JPS6173886A - Method and device for producing ultra-low iron loss grain-oriented silicon steel sheet - Google Patents

Method and device for producing ultra-low iron loss grain-oriented silicon steel sheet

Info

Publication number
JPS6173886A
JPS6173886A JP19384984A JP19384984A JPS6173886A JP S6173886 A JPS6173886 A JP S6173886A JP 19384984 A JP19384984 A JP 19384984A JP 19384984 A JP19384984 A JP 19384984A JP S6173886 A JPS6173886 A JP S6173886A
Authority
JP
Japan
Prior art keywords
steel sheet
iron loss
vibrating body
oriented silicon
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19384984A
Other languages
Japanese (ja)
Other versions
JPH042671B2 (en
Inventor
Michiro Komatsubara
道郎 小松原
Masao Iguchi
征夫 井口
Kimimichi Goto
後藤 公道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19384984A priority Critical patent/JPS6173886A/en
Publication of JPS6173886A publication Critical patent/JPS6173886A/en
Publication of JPH042671B2 publication Critical patent/JPH042671B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To reduce effectively the iron loss of a grain oriented silicon steel sheet subjected to finish annealing by applying a specific quantity of impact force to the forsterite film on the surface of said steel sheet to break down the film and forming linearly the drop-out region across the rolling direction. CONSTITUTION:A silicic steel slab (about 2.4-4.0% Si) is subjected to a prescribed treatment to form the silicon steel sheet subjected to the finish annealing. The impact force controlled in stroke toward the surface of the steel sheet is gradually applied to the foresterite film formed on the surface of such steel sheet by the top end of an oscillating body forced to make forward and backward motion at >=5X10<-6>kg.m/s (the upper limit is 1X10<-1>kg.m/s) momentum to break down the film without forming recesses to the surface of the steel sheet base-rion. The drop-out region is formed linearly across the rolling direction of the steel sheet. The width of the drop-out region is preferably about 0.1-0.4mm and the space of the drop-out region is preferably about 2.0-10.0mm. The steel sheet which is free from the deterioration in the space factor and the iron loss in the laminating stage is thus easily and efficiently produced.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、鉄損の低い方向性けい素鋼板の製造方法及
びその実施に直接使用する装置に関し、とくに鋼板表面
にフォルステライト被膜の欠損領域を形成することによ
り磁気特性の向上を図るものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing grain-oriented silicon steel sheets with low core loss and an apparatus directly used for carrying out the method, and particularly relates to a method for manufacturing a grain-oriented silicon steel sheet with low core loss, and in particular to a method for manufacturing a grain-oriented silicon steel sheet with low iron loss. The purpose is to improve magnetic properties by forming a .

方向性けい素鋼板は主として変圧器その他の電気機器の
鉄心として利用され、その磁化特性が僚れていること、
とくに鉄損(W17150で代表される)が低いことが
要求されている。
Grain-oriented silicon steel sheets are mainly used as iron cores for transformers and other electrical equipment, and their magnetization properties are excellent.
In particular, low iron loss (represented by W17150) is required.

このためには、第一に鋼板中の2次再結晶粒の(001
>粒方位を圧延方向に高度に揃えることが必要であり、
第二には、最終製品の鋼中に存在する不純物や析出物を
できるだけ減少させる必要がある。かかる配慮の下に製
造される方向性けい素鋼板は、今日まで多くの改善努力
によって、その鉄損値も年を追って改善され、最近では
板厚O,aO騙の製品でW17150の値が1,05W
/IC9の低鉄損のものが得られている。
For this purpose, firstly, the secondary recrystallized grains in the steel sheet (001
>It is necessary to highly align grain orientation in the rolling direction,
Secondly, it is necessary to reduce as much as possible the impurities and precipitates present in the final steel product. The iron loss value of grain-oriented silicon steel sheets manufactured with such consideration has been improved over the years due to many improvement efforts to date, and recently, the value of W17150 has increased to 1 for products with plate thicknesses of O and aO. ,05W
/IC9 low core loss was obtained.

しかし、数年前のエネルギー危機を境にして、電力損失
のより少ない電気機器を求める傾向が一段と強まり、そ
れらの鉄芯材料として、ざらに鉄損の低い一方向性けい
素鋼板が要請されるようになっている。
However, after the energy crisis a few years ago, the trend for electrical equipment with lower power loss became even stronger, and unidirectional silicon steel sheets with significantly lower core loss were required as core materials for these devices. It looks like this.

ところで、方向性けい素鋼板の鉄損を下げる手法として
は、Si含有量を高める、製品板厚を薄くする、2次再
結晶粒を細かくする、不純物含有量を低減する、そして
(110)(001)方位の2次再結晶粒をより高度に
揃えるなど、主に冶金学的方法が一般に知られているが
、これらの手法は、現行の生産手段の上からはもはや限
界に達していて、これ以上の改善は極めて難しく、たと
え多少の改善が認められたとしても、その努力の割には
鉄損改善の実効は僅かとなるに至っていた。
By the way, methods to reduce the iron loss of grain-oriented silicon steel sheets include increasing the Si content, reducing the thickness of the product sheet, making the secondary recrystallized grains finer, reducing the impurity content, and (110) ( Metallurgical methods are generally known, such as aligning the secondary recrystallized grains of orientation to a higher degree, but these methods have already reached their limits with current production methods. Further improvement is extremely difficult, and even if some improvement is recognized, the effect of improving iron loss is small compared to the efforts made.

たとえば2次再結晶粒を(110)(001)方位に高
度に揃える方法においては、(110)(001)方位
への集積度を極力高めていくと、かかる集積度に依存す
る磁束密度(磁化力1000A / mのときの最大磁
束密度B1oで代表される)は向上するけれども、2次
再結晶粒が次第に粗大化していくため、鉄損は逆に劣化
していたのである。これは、2次再結晶粒の粗大化のた
め、鋼板の磁区の境界をなす磁壁と磁壁との間隔、いわ
ゆる磁区幅が広がり渦電流損の増大によって鉄損が劣化
することが原因である。
For example, in a method of highly aligning secondary recrystallized grains in the (110)(001) orientation, if the degree of accumulation in the (110)(001) direction is increased as much as possible, the magnetic flux density (magnetization Although the maximum magnetic flux density (represented by B1o at a force of 1000 A/m) improved, the iron loss deteriorated because the secondary recrystallized grains gradually became coarser. This is due to coarsening of secondary recrystallized grains, which widens the spacing between domain walls that form the boundaries of the magnetic domains of the steel sheet, the so-called domain width, and causes an increase in eddy current loss, which deteriorates core loss.

(従来の技術) 1掲の冶金学的手法における限界を超えて一層の鉄損低
減を図る方法についても従来種々の提案がなされている
(Prior Art) Various proposals have been made in the past regarding methods for further reducing iron loss beyond the limits of the metallurgical methods listed above.

まず米国特許第3647575号明細書には、刃物ある
いは金剛砂などの硬い物質で方向性けい素鋼板(以下鋼
板と示す)の表面をひつかいたり、強くこすることによ
り傷を付は鉄損を下げる方法が開示されている。しかし
この方法では、傷の周辺に凹凸が形成されて鋼板を積層
したときの占積率が大幅に劣化するだけでなり、[易の
付いた凹部では板厚が薄いため、磁束の一部が漏れて積
層時に鋼板に垂直磁化成分が生じて鉄損を劣化するとい
う欠点があった。
First, U.S. Patent No. 3,647,575 states that by scratching or strongly rubbing the surface of a grain-oriented silicon steel plate (hereinafter referred to as steel plate) with a knife or a hard substance such as diamond sand, iron loss can be reduced. A method is disclosed. However, with this method, unevenness is formed around the scratches, which significantly deteriorates the space factor when the steel plates are laminated. There was a drawback that leakage caused a perpendicular magnetization component in the steel plates during lamination, which deteriorated iron loss.

また特公昭58−5!:168号公報には、球状の回転
子や厚みの小さな円盤を銅板表面に接して荷重をかけ、
回転させながら線引きして1板表面に微小歪を与える方
法が提案されている。この方法では、占積率の劣化及び
積層時の鉄損劣化のどちらも生じないが、回転子の抑圧
によるへこみの適正な深さ及び幅の制御が極めて困難で
あった。
Also, Tokuko Showa 58-5! : Publication No. 168 discloses that a spherical rotor or a thin disk is placed in contact with the surface of a copper plate and a load is applied.
A method has been proposed in which a wire is drawn while rotating to give a minute strain to the surface of a single plate. With this method, neither deterioration of the space factor nor deterioration of iron loss during lamination occurs, but it is extremely difficult to control the appropriate depth and width of the recesses due to rotor suppression.

さらにこのような微小歪を与える装置が、特公昭57−
410889号公報に開示されるが、装置が複雑になり
、実際の製品の製造に用いるのは難しく、へこみによる
磁束密度のの劣化のおそれもあった。
Furthermore, a device that gives such minute distortion was developed by
Although it is disclosed in Japanese Patent No. 410889, the device becomes complicated and it is difficult to use it for manufacturing actual products, and there is also a risk of deterioration of magnetic flux density due to dents.

特開昭58−16027号公報には、仕上焼鈍された方
向性けい素鋼板の表面に、金属粒、合成樹脂粒などの粒
状体を投射して点状歪を線状に付与して鉄損を下げる方
法とその装置とが開示されている。この方法は、比較的
簡単であるが、付与する歪量の制御が難しく、また強く
投射すると鉄損、磁束密度ともに劣化する。
JP-A-58-16027 discloses that granular materials such as metal grains and synthetic resin grains are projected onto the surface of a grain-oriented silicon steel sheet that has been finish annealed to impart point strain in a linear manner to reduce iron loss. Disclosed is a method and apparatus for lowering. Although this method is relatively simple, it is difficult to control the amount of strain applied, and strong projection deteriorates both iron loss and magnetic flux density.

そして特公昭57−2252号公報には、仕上焼鈍痛の
方向性電磁鋼板の表面にレーザービームを照射し、鋼板
に局部的に高転位密度領域を形成することにより鉄損を
下げる方法が開示されている。この方法は、局部的に高
転位密度領域を形成するために照射するレーザービーム
のエネルギー密度の制御が容易であり、占積率の劣化も
なく、積層した際の鉄損の劣化も認められないため、実
ル化に至っている。しかしながら、レーザー発生装置及
び光学系が大規模となるため、製造工程での設置数は限
られた数となり、限られた設置台数で所定の高エネルギ
ー密度を与えなくてはならず、レーザービームの照射速
度は制限されてしまう。
Japanese Patent Publication No. 57-2252 discloses a method of reducing iron loss by irradiating the surface of a grain-oriented electrical steel sheet with finish annealing to form locally high dislocation density regions in the steel sheet. ing. With this method, it is easy to control the energy density of the laser beam irradiated to locally form high dislocation density regions, there is no deterioration in the space factor, and there is no deterioration in iron loss when stacked. Therefore, it has come to fruition. However, because the laser generator and optical system are large-scale, the number of units installed in the manufacturing process is limited, and a specified high energy density must be provided with a limited number of units installed. The irradiation speed is limited.

したがって、工場での方向性けい素銅板のレーザー加工
処理能力は低いものとなり、操業能率の低下が間層とな
っていた。この間層の回避に当り、多焦点系のミラーや
ハーフミラ−または光ファイバーなどの光学的手段を講
じて照射本数を増加することが試みられたが、レーザー
光のエネルギー密度を極めて高くしなく”Cはならず、
これらの対策も有効でない。
Therefore, the laser processing ability of grain-oriented silicon copper plates in factories is low, resulting in a decline in operational efficiency. In order to avoid this interlayer, attempts have been made to increase the number of irradiated beams by using optical means such as multi-focal mirrors, half mirrors, or optical fibers. Not,
These measures are also not effective.

(発明が解決しようとする問題点〕 この発明では、方向性けい素鋼の仕上焼鈍済の鋼板の被
膜を除去して鉄損を下げる製造方法において、磁束密度
、占積率及び積層時の鉄損を劣化しない、またその実施
も容易かつ簡単で実操業の能率低下を招かない方法を提
供しようとする。
(Problems to be Solved by the Invention) In this invention, in a manufacturing method for reducing iron loss by removing the film of a finish annealed grain-oriented silicon steel sheet, the magnetic flux density, space factor, The purpose of the present invention is to provide a method that does not reduce losses, is easy and simple to implement, and does not cause a decrease in the efficiency of actual operations.

さらにこの発明の別の目的は、上記製造方法の実施に使
用するm製で能率のよい製造装置の提供にある。
Furthermore, another object of the present invention is to provide an efficient manufacturing apparatus made of M, which is used to carry out the above-mentioned manufacturing method.

(問題点を解決するための手段〕 発明者らは、仕上焼鈍済の鋼板の処理において、鉄損が
下がる機購を探究した結果、磁区幅を減少させる177
Jには1板表面のフォルステライト被膜(以下被膜と示
す)が関係していることを新たに見出した。すなわち、
被膜が点状に欠除している領域においては、磁区の中に
ダガーと呼ばれる針状の補助磁区が生成すること、また
被膜の欠陥が線状に連なっている場合は磁区幅が狭い傾
向にあることがわかった。
(Means for Solving the Problems) The inventors investigated ways to reduce iron loss in the treatment of finish-annealed steel sheets, and as a result, the inventors discovered 177 that reduces the magnetic domain width.
It was newly discovered that J is related to the forsterite coating (hereinafter referred to as coating) on the surface of one plate. That is,
In regions where the coating is missing in the form of points, needle-shaped auxiliary magnetic domains called daggers are generated within the magnetic domain, and when defects in the coating are linear, the width of the magnetic domain tends to be narrower. I found out something.

この点さらに被膜の役割について再調査した結果、この
被膜が張力付加型コーティングと同様、調板に張力を付
加し、磁区を細分化していることがわかった。そしてこ
の磁区幅の細分化は、被膜の欠除によって鋼板表面に不
均一な弾性歪を付与しているためであることも見出した
In this regard, we further investigated the role of the coating and found that, similar to a tension-applied coating, this coating adds tension to the tuning plate and subdivides the magnetic domains. It was also discovered that this subdivision of the magnetic domain width is due to non-uniform elastic strain being imparted to the surface of the steel sheet due to the lack of a coating.

発明者らはさらに研究を進め、被膜を振動による偕撃力
で除去することによって、極めて効果的に鉄損を低減で
きることを見出した。すなわち、被膜除去による弾性歪
の不均一性の効果と、衝クセ力による被膜破壊除去の際
に地鉄と被膜との結合を断ち切るための振動によって被
膜除去部の地鉄表面にごくわずかの塑性歪が入り、この
塑性歪に起因する地金表面の張力の効果と、にょって著
しい鉄損の低減が可能であることを究明した。
The inventors conducted further research and found that iron loss could be extremely effectively reduced by removing the coating using the force of vibration. In other words, due to the effect of non-uniformity of elastic strain due to coating removal, and the vibration to break the bond between the substrate and coating when removing the coating due to impact force, there is a very slight plasticity on the surface of the substrate where the coating is removed. It was discovered that the effect of the tension on the metal surface caused by this plastic strain and the significant reduction in iron loss was possible.

また歪を与える手法として鋼板表面にへこみを形成する
方法が従来性なわれていたが、へこみは本質的に必・要
な要件ではなく、むしろ磁束密度を保つためには、へこ
みは存在しない方がよいこともわかったっ ところで被膜(Mg25iO,)は、セラミックの多結
晶体からなるもので、鋼板の地金にへこみを形成せずに
被膜のみを破壊するには、押圧のような静的な力では不
可能であり、振動による衝撃力のような動的な力が必要
となり、この力は振動する物体の運動量、つまり撮動体
、あるいは撮動体とともに振動するものの侭体の質fi
rIL(kg)とその平均速度V(rrL/S)との積
′wLvで表現され、このm’TJの値が大きい程有利
である。
In addition, the conventional method of applying strain was to form dents on the surface of the steel plate, but dents are not an essential requirement, and rather, in order to maintain magnetic flux density, it is better not to have dents. However, the coating (Mg25iO,) is made of ceramic polycrystalline material, and in order to destroy only the coating without forming a dent in the base metal of the steel plate, it is necessary to use a static method such as pressing. This is not possible with force, and a dynamic force such as an impact force due to vibration is required.
It is expressed as the product 'wLv' of rIL (kg) and its average speed V (rrL/S), and the larger the value of this m'TJ, the more advantageous it is.

したがってm及びVが太きければよいわけだが、質M”
が大きいと振動ストロークの制御が困難となるため、質
′!imを増加せずに振動体の振動数を大きくする。な
ぜなら、質量mの物体が単振動X−1/2 L Sin
 wtで振動している場合、振動数をf=ω/2π(H
2)、往復のストロークをI、(cm)、及び周期をT
とすると、平均的な運動ユはとなり、振動数の増加によ
って振動ストロークの制御性に間通なく、運動量を増加
できる。しかもストロークLの減少が可能になるので副
暉上好ましく、例えば超音波領域では旬めて有利である
Therefore, it is better if m and V are thicker, but the quality M”
If the value is large, it will be difficult to control the vibration stroke, so the quality ′! To increase the frequency of a vibrating body without increasing im. This is because an object of mass m has simple harmonic motion X-1/2 L Sin
When it is vibrating at wt, the frequency is f=ω/2π(H
2), the reciprocating stroke is I (cm), and the period is T
Then, the average motion is as follows, and by increasing the vibration frequency, the amount of motion can be increased without any interruption in the controllability of the vibration stroke. Moreover, since it is possible to reduce the stroke L, this is preferable in terms of side effects, and is especially advantageous in the ultrasonic range, for example.

この発明は、上記知見に由来するものである。This invention is derived from the above knowledge.

すなわちきけい素1スラブを熱間圧延して(5られた熱
延板に、1回または中間・暁鐘を挾む2回の冷IJU圧
延を怖して最終板厚としたのち、脱炭・1次再結晶焼純
を施し、次いで:A鋼板表面MgOを主成分とする儲鈍
分駈剤を塗布してから仕上焼鈍を施す一連の工程により
方向性けい素肩板を製造するに当り、 仕上焼鈍済の鋼板表面のフォルステライト被膜に対し運
動iit 5 X 10  ”9・m / s以上の往
復運動を強制した撮動体により該振動体の先端で該」板
表面に向うストローク制御された衝′7カを遂次に与え
、SA板畑地鉄表面へこみを形成することなくフォルス
テライト被膜の破壊を進め、このフォルステライト被膜
の欠損領域を銅板表面の圧延方向を横切って線状に形成
することを特徴とする超低鉄損方向性けい素爾板の製造
方法。
In other words, one silicon slab is hot-rolled (5), and then the hot-rolled plate is subjected to one or two cold IJU rollings with an intermediate/descent to achieve the final thickness, and then decarburized and In producing a oriented silicon shoulder plate through a series of steps of performing primary recrystallization annealing, then applying a dulling agent mainly composed of MgO to the surface of the steel sheet A, and then final annealing. The forsterite coating on the surface of the finish-annealed steel plate is subjected to a stroke-controlled impact directed toward the plate surface at the tip of the vibrating body by a moving body that is forced to reciprocate at a speed of 9 m/s or more. '7 force is applied successively to proceed with the destruction of the forsterite film without forming a dent on the surface of the SA plate field steel, and to form a defective region of the forsterite film in a linear shape across the rolling direction of the copper plate surface. A method for producing an ultra-low core loss oriented silicon steel sheet.

また上記製造方法の実施に当り、次の装置によってフォ
ルステライト被膜を除去する。
Further, in carrying out the above manufacturing method, the forsterite coating is removed using the following device.

発掘器により往復運動される振動体を、仕上焼鈍済の方
向性けい素“V■板に近接配置し、該振動体の先端での
該銅板表面に向う、該振動体の振動ストロークを制御す
る制御器を設けて1板表面にストローク制御された衝撃
力を与えることを特徴とする超低鉄損方向性けい素鋼板
の製造装置。
A vibrating body that is reciprocated by an excavator is placed close to a finish-annealed directional silicon "V" plate, and the vibration stroke of the vibrating body toward the surface of the copper plate at the tip of the vibrating body is controlled. An apparatus for producing an ultra-low iron loss grain-oriented silicon steel sheet, which is equipped with a controller to apply a stroke-controlled impact force to the surface of one sheet.

さらにこの発明の製造方法について詳しく説明する。Further, the manufacturing method of the present invention will be explained in detail.

この発明の特徴は、仕上焼鈍済の方向性けい素′j板へ
の加工にあるが、まず方向性けい素A板は常法にしたが
って製造する。
The feature of this invention is that it is processed into a finish-annealed grain-oriented silicon plate. First, grain-oriented silicon plate A is manufactured in accordance with a conventional method.

この発明の素材は、公知の製画方法、例えば転f1電気
炉などによつ′C製1し、ざらに造塊−分塊法または連
続鋳造法などによってスラブ(鋼片)としたのち、熱間
圧延によつC得られる熱延コイルを用いるっ この熱延板は、Siを2.4〜4.0係程度含有する組
成であることが好ましい。というのは、Siが2.0%
未満では鉄損の劣化が大きく、また4、0 %を超える
と、冷間加工性が劣化するからである。
The material of this invention is made into a slab (steel billet) by a known method, such as a convertible F1 electric furnace, and then made into a slab (steel billet) by a rough ingot-blooming method or a continuous casting method. The hot rolled sheet using the hot rolled coil obtained by hot rolling preferably has a composition containing about 2.4 to 4.0 parts of Si. This means that Si is 2.0%.
If it is less than 4.0%, iron loss will deteriorate significantly, and if it exceeds 4.0%, cold workability will deteriorate.

その他の成分については方向性けい素1;1板の素材成
分であれば、いずれも適用可能である。
As for the other components, any material component of oriented silicon 1:1 plate can be used.

次に冷間圧延により、最終巨像板厚とされるが、冷I1
1圧延は、1回もしくは中間焼鈍を挟む2回の冷間圧延
により行なわれる。このとき必要に応じて、菜延板の均
一化焼鈍や、冷間圧延に替わる温間圧延を施すこともで
きる。
Next, cold rolling is performed to obtain the final colossal plate thickness, but cold I1
One rolling is performed by cold rolling once or twice with intermediate annealing sandwiched in between. At this time, if necessary, uniform annealing of the rolled sheet or warm rolling instead of cold rolling can be performed.

最終板厚とされた冷延板は、脱炭可能な程度の酸化性雰
囲気もしくはサブスケール形成可能な程度の弱酸化性゛
l囲気中で1次再結晶焼鈍が施される。
The cold-rolled sheet having the final thickness is subjected to primary recrystallization annealing in an oxidizing atmosphere that allows decarburization or a weakly oxidizing atmosphere that allows subscale formation.

ついで、」板表面にMgOを主成分とする焼純分離剤を
塗布したのち、2次再結晶焼鏡ついで高温純化焼鈍と続
く最終仕上焼鈍を行なうことにより、フォルステライト
被膜が形成されるのである。
Next, a forsterite film is formed by applying a sintering separation agent containing MgO as the main component to the surface of the plate, followed by secondary recrystallization annealing, high-temperature purification annealing, and final finishing annealing. .

次に仕上焼鈍済の銅板表面の被膜を、線状に除去する。Next, the film on the surface of the finish annealed copper plate is removed linearly.

被膜除去に際しては、5 X 10−6に9・m/S・
以上より好ましくは(IXI(1”)〜・m / s以
上で実用上(lxxo−1)権・m / s以下の往復
運動を強制した振動体により、その先端で鋼板表面に向
うストローク制御された衝撃力を遂次に与え、溝板地鉄
表面にへこみを形成しないように被膜の破壊を進め、被
膜欠損領域を形成する。被膜欠損領域の形状は圧延方向
に対して直角方向が最も有利であるが、斜め方向や正弦
波状などでもよい。
When removing the film, apply 9 m/s to 5 x 10-6.
From the above, it is preferable that the stroke toward the surface of the steel plate be controlled at its tip by a vibrating body that is forced to reciprocate at a speed of (IXI (1") ~ m/s or more and less than (lxxo-1) m/s in practice). The coating is destroyed by successively applying impact force to prevent the formation of dents on the surface of the grooved plate base steel, thereby forming a coating defect area.The most advantageous shape of the coating defect area is a direction perpendicular to the rolling direction. However, it may also be in an oblique direction or in a sinusoidal shape.

また被膜欠損領域の幅については、0.1〜0.4謡が
好ましく、被膜欠損領域の間隔は2.0〜10.0朋が
好ましい。さらに鋼板表面に与える荷添力が大きいと、
洞板地鉄表面にへこみを形成するおそれがあるため、振
動体の運動量の上限は(IXI 0−1)櫓・m / 
sに抑えることが望ましい。
Further, the width of the film-deficient region is preferably 0.1 to 0.4 mm, and the interval between the film-deficient regions is preferably 2.0 to 10.0 mm. Furthermore, if the loading force applied to the steel plate surface is large,
Since there is a risk of forming a dent on the surface of the tunnel plate base iron, the upper limit of the momentum of the vibrating body is (IXI 0-1) turret・m /
It is desirable to suppress it to s.

なお銅板表面に振動による衝撃力を与え被膜を欠除する
装置としては、例えば第1図及び第2図に示す装置を用
いればよく、次に被膜除去について、図示の装置を参照
して説明する。
As a device for applying an impact force by vibration to the surface of a copper plate to remove the coating, for example, the devices shown in FIGS. 1 and 2 may be used. Next, coating removal will be explained with reference to the illustrated device. .

図中1は、仕上焼鈍済の方向性けい素m阪(以下調板と
示すうであり、例えば紙面に直角の方向に移動される。
In the figure, reference numeral 1 indicates a finish annealed directional silicon plate (hereinafter referred to as a plate), which is moved, for example, in a direction perpendicular to the plane of the paper.

この鋼板lの表面に振動体2の先端部を近接し゛C配置
する。振動体2は、運動量5X10  kg・m / 
s以上の往復運動によりM板1表面に衝撃力を与えるも
ので、鋼板1表面と接触する振動体2の先端部の形状は
、被膜に形成する欠損領域の幅に整合するように決定す
る必要がある。
The tip of the vibrating body 2 is placed close to the surface of the steel plate 1. The vibrating body 2 has a momentum of 5×10 kg・m/
It applies an impact force to the surface of the M plate 1 by reciprocating motion for more than s, and the shape of the tip of the vibrating body 2 that comes into contact with the surface of the steel plate 1 must be determined to match the width of the defect area to be formed in the coating. There is.

また振動体2の材質は剛性のあるものが好ましく、特に
先端部はセラミックスである被膜を破壊するため、ルビ
ーのように硬度のある摩耗の少ない材質が適している。
Further, the material of the vibrating body 2 is preferably a rigid one, and in particular, since the tip portion breaks the ceramic coating, a hard and less abrasive material such as ruby is suitable.

また8は振動体2に振動を励起する発掘器であり、制御
器4によってそのストロークを制御している。発振器3
としては、ソレノイドフィルや鉄芯入リフィルの磁場変
化を利用した振動子、あるいは磁歪効果や圧電効果を利
用した超音波発振器などのストローク制御が容易なもの
を用いる。そして制御器4は、発振器3の振動ストロー
クを制御するもので、電流制御や電圧制御などによって
行う。
Further, 8 is an excavator that excites vibration in the vibrating body 2, and its stroke is controlled by the controller 4. Oscillator 3
For example, a vibrator that uses magnetic field changes such as a solenoid fill or a refill with an iron core, or an ultrasonic oscillator that uses magnetostrictive or piezoelectric effects that can be easily controlled is used. The controller 4 controls the vibration stroke of the oscillator 3 by current control, voltage control, or the like.

さらに線状の被膜欠損領域を得るためには、第2図に示
す如くのラック5とビニオン6との組み合わせからなる
駆動システムによって、振動体8を鋼板1表面に対して
平行に移動することで達成できる。
Furthermore, in order to obtain a linear coating defect area, the vibrating body 8 is moved parallel to the surface of the steel plate 1 using a drive system consisting of a combination of a rack 5 and a pinion 6 as shown in FIG. It can be achieved.

上記のように購成した被膜除去装膜を用いて鋼板1表面
の被膜を線状に破壊除去する。すなわち、運動量5X1
0−6に9・m / s以上で振動体2を往復運動させ
て4板1表面に丑撃力を与え、鍔板1の地鉄にへこみを
形成しないように被膜を局部的に除去する。
The film on the surface of the steel plate 1 is destroyed and removed in a linear manner using the film removal equipment purchased as described above. That is, momentum 5X1
0-6, the vibrating body 2 is reciprocated at a speed of 9 m/s or more to apply a force to the surface of the 4 plates 1, and the coating is locally removed so as not to form a dent in the base metal of the flange plate 1. .

なお上記処理後に、さらに平坦化処理を行うことも可能
であり、必要により上塗りコーテイング膜を被成する場
合もある。
Note that after the above treatment, it is also possible to further perform a flattening treatment, and if necessary, a top coating film may be formed.

(作用) まず、振動体の運動量、つまり調板に与える衝撃力と鉄
損との関係を、第3図に基づいて検討してみる。第8図
は、0.23g板厚で仕上焼鈍済の濁仮に、4−間隔で
0.31M1i@の被膜除去領域をコイル幅方向に形成
する際に、振動体の振動数を変化させて鉄損との関係を
調べたものである。なお振動体の質量を2.59 、振
動ストロークを0.01cmとした。
(Function) First, let's examine the relationship between the momentum of the vibrating body, that is, the impact force applied to the tuning plate, and iron loss based on Fig. 3. Figure 8 shows that when forming film removal areas of 0.31M1i@ at 4-spacing in the width direction of the coil on a 0.23g thick plate that has been finish annealed, the vibration frequency of the vibrating body is changed. This study investigated the relationship with losses. The mass of the vibrating body was 2.59, and the vibration stroke was 0.01 cm.

第3図かられかるように、高振動数領域、すなわち高運
動量領域において、鉄損を有利に低減できる。また振動
数を10 H2以上、つまり運動量5 X 10”’ 
JC9・m / s以上で処理した試料では、処理領域
の被膜が完全に除去されて鉄損低域の効果が詔められ、
運動量5 X 10= kg・m / s未満、例えば
0.111 + 5 H2の振動数で処理した各試料で
は被膜除去が不十分であった。
As can be seen from FIG. 3, iron loss can be advantageously reduced in a high frequency region, that is, a high momentum region. Also, the frequency is 10 H2 or more, that is, the momentum is 5 x 10'''
For samples treated at JC9 m/s or higher, the film in the treated area was completely removed and the effect of lower iron loss was noted.
For each sample treated with a momentum of less than 5×10=kg·m/s, for example at a frequency of 0.111 + 5 H2, film removal was insufficient.

またこの発明では、振動体によって」板表面に衝撃力を
与え、表面の被膜のみを線状に破壊除去し、個板表面に
弾性歪及び塑性歪を与えて鉄損の低減を図っている。弾
性歪については、被膜除去を線状に行うことで、その存
在を理屏するのは容易である。そこで、塑性歪の存在に
ついて次に述べる。
In addition, in this invention, an impact force is applied to the plate surface by a vibrating body, and only the coating on the surface is destroyed and removed in a linear manner, and elastic strain and plastic strain are applied to the surface of the individual plate, thereby reducing iron loss. As for elastic strain, it is easy to detect its presence by removing the film in a linear manner. Therefore, the existence of plastic strain will be discussed next.

被膜は鋼板に対して張力を付与しているため、被、膜を
除去すると除去側の面の張力は逆の面の張力に対して弱
くなり、両者の張力の差によつ”r3板に反りが生ずる
と予想されるが、実際には反りは発生しない。これは、
被膜除去部の地鉄表面での塑性歪によって付与される張
力が、失った張力と同等であるため、青板表裏の張力に
差が生じないことになり、zd板に反りは生じない。
The coating applies tension to the steel plate, so when the coating is removed, the tension on the removed side becomes weaker than the tension on the opposite side, and due to the difference in tension between the two, the "r3 plate" Although it is expected that warping will occur, warping does not actually occur.
Since the tension imparted by plastic strain on the surface of the base metal in the film removed portion is equivalent to the lost tension, there is no difference in tension between the front and back sides of the blue plate, and no warpage occurs in the ZD plate.

さらに第4図に示′すように、被膜除去した鋼板を70
0’C以上の温度で焼鈍すると、鉄損の、わずかではあ
るが劣化が認められることである。これは、被膜除去部
の地鉄最表面での塑性歪が熱処理によって解放された結
果である。つまり被膜除去部の地鉄表面のごくわずかの
塑性歪が局所的な張力を生成して磁区幅を細分し、鉄損
を低減してい゛るわけである。
Furthermore, as shown in Fig. 4, the steel plate from which the coating was removed was
When annealing is performed at a temperature of 0'C or higher, a slight deterioration of iron loss is observed. This is the result of the plastic strain at the outermost surface of the base metal in the part where the film is removed being released by the heat treatment. In other words, the very slight plastic strain on the surface of the base metal in the part where the film is removed generates local tension, subdivides the magnetic domain width, and reduces iron loss.

なお第4図は、この発明の製造方法により得られる板厚
0.23門の渭仮に対し、4100〜900°Cまでの
lr雰囲気での2分間の焼篇を施して鉄損を測定したも
のである。
Fig. 4 shows the iron loss measured after firing a 0.23-meter plate obtained by the manufacturing method of the present invention in an LR atmosphere at 4100 to 900°C for 2 minutes. It is.

またこの発明の処理を施した後に、層板表面の絶縁性を
高めるため、コーティングを施すことは可能であるが、
第4図に示したように、700°C以上の温度で焼き付
けるとある程度の鉄損劣化を招くので700’C未満の
温度での焼き付けが好ましい。
Furthermore, after the treatment of this invention, it is possible to apply a coating to increase the insulation properties of the laminate surface.
As shown in FIG. 4, baking at a temperature of less than 700'C is preferable because baking at a temperature of 700°C or higher causes some degree of core loss deterioration.

(実施例) 以下、この発明の実施例について説明する。(Example) Examples of the present invention will be described below.

実施例1 板厚0.20yuaの仕上焼鈍後のA板に、ツクイブロ
グレーバー(Vibr04raVer :ビューラ社製
)を用いて、Q、2mm幅、間隔4mm、にて圧延方向
に直角の被膜欠損領域を形成し、実施例1とした。なお
振動体としては、先端径Q、2mrn 、i i 1,
5りのステンレス棒を使用し、振動数50 H2N振動
ストローク1.0間で、運動量150X10  kg−
m/Sとした。
Example 1 A coating defect area perpendicular to the rolling direction was formed on a plate A having a thickness of 0.20 yua after final annealing using a Tsukibrograver (Vibr04raVer: manufactured by Beulah Co., Ltd.) at a width of Q, 2 mm, and an interval of 4 mm. Example 1 was prepared. Note that the vibrating body has a tip diameter Q, 2 mrn, i i 1,
Using a stainless steel rod with a vibration frequency of 50 H2N and a vibration stroke of 1.0, the momentum is 150 x 10 kg-
m/S.

また同時に、上記仕上焼鈍済の鋼板に、厚さQ 、 Q
 mm−、径1011mのステンレス製の円盤を200
2の荷重をかけて鋼板表面に押し付けながら回転させ、
幅0.2mm、間隔4 、*m 、にて圧延方向に直角
に線引きを行い比校列1とした。
At the same time, the above-mentioned finish annealed steel plate is coated with thicknesses Q and Q.
mm-, a stainless steel disk with a diameter of 1011 m is 200
Apply a load of 2 and rotate while pressing against the steel plate surface.
Lines were drawn perpendicularly to the rolling direction with a width of 0.2 mm and an interval of 4 *m to obtain ratio row 1.

この結果、実施例1においては被膜の欠損領域が存在し
、かつ該領域の地鉄面にはへこみが認められなかったが
、比較例1においては線引きした部分に深さ5μmのへ
こみが認められ、被T4は01.壊・欠除されていなか
った。
As a result, in Example 1, there was a defective area of the coating, and no dent was observed on the base metal surface in this area, but in Comparative Example 1, a dent with a depth of 5 μm was observed in the delineated area. , target T4 is 01. It was not destroyed or deleted.

また、実施例1及び比較例1の磁気特性、占積率は表1
の通りである。
In addition, the magnetic properties and space factors of Example 1 and Comparative Example 1 are shown in Table 1.
It is as follows.

表  1 さらに実施例1及び比較例1にコーティング夜を塗布し
、600’C,2分間の焼き付は処理を施した後でも磁
気特性に変化はなかった。また実施例1をとくに1o枚
積層して磁気鉄心に組立てて鉄損特性を測定したが、劣
化はなかった。
Table 1 Furthermore, Example 1 and Comparative Example 1 were coated with a coating material and baked at 600'C for 2 minutes. Even after the treatment, there was no change in magnetic properties. In addition, 10 pieces of Example 1 were laminated and assembled into a magnetic core, and the iron loss characteristics were measured, but no deterioration was observed.

実施例2 仕上焼鈍後にコーテイング膜を被成した板厚0.231
ff溝の各1板に、第2図に示した駆動システム金儲え
た磁歪振動子からなる装置を100個用い1、j・畠Q
、3ms、圧延方向に対する間隔3 ms 、にて圧延
方向に対しての角度80°の線状の被膜欠損領域を、コ
イル圧延方向にa o oxにわたって一度に形成  
゛し、実施例2とした。なお振動子全体の重量は100
g、振動数は2XIQHz、ストロークは8 ttmで
、運動[82000XI Okq−m/Sとした。
Example 2 Plate thickness 0.231 coated with coating film after final annealing
For each plate of the ff groove, 100 devices consisting of magnetostrictive vibrators using the drive system shown in Fig. 2 were used.
, 3 ms, an interval of 3 ms to the rolling direction, and a linear coating defect region at an angle of 80° to the rolling direction was formed at once over a o ox in the coil rolling direction.
Therefore, Example 2 was prepared. The weight of the entire vibrator is 100
g, the vibration frequency was 2XIQHz, the stroke was 8 ttm, and the movement was [82000XI Okq-m/S].

この場合、被膜欠損領域の地鉄面には、へこみは認めら
れなかった。
In this case, no dents were observed on the base metal surface in the coating defect area.

また同一の鋼板に、間隔5話、幅0.7門のスリットを
圧延方向と直角に配置し、0.35 mBのスチールシ
ョットを20〜50 m/Seaの速度で投射し比較例
2とした。
In addition, on the same steel plate, slits with a width of 5 slots and a width of 0.7 gates were arranged perpendicular to the rolling direction, and a steel shot of 0.35 mB was projected at a speed of 20 to 50 m/Sea to obtain Comparative Example 2. .

さらに同一の鋼板に、エネルギー密度2.OJ/+ff
l。
Furthermore, the same steel plate has an energy density of 2. OJ/+ff
l.

照射の間隔4門、及び照射の幅QJr1mで、圧延方向
と直角の方向にパルスレーザ−を照射し、比較例3とし
た。
Comparative Example 3 was obtained by irradiating a pulsed laser in a direction perpendicular to the rolling direction with an irradiation interval of 4 gates and an irradiation width of QJr1 m.

比較例2では、投射部において一部被膜が剥泗し、地鉄
面には4〜10μ扉のへこみが認められた。
In Comparative Example 2, part of the coating was peeled off at the projection part, and a 4 to 10 micron door dent was observed on the base metal surface.

比較例3では、照射部の被膜は欠損し、地鉄表面にへこ
みは認められなかった。
In Comparative Example 3, the coating in the irradiated area was damaged, and no dents were observed on the surface of the steel base.

次に、実施例2、比較例2、及び比較例3の磁気特性、
占積率を表2に示す。
Next, the magnetic properties of Example 2, Comparative Example 2, and Comparative Example 3,
Table 2 shows the space factor.

表  2 さらに、実施例2、比較例2,3にコーテイング膜 グ  、500°C,8分間の焼き付は処理を施しても
磁気特性に劣化はなかった。また実施例2をとくに20
枚積層して磁気鉄心に組立てて鉄損特性を測定したが、
劣化はなかった。
Table 2 Furthermore, even though Example 2 and Comparative Examples 2 and 3 were subjected to baking treatment at 500° C. for 8 minutes, there was no deterioration in the magnetic properties. In addition, in particular Example 2, 20
The iron loss characteristics were measured by laminating the sheets and assembling them into a magnetic core.
There was no deterioration.

またこの発明の装置の実施例については、先に第1図及
び第2図に基づいて説明したとおりである。
Further, the embodiment of the apparatus of the present invention is as described above with reference to FIGS. 1 and 2.

なお被膜欠損領域を線状に形成するために第2図に示し
た構成としたが、例えば振動体の先端形状を線状にする
、振動体を多数、直列配置する、などの手段によっても
よい。
Although the configuration shown in FIG. 2 is used to form the film defective area in a linear shape, it is also possible to use other means such as making the tip of the vibrating body linear or arranging a large number of vibrating bodies in series. .

さらにj板と振動体との距離を自動制御できる機溝を採
用してもよく、被膜の破壊程度、鋼板地金表面のへこみ
の有無などを検出して負帰還制御を行うことも可能であ
る。
Furthermore, a machine groove that can automatically control the distance between the J plate and the vibrating body may be adopted, and it is also possible to perform negative feedback control by detecting the degree of destruction of the coating, the presence or absence of dents on the surface of the steel plate base metal, etc. .

(効果) 以上説明したようにこの発明によれば、磁束密度が低下
せず、かつ鉄損の低減も併せて実現でき、しかも占積率
、猜層時の鉄損の劣化もない鋼板を、簡便で能率よく製
造することができる。
(Effects) As explained above, according to the present invention, it is possible to realize a steel plate in which the magnetic flux density does not decrease and the iron loss is reduced, and there is no deterioration in the space factor or the iron loss during the layering. It can be manufactured easily and efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は被膜除去装置を示す説明図、第3図
は鉄損と撮動体の振動数及び運動量との関係を示すグラ
フ、 第4図は迭損とこの発明の処理後の焼鈍温度との関係を
示すグラフである。 1・・・1板        2・・・振動体3・・・
発j辰器       4・・・制御器。
Figs. 1 and 2 are explanatory diagrams showing the film removal device, Fig. 3 is a graph showing the relationship between iron loss and the frequency and momentum of the moving object, and Fig. 4 is a graph showing the relationship between iron loss and the processing according to the present invention. It is a graph showing the relationship with annealing temperature. 1...1 plate 2...vibrating body 3...
Emitter 4...Controller.

Claims (1)

【特許請求の範囲】 1、含けい素鋼スラブを熱間圧延して得られた熱延板に
、1回または中間焼鈍を挾む2回の冷間圧延を施して最
終板厚としたのち、脱炭・1次再結晶焼鈍を施し、次い
で鋼板表面にMgOを主成分とする焼鈍分離剤を塗布し
てから仕上焼鈍を施す一連の工程により方向性けい素鋼
板を製造するに当り、 仕上焼鈍済の鋼板表面のフォルステライト 被膜に対し運動量5×10^−^6kg・m/S以上の
往復運動を強制した振動体により該振動体の先端で該鋼
板表面に向うストローク制御された衝撃力を遂次に与え
、鋼板地鉄表面にへこみを形成することなくフォルステ
ライト被膜の破壊を進め、このフォルステライト被膜の
欠損領域を鋼板表面の圧延方向を横切つて線状に形成す
ることを特徴とする超低鉄損方向性けい素鋼板の製造方
法。 2、発振器により往復運動される振動体を、仕上焼鈍済
の方向性けい素鋼板に近接配置し、該振動体の先端での
該鋼板表面に向う、該振動体の振動ストロークを制御す
る制御器を設けて鋼板表面にストローク制御された衝撃
力を与えることを特徴とする超低鉄損方向性けい素鋼板
の製造装置。
[Scope of Claims] 1. A hot-rolled plate obtained by hot rolling a silicon-containing steel slab is cold-rolled once or twice with intermediate annealing to achieve the final thickness. In manufacturing a grain-oriented silicon steel sheet through a series of steps including decarburization and primary recrystallization annealing, then applying an annealing separator containing MgO as a main component to the surface of the steel sheet, and then performing finish annealing. Stroke-controlled impact force directed toward the steel plate surface at the tip of the vibrating body by a vibrating body that forces the forsterite coating on the surface of the annealed steel plate to reciprocate with a momentum of 5 × 10^-^6 kg・m/S or more. is applied successively to advance the destruction of the forsterite coating without forming a dent on the surface of the base steel sheet, and the defective area of the forsterite coating is formed in a linear shape across the rolling direction of the steel sheet surface. A method for producing grain-oriented silicon steel sheets with ultra-low iron loss. 2. A controller for arranging a vibrating body that is reciprocated by an oscillator in close proximity to a finish-annealed grain-oriented silicon steel plate, and controlling the vibration stroke of the vibrating body toward the surface of the steel plate at the tip of the vibrating body. An apparatus for producing an ultra-low iron loss grain-oriented silicon steel sheet, which is characterized by providing a stroke-controlled impact force to the surface of the steel sheet.
JP19384984A 1984-09-18 1984-09-18 Method and device for producing ultra-low iron loss grain-oriented silicon steel sheet Granted JPS6173886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19384984A JPS6173886A (en) 1984-09-18 1984-09-18 Method and device for producing ultra-low iron loss grain-oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19384984A JPS6173886A (en) 1984-09-18 1984-09-18 Method and device for producing ultra-low iron loss grain-oriented silicon steel sheet

Publications (2)

Publication Number Publication Date
JPS6173886A true JPS6173886A (en) 1986-04-16
JPH042671B2 JPH042671B2 (en) 1992-01-20

Family

ID=16314770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19384984A Granted JPS6173886A (en) 1984-09-18 1984-09-18 Method and device for producing ultra-low iron loss grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPS6173886A (en)

Also Published As

Publication number Publication date
JPH042671B2 (en) 1992-01-20

Similar Documents

Publication Publication Date Title
JP4593678B2 (en) Low iron loss unidirectional electrical steel sheet and manufacturing method thereof
JP6405378B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR20130025965A (en) Oriented electromagnetic steel plate
RU2548544C2 (en) Method of fast laser denting
KR20190137097A (en) Laser-etched grain-oriented silicon steel resistant to stress relaxation annealing and method of manufacturing the same
JPS61149433A (en) Method and apparatus for reducing iron loss in crystal grainorientation type silicon steel
JPH11279645A (en) Grain oriented silicon steel sheet having low iron loss and low magnetic strain and production thereof
KR100345723B1 (en) Method for manufacturing a grain oriented electrical steel sheet having a low magnetostriction and manufacturing apparaturs used therein
JPH01281709A (en) Method of obtaining heat-resistant fractionalized magnetic domains in electrical steel to reduce core loss
JP5023552B2 (en) Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof
JPH06136449A (en) Production of low iron loss grain-oriented silicon steel sheet
KR100345722B1 (en) Method for manufacturing a grain oriented electrical steel sheet having a low magnetostriction and manufacturing apparaturs used therein
JPS6173886A (en) Method and device for producing ultra-low iron loss grain-oriented silicon steel sheet
Petryshynets et al. Effect of laser scribing on soft magnetic properties of conventional grain-oriented silicon steel
KR930009974B1 (en) Method for producing low iron loss grain oriented silicon steel sheets
JP6341279B2 (en) Laser processing equipment
JP2023507438A (en) Grain-oriented electrical steel sheet and its magnetic domain refinement method
JPH01298118A (en) Continuous iron loss reducing treatment apparatus for grain-oriented silicon steel sheet
JPH03257121A (en) Production of low-iron loss grain oriented silicon steel sheet which is not deteriorated in characteristic by strain relief annealing
JP3828830B2 (en) Wrapped iron core and its manufacturing method
JP7365416B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP4569335B2 (en) Manufacturing method of grain-oriented electrical steel sheet and iron loss reduction device for grain-oriented electrical steel sheet
EP3901969A1 (en) Oriented electrical steel sheet and method for producing same
KR20090116516A (en) A method for producing a low coreloss grain-oriented electrical steel sheet using an ultra -sonic generator
JPS61159206A (en) Manufacture of ultra-low iron-loss and grain-oriented silicon steel sheet