
FIG. 2 is a schematic configuration diagram showing an electron beam exposure apparatus used in a method according to an embodiment of the present invention. 11 in the figure is an electron gun,
The electron beam emitted from this electron gun 11 is passed through a condenser lens 12 to an aperture mask 13 for beam shaping.
.. 14 is irradiated. The masks 13 and 14 have a structure that allows them to be minutely rotated around the optical axis 9 by a mechanical drive mechanism, for example, so that the apex angle θ and XY of the shaped beam, which will be described later, can be adjusted.
The relative angle to the coordinate system is variable. The beams formed after passing through the apertures 13a and 14a of the masks 13 and 14 are reduced by a reduction lens 15 and then directed to a sample (workpiece) 17 by an objective lens 16.
imaged on top. Here, the sample 17 serves as a base for making, for example, a rainbow lentic diffraction grating, and a positive resist is coated thereon.

一方、前記マスク13の上方にはビームを偏向するだめ
の軸合せコイル18.19が配置され、前記マスク14
の下方には軸合せコイル20゜−せ゛′コイル18〜2
1により、前記各ア・9−チャ13a+14hの光学的
型なり状態が例えば第3図に示す如く制御され、3角形
状の成形ビームが得られるものとなっている。なお、第
2図には示さないが上記成形ビームを試料17上で走査
するビーム偏向系及びビームをON−OFF制御するブ
ランキング系等も設けられている。
On the other hand, alignment coils 18 and 19 for deflecting the beam are arranged above the mask 13, and the mask 14
Below the axial alignment coil 20°-se゛' coil
1, the optical shaping state of each of the apertures 13a+14h is controlled as shown in FIG. 3, for example, so that a triangular shaped beam can be obtained. Although not shown in FIG. 2, a beam deflection system for scanning the shaped beam on the sample 17 and a blanking system for controlling ON/OFF of the beam are also provided.

次に、上記構成の電子ビーム露光装置を用いたニジエレ
ント形回折格子の作成方法について説明する。
Next, a method for producing a rainbow lentic diffraction grating using the electron beam exposure apparatus having the above configuration will be described.

まず、成形ビームの形状を前記第3図に7パーチヤI 
J a + 14 aの重なシ(斜線部)で示した如く
X方向(第1の方向)に長い直角3角形とする。次いで
、第4図に示す如く3角形ビーム22を試料17上で、
X方向に対して該方向のビーム長さと等しいピッチを誼
いて、Y方向(第2の方向)にl1i14次走査する。
First, the shape of the shaped beam is shown in FIG.
J a + 14 A is a right triangle that is long in the X direction (first direction), as shown by the overlapping squares (shaded areas). Next, as shown in FIG. 4, the triangular beam 22 is directed onto the sample 17.
L1i 14th scanning is performed in the Y direction (second direction) with a pitch equal to the beam length in the X direction.

即ち、試料17の露光すべき領域を、X方向幅がビーム
22の長辺方向長さで規定されるフレーム■■〜■J−
h117Al/rAGILll+2.J−1−rIIr
i1Mレ−/、キ本でフレーム■を露光し、次のビーム
走査でフレーム■を露光し、更にフレーム■〜■と順次
露光する。このとき、ビーム22の頂点付近が通過する
部分ではドーズ量が少く、ビーム22の底部付近が通過
する部分ではドーズ量が多くなる。従って、X方向に対
する試料17上のドーズ量(レジストのドーズ量)は、
第4図(a)に示す如く鋸歯状波形状となる。また、Y
方向に対するドーズ量は一定となる。
In other words, the area to be exposed of the sample 17 is divided into frames ■■ to ■J- whose width in the X direction is defined by the length in the long side direction of the beam 22.
h117Al/rAGILll+2. J-1-rIIr
Frame (2) is exposed with i1M ray/, kihon, frame (2) is exposed in the next beam scan, and frames (2) to (2) are further exposed sequentially. At this time, the dose amount is small in the portion where the vicinity of the top of the beam 22 passes, and the dose amount is large in the portion where the vicinity of the bottom of the beam 22 passes. Therefore, the dose amount (resist dose amount) on the sample 17 in the X direction is:
As shown in FIG. 4(a), it has a sawtooth wave shape. Also, Y
The dose amount with respect to the direction is constant.

上記のように露光されたレジストを所定の現像液で現像
すると、レジストのX方向に対する厚みは第5図(b)
に示す如くそのドーズ量に応じた鋸歯状波形状となる。
When the resist exposed as described above is developed with a prescribed developer, the thickness of the resist in the X direction is as shown in Figure 5(b).
As shown in the figure, a sawtooth wave shape is formed depending on the dose amount.

即ち、回折格子の1ピツチを1回のビーム走査で描画で
きたことになる。なお、これ以降はドライエツチング法
等を用いて全面エツチングを施し、レジストア断面形状
を試料17上に反映させることにより、所望の回折格子
が得られることになる。
In other words, one pitch of the diffraction grating can be drawn with one beam scan. From this point on, the entire surface is etched using a dry etching method or the like to reflect the cross-sectional shape of the resist on the sample 17, thereby obtaining a desired diffraction grating.

このように本実施例方法によれば、ビーム形状を3角形
とすることによυ、回折格子の1ピツチを1回のビーム
走査で描画することができる。このため、従来多重露光
を必要としていたのに比べ露光時間を数10分の1に短
縮することができ、スルージットの大幅な向上をはかり
得る。しかも、1枚の回折格子を描画するのに要する全
体の露光時間が短くて済むので、前記電子ビーム露光装
置に長時間安定性を要することなく回折格子パターンを
高精度に露光することができる。また、第5図(b)か
らも判るように、レゾストの断面形状を階段近似ではな
く正確に鋸歯状波形状とすることができるので、回折格
子の描画に極めて有効である。さらに、アi+ −チャ
13a+14aの重なり状態による3角形ビームの頂角
θを可変することによpルジスト厚みの変化(第5図中
に示す傾斜角α)を容易に変えられる等の利点がある。
As described above, according to the method of this embodiment, by making the beam shape triangular, one pitch of the diffraction grating can be drawn by one beam scan. Therefore, the exposure time can be reduced to several tenths of that of the conventional method that required multiple exposures, and the throughput can be greatly improved. Moreover, since the overall exposure time required to draw one diffraction grating is short, the diffraction grating pattern can be exposed with high precision without requiring long-term stability in the electron beam exposure apparatus. Furthermore, as can be seen from FIG. 5(b), the cross-sectional shape of the resist can be accurately made into a sawtooth wave shape rather than a staircase approximation, which is extremely effective for drawing a diffraction grating. Further, by varying the apex angle θ of the triangular beam depending on the overlapping state of the i+ -chas 13a+14a, there is an advantage that the change in the plugist thickness (the inclination angle α shown in FIG. 5) can be easily changed. .

なお、本発明は上述した実施例に限定されるものではな
い。例えば、前記成形ビームの形状は直角3角形に限る
ものではなく、2等辺3角形、その他第2の方向のビー
ム幅がMlの方向に対して一次関数的に変化する形状で
あればよい。さらに、ビームの形状を制御する代シに、
ビームの強度分布を制御するようにしてもよい。
Note that the present invention is not limited to the embodiments described above. For example, the shape of the shaped beam is not limited to a right triangle, but may be an isosceles triangle or any other shape in which the beam width in the second direction changes linearly with respect to the direction of Ml. Furthermore, in order to control the shape of the beam,
The intensity distribution of the beam may also be controlled.

つマシ、ビームの形状は通常の長方形とし、ビーム強度
が第1の方向に対して一次関数的に可変するものであれ
ば、前述した3角形ビームの場合と同様なドーズ量分布
を実現することができるのである。また、ビームを被加
工物に対して相対的に走査する手段として、被加工物を
載置したテーブル等を移動させるようにしてもよいのは
勿論のことである。さらに、ビームの形状及びビーム強
度分布は、所望するレジストパターンに応じて適宜定め
ればよい。
Alternatively, if the beam shape is a normal rectangle and the beam intensity varies linearly in the first direction, a dose distribution similar to that of the triangular beam described above can be achieved. This is possible. Furthermore, as a means for scanning the beam relative to the workpiece, it goes without saying that a table or the like on which the workpiece is placed may be moved. Furthermore, the beam shape and beam intensity distribution may be determined as appropriate depending on the desired resist pattern.

また、本発明は回折格子の他にフレネルレンズの描画に
適用することもできる。この場合、被加工物を載置した
テーブルを回転させることにより前記ビームを円周上で
走査し、1回のビーム走査でフレネルレンズの1ピツチ
を露光するようにすればよい。また、フレネルレンズの
場合、中心付近と周辺部で鋸歯状波のピッチあるいは深
さを変える必要がある。その場合には、第2図の偏向コ
イル18,19,20.21に流す電流を可変にし、第
3図のアノ+−チャ13 a r14aの重なシを変え
、ビームの長さを変えればよい。また、電子ビーム露光
装置としては前記第2図に示す構造に伺ら限定されるも
のではなく、ビーム形状或いはビーム強度分布を前記の
如く制御できるものであればよい。その他、本発明の要
旨を逸脱しない範囲で、種々変形して実施することがで
きる。
Further, the present invention can also be applied to drawing a Fresnel lens in addition to a diffraction grating. In this case, the beam may be scanned on the circumference by rotating the table on which the workpiece is placed, and one pitch of the Fresnel lens may be exposed with one beam scan. Furthermore, in the case of a Fresnel lens, it is necessary to change the pitch or depth of the sawtooth wave near the center and at the periphery. In that case, if you make the current flowing through the deflection coils 18, 19, 20, and 21 in Figure 2 variable, change the overlap of the antennas 13a and 14a in Figure 3, and change the beam length, good. Furthermore, the electron beam exposure apparatus is not limited to the structure shown in FIG. 2, but may be of any type as long as it can control the beam shape or beam intensity distribution as described above. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はエシェレット型回折格子を作製するだめのレジ
ストパターンを示す斜視図、第2図は本発明の一実施例
方法に使用した電子ビーム露光装置を示す概略構成図、
第3図は上記装置によるビーム成形方法を説明するだめ
の模式図、第4図は上記装置を用いた露光方法を説明す
るだめの模式図、第5図(、) 、 (b)はそれぞれ
X方向に対するレジストのドーズ量及び現像後の厚み変
化を示す特性図である。 1.17・・・試料(被加工物)、2・・・レジスト、
11・・・電子銃、12.15.16・・・レンズ、1
3゜14・・・ビーム成形用アi!−チャマスク、13
a。 14a・・・アパーチャ、18.〜,2ノ・・・軸合せ
用コイル、22・・・成形ビーム。 出願人代理人 弁理士 鈴 江 武 彦第1図 5図
FIG. 1 is a perspective view showing a resist pattern for producing an echelette-type diffraction grating, and FIG. 2 is a schematic configuration diagram showing an electron beam exposure apparatus used in an embodiment of the method of the present invention.
FIG. 3 is a schematic diagram for explaining the beam shaping method using the above device, FIG. 4 is a schematic diagram for explaining the exposure method using the above device, and FIGS. FIG. 3 is a characteristic diagram showing the dose amount of the resist and the thickness change after development with respect to the direction. 1.17... Sample (workpiece), 2... Resist,
11...electron gun, 12.15.16...lens, 1
3゜14...beam forming i! -Chamask, 13
a. 14a...Aperture, 18. ~, 2... Coil for axis alignment, 22... Forming beam. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)被加工物上のレジストに電子ビームを照射して該
レゾストを露光する電子ビーム露光方法において、ビー
ム強度が第1の方向に一対して一次関数的に変化、或い
は第1の方向と直交する第2の方向のビーム幅が第1の
方向に対して一次関数的に変化する電子ビームを形成し
、このビームを第1の方向に対し該方向のビーム長さと
寺しいピッチを置いて、第1の方向と交差する直線上若
しくは曲線上を前記被加工物に対して相対的に順次走査
することを特徴とする電子ビーム露光方法。
(1) In an electron beam exposure method in which a resist on a workpiece is irradiated with an electron beam to expose the resist, the beam intensity changes linearly with respect to a first direction or with respect to the first direction. An electron beam is formed in which the beam width in a second orthogonal direction changes linearly with respect to the first direction, and this beam is placed at a precise pitch with respect to the beam length in that direction with respect to the first direction. , an electron beam exposure method characterized in that the workpiece is sequentially scanned relative to the workpiece on a straight line or a curved line intersecting the first direction.
(2)前記電子ビームとして、ビーム強度が略一様でビ
ーム形状が3角形のビームを用いるようにしたことを特
徴とする特許請求の範囲第1項記載の電子ビーム露光方
法。
(2) The electron beam exposure method according to claim 1, wherein a beam having substantially uniform beam intensity and a triangular beam shape is used as the electron beam.
(3)前記電子ビームとして、第1の方向を長辺とし該
方向に対してビーム強度が一次関数的に変化する長方形
ビームを用いるようにしたことを特徴とする特許請求の
範囲第1項記載の電子ビーム露光方法。
(3) The electron beam is a rectangular beam whose long side is in the first direction and whose beam intensity changes linearly with respect to the first direction. electron beam exposure method.
JP2396284A 1984-02-10 1984-02-10 Electron beam exposing method Granted JPS60168104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2396284A JPS60168104A (en) 1984-02-10 1984-02-10 Electron beam exposing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2396284A JPS60168104A (en) 1984-02-10 1984-02-10 Electron beam exposing method

Publications (2)

Publication Number Publication Date
JPS60168104A true JPS60168104A (en) 1985-08-31
JPH0466321B2 JPH0466321B2 (en) 1992-10-22

Family

ID=12125171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2396284A Granted JPS60168104A (en) 1984-02-10 1984-02-10 Electron beam exposing method

Country Status (1)

Country Link
JP (1) JPS60168104A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168881A (en) * 1987-12-23 1989-07-04 Anelva Corp Ion beam projecting method and device provided with scanning system
JPH0243555A (en) * 1988-08-03 1990-02-14 Kuraray Co Ltd Pattern forming method and exposing device
EP0357837A2 (en) * 1988-09-07 1990-03-14 Toppan Printing Co., Ltd. Method for producing a display with a diffraction grating pattern and a display produced by the method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168881A (en) * 1987-12-23 1989-07-04 Anelva Corp Ion beam projecting method and device provided with scanning system
JPH0243555A (en) * 1988-08-03 1990-02-14 Kuraray Co Ltd Pattern forming method and exposing device
EP0357837A2 (en) * 1988-09-07 1990-03-14 Toppan Printing Co., Ltd. Method for producing a display with a diffraction grating pattern and a display produced by the method

Also Published As

Publication number Publication date
JPH0466321B2 (en) 1992-10-22

Similar Documents

Publication Publication Date Title
US4310743A (en) Ion beam lithography process and apparatus using step-and-repeat exposure
US6320187B1 (en) Magnification and rotation calibration patterns for particle beam projection system
US4151422A (en) Electron beam exposure method
JP3203963B2 (en) Electron beam drawing apparatus and electron beam drawing method
US4887282A (en) Method and apparatus for changing the imaging scale in X-ray lithograph
JPH03119717A (en) Charged particle exposure device and exposure
JPS60168104A (en) Electron beam exposing method
EP0654813B1 (en) Electron beam drawing apparatus and method of drawing with such an apparatus
JPH0697648B2 (en) Electron beam exposure system
JPH09186070A (en) Variable shaped beam estimation method
JP2898726B2 (en) Charged particle beam exposure method
JP3242481B2 (en) Charged particle beam exposure method
JPS5979526A (en) Method for electron beam exposure
JP4487737B2 (en) Manufacturing method of diffraction grating
JPH03258600A (en) Automatic photodrawing machine
JPS6230321A (en) Method and apparatus for exposure by electron beam
JP3330644B2 (en) Charged particle beam exposure method
JPS5979525A (en) Electron beam exposure device
JPH03232217A (en) Exposure condition detecting and investigating method in charged particle exposing device
JPH03257815A (en) Charged particle beam lithography method
JPH0467615A (en) Charged beam lithography device
JPS6313337B2 (en)
JPH11237728A (en) Method and device for plotting
JPH03104112A (en) Electron beam exposure device
JP2001284244A (en) Energy beam aligner and pattern exposing method