JPS6173725A - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JPS6173725A
JPS6173725A JP19582684A JP19582684A JPS6173725A JP S6173725 A JPS6173725 A JP S6173725A JP 19582684 A JP19582684 A JP 19582684A JP 19582684 A JP19582684 A JP 19582684A JP S6173725 A JPS6173725 A JP S6173725A
Authority
JP
Japan
Prior art keywords
group
epoxy resin
silicone compound
phenol
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19582684A
Other languages
Japanese (ja)
Other versions
JPH0450925B2 (en
Inventor
Masatoshi Iji
正年 位地
Masayuki Kobayashi
正之 小林
Shinichiro Asai
新一郎 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP19582684A priority Critical patent/JPS6173725A/en
Publication of JPS6173725A publication Critical patent/JPS6173725A/en
Publication of JPH0450925B2 publication Critical patent/JPH0450925B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:An epoxy resin composition having low internal stress, excellent heat shock resistance and excellent moisture resistance reliability, comprising a phenol-modified silicone compound, an epoxy resin, a phenolic resin and a filler. CONSTITUTION:A phenol-modified silicone compound is obtained by reacting an organosilicone compound of the formula [wherein R is H, methyl, ethyl or phenyl, X is an epoxy group-containing organic group, Y is a group of an oxyethylene polymer, a group of an acrylamide polymer, or a like group, lis 0.1-0.98 (a molar fraction of siloxane units), m is 0.01-0.5and n is 0.01-0.7] with a phenolic resin and extracting an unreacted organic silicone compound. An epoxy resin is mixed with said compound, a phenol curing agent and an inorganic filler such as silica. The obtained resin composition is suitably used in sealing semiconductor electronic parts.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体等の電子部品封止用エポキシ樹脂組成
物に係り、特に内部応力が低減し、耐ヒートシヨツク性
に優れ、かつ耐湿信頼性の良好な、半導体電子部品封止
用エポキシ樹脂組成物に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an epoxy resin composition for encapsulating electronic components such as semiconductors, which has particularly low internal stress, excellent heat shock resistance, and reliable moisture resistance. The present invention relates to an epoxy resin composition for encapsulating semiconductor electronic components, which has good properties.

(従来の技術) 近年半導体(以下ICという)の封止はほとんど樹脂封
止で行なわれるようになり、また樹脂の種類も素子との
密4燐や価格の点からエポキシ樹脂組成物が主流となっ
ている。そしてこれらには、半導体の特性保持に必要な
技術的改良が要求されている。この中でも耐湿信頼性の
向上と、樹脂の硬化収縮や樹脂と素子との熱膨張率の差
によるひずみから発生する内部応力の低減は、2つの重
大な課題となっている。特に最近の工Cの高集積化から
、素子が大型化したため、内部応力や、熱衝零時の内部
応力に起因する樹脂のクラック発生は大きな問題となっ
ている。
(Prior art) In recent years, most semiconductors (hereinafter referred to as ICs) have been encapsulated with resin, and epoxy resin compositions have become mainstream due to their close relationship with elements and cost. It has become. These require technical improvements necessary to maintain the characteristics of semiconductors. Among these, two important issues are improving moisture resistance reliability and reducing internal stress generated from distortion caused by curing shrinkage of the resin and the difference in coefficient of thermal expansion between the resin and the element. In particular, due to the recent increase in the degree of integration of electronic devices, the size of devices has increased, and cracks in the resin due to internal stress and internal stress at the time of zero thermal shock have become a major problem.

このため、最近この内部応力の低減を目的とした様々な
検討がなされ、内部応力を低減させる方法としては、 ■ 樹脂の熱膨張率を下げ、素子の熱膨張率に近(する
、 ■ 弾性率?下げる、 などが挙げられる。
For this reason, various studies have recently been conducted with the aim of reducing this internal stress.The methods for reducing internal stress include: - lowering the coefficient of thermal expansion of the resin to bring it close to the coefficient of thermal expansion of the element; ?Lower, etc.

前者は、一般に熱膨張率の小さい無機光てん剤を樹脂に
添加することでなされるが、逆に弾性率が増大するため
、内部応力の低減が十分に行なわれず、さらに高充てん
した場合は、成形性不良及び流動性低下の問題を生じる
。後者は、樹脂に可とう性付与剤乞添加することでなさ
れる。これにはコゝム成分を添加することや(特開昭5
7−151226号公報など)、可と5性のあるシリコ
ーン化合物を添加することが行なわれている。
The former is generally achieved by adding an inorganic photonic agent with a small coefficient of thermal expansion to the resin, but on the other hand, the elastic modulus increases, so if the internal stress is not sufficiently reduced and the resin is filled with a higher This causes problems of poor moldability and decreased fluidity. The latter is achieved by adding a flexibility imparting agent to the resin. This can be done by adding a comb component (Japanese Unexamined Patent Publication No. 5
No. 7-151226, etc.), it has been carried out to add a silicone compound having a pentate property.

特にシリコーン化合物は、通常のゴムに比べ、耐熱性に
優れ、不純物が少ないなどの点で大きな期待が持てる。
In particular, silicone compounds hold great promise as they have superior heat resistance and less impurities than ordinary rubber.

シリコーン化合物のこれまでの技術としては、樹脂との
反応性のないシリコーン化合物乞添加する(特開昭58
−219218号公報など)や樹脂と反応性のある官能
基を有するシリコーン化合物を添加する(特開昭56−
145942号公報、特開昭58〜158730号公報
など)がある。しかし、これらの結果からは大幅な内部
応力の低減は認められず−これは次の様な問題点に起因
すると考えられる。つまり、樹脂と反応性のないシリコ
ーン化合物は、樹脂との界面の結合力が弱(、また、シ
リコーン化合物と樹脂とは本来相溶性が悪いためよく分
散しないことが大きな原因と思われ、また樹脂と反応す
る官能基を持つシリコーン化合物もやはり、樹脂との相
溶性が悪いため大幅な効果が得られなかったと考えられ
る。
The conventional technology for silicone compounds is to add silicone compounds that are not reactive with resins (Japanese Unexamined Patent Publication No. 58
-219218, etc.) or a silicone compound having a functional group reactive with the resin (Japanese Unexamined Patent Application Publication No. 56-1989).
145942, JP-A-58-158730, etc.). However, from these results, no significant reduction in internal stress was observed - this is thought to be due to the following problems. In other words, a silicone compound that is not reactive with a resin has a weak bonding force at the interface with the resin (Also, silicone compounds and resins are inherently not compatible with each other, so they do not disperse well. It is thought that silicone compounds that have a functional group that reacts with the resin also have poor compatibility with the resin, and therefore cannot produce significant effects.

(発明が解決しようとする問題点) 本発明はかかる欠点を解決するものであり、下記式[1
]で表わされる有機シリコーン化合物とフェノール樹脂
とを無溶剤下で反応させた、フェノール変性シリコーン
化合物とエポキシ樹脂組成物とを用いることにより、封
止材料の内部応力が大幅に低減し、しかも耐湿信頼性も
良好な半導体電子部品封止用エポキシ樹脂組成物を提供
するものである。
(Problems to be Solved by the Invention) The present invention solves these drawbacks, and solves the problems by solving the following formula [1
By using a phenol-modified silicone compound and an epoxy resin composition, which are obtained by reacting an organic silicone compound represented by An object of the present invention is to provide an epoxy resin composition for encapsulating semiconductor electronic components that also has good properties.

(式■に於てRは水素、メチル基、エチル基あるいはフ
ェニル基を示し、Xはエポキシ基含有有機基、Yはポリ
オキシエチレン重合体、ポリオキシプロピレン重合体、
ポリアクリルアミド重合体、ポリビニルアルコール重合
体、ポリジオキソラン重合体を示す。13 + m +
 nは各シロキチン単位のモル分率を示し、A=0.1
〜0.98、m50.01〜0.5、n=0.01〜0
.7である。)(問題点を解決するための手段) すなわち本発明は一下記式CI]で表わされる有機シリ
コーン化合物とフェノール樹脂とをあらかじめ無溶剤下
で反応させ、未反応の下記式[IJの有機シリコーン化
合物を水により抽出除却したフェノール変性シリコーン
化合物、エポキシ樹脂、フェノール樹脂及び充てん剤と
からなることを特徴とする。
(In formula (2), R represents hydrogen, a methyl group, an ethyl group, or a phenyl group, X represents an epoxy group-containing organic group, Y represents a polyoxyethylene polymer, a polyoxypropylene polymer,
Indicates polyacrylamide polymer, polyvinyl alcohol polymer, and polydioxolane polymer. 13 + m +
n indicates the mole fraction of each xylochitin unit, A = 0.1
~0.98, m50.01~0.5, n=0.01~0
.. It is 7. ) (Means for Solving the Problems) That is, the present invention involves reacting an organic silicone compound represented by the following formula CI with a phenol resin in advance in the absence of a solvent, and removing the unreacted organic silicone compound represented by the following formula CI and a phenol resin. It is characterized by consisting of a phenol-modified silicone compound extracted and removed with water, an epoxy resin, a phenol resin, and a filler.

(式■に於てRは水素、メチル基、エチル基あるいはフ
ェニル基を示し、Xはエポキシ基含有有機基、Yはポリ
オキシエチレン重合体、ポリオキシプロピレン重合体、
ポリアクリルアミド重合体、ポリビニルアルコール重合
体、ポリジオキソラン重合体を示す073.m、nは各
シロキサン単位のモル分率を示し、n=0.1〜0.9
8、m=0.01〜0.5、n = 0.01〜0−7
である。)以下本発明の詳細な説明する。
(In formula (2), R represents hydrogen, a methyl group, an ethyl group, or a phenyl group, X represents an epoxy group-containing organic group, Y represents a polyoxyethylene polymer, a polyoxypropylene polymer,
073. indicates a polyacrylamide polymer, a polyvinyl alcohol polymer, and a polydioxolane polymer. m and n indicate the mole fraction of each siloxane unit, n = 0.1 to 0.9
8, m=0.01~0.5, n=0.01~0-7
It is. ) The present invention will be explained in detail below.

本発明のフェノール変性シリコーン化合物に用いられる
有機シリコーン化合物は、一般式で表わされるものであ
る。また、 Rは、水素、メチル基、エチル基及びフェニル基であり
、Xは、エポキシ基を含有する有機基を示し、エポキシ
基を持つものである限り特に制限はない。例えば などが挙げられる。
The organic silicone compound used in the phenol-modified silicone compound of the present invention is represented by the general formula. Moreover, R is hydrogen, a methyl group, an ethyl group, or a phenyl group, and X represents an organic group containing an epoxy group, and there is no particular restriction as long as it has an epoxy group. For example, etc.

Yはフェノール樹脂と相溶する官能基を示し・ポリオキ
シエチレン、ポリオキシノロピレン、ポリアクリル酸ア
ミ団、ポリビニルアルコール、ポリジオキソランなどが
挙げられ、これらの重合体の重合度は、5〜500、好
ましくは10〜600である。重合度が5未満では、相
溶の効果が認められす、500を超えるとエポキシ樹脂
自体の強度低下があり問題を生じる。
Y represents a functional group that is compatible with the phenolic resin, and examples thereof include polyoxyethylene, polyoxynolopyrene, polyacrylic acid amide group, polyvinyl alcohol, and polydioxolane, and the degree of polymerization of these polymers is 5 to 500. Preferably it is 10-600. When the degree of polymerization is less than 5, a compatibility effect is observed; when it exceeds 500, the strength of the epoxy resin itself decreases, causing problems.

d、m、nは、各シロキサン単位のそれぞれのブロック
のモル分率であり、lは0.1〜0.98で、これ未満
だと本来のシリコーン化合物の特性が表われず、これを
超えると樹脂との相溶性が悪(なる。
d, m, and n are the mole fractions of each block of each siloxane unit, and l is 0.1 to 0.98; if it is less than this, the original characteristics of the silicone compound will not be exhibited, and if it exceeds this, The compatibility between the resin and the resin is poor.

mは0.01〜0.5で、これ未満だと樹脂との反応性
が悪(これを超えると予備反応時にゲル化を起こす。
m is 0.01 to 0.5; if it is less than this, the reactivity with the resin will be poor (if it exceeds this, gelation will occur during the preliminary reaction).

nは0.01〜0.7で、これ未満だと樹脂との相溶性
が悪(これを超えると樹脂自体の強度低下があり問題?
生じる〇 またフェノール変性シリコーン化合物の製造方法は、ま
ずフェノール樹脂を温度120〜16[]°Cで無的削
下加熱溶融させ、好ましくはこれにトリフェニルフォス
フインなどの触媒と有機シリコーン化合物を添加して、
攪拌しながら反応させる。
n is 0.01 to 0.7; if it is less than this, the compatibility with the resin will be poor (if it exceeds this, the strength of the resin itself will decrease, which is a problem)
The method for producing a phenol-modified silicone compound involves first heating and melting a phenol resin at a temperature of 120 to 16[]°C without removing it, and preferably adding a catalyst such as triphenylphosphine and an organic silicone compound thereto. do,
Allow to react while stirring.

所定時間経過した後、前記化合物を容器より取り出し・
未反応のものが残っていると耐熱信頼性が低下するので
、次にオートクレーブに移し、高温高圧で水を加えて未
反応の有機シリコーン化合物を抽出除去し、十分に水分
を乾燥させ生成物を粉砕する。得られた化合物は、エポ
キシ樹脂中によ(分散し、樹脂と化合物の界面でよく相
溶し、また化学結合によって強い密着性を持つ。
After a predetermined period of time has elapsed, remove the compound from the container.
If any unreacted substances remain, the heat resistance reliability will decrease, so next, transfer to an autoclave, add water at high temperature and high pressure, extract and remove unreacted organosilicone compounds, thoroughly dry water, and remove the product. Smash. The obtained compound is dispersed in the epoxy resin, is well miscible at the interface between the resin and the compound, and has strong adhesion due to chemical bonds.

フェノール変性シリコーン化合物の添加量は、エポキシ
樹脂100重量部に対して2〜40重量部好ましくは′
5〜60重量部である。添加量が2重量部未満では、耐
湿信頼性及び内部低応力が得られず、40重量部を超え
ると成形性や樹脂組成物の強度低下を生じるので好まし
くない。
The amount of the phenol-modified silicone compound added is preferably 2 to 40 parts by weight per 100 parts by weight of the epoxy resin.
It is 5 to 60 parts by weight. If the amount added is less than 2 parts by weight, moisture resistance reliability and low internal stress cannot be obtained, and if it exceeds 40 parts by weight, the moldability and strength of the resin composition will deteriorate, which is not preferable.

本発明に用いるエポキシ樹脂は・その分子中にエポキシ
結合を少なくとも2個以上有するものであれば、分子構
造、分子量などに特に制限はない。
The epoxy resin used in the present invention is not particularly limited in molecular structure, molecular weight, etc., as long as it has at least two or more epoxy bonds in its molecule.

例えばビスフェノールA型エポキシ樹脂、フェノールノ
ボラック型エポキシ樹脂、・クレゾールノボラック型エ
ポキシ樹脂などが挙げられるが、その際、不純物や加水
分解性塩素の少ないものが望ましい。
Examples include bisphenol A type epoxy resin, phenol novolak type epoxy resin, cresol novolac type epoxy resin, etc., but in this case, it is preferable to use one with less impurities and hydrolyzable chlorine.

次に硬化剤としては、例えばフェノールノボラック樹脂
やクレゾールノボラック樹脂などのフェノール系硬化剤
、アミン系硬化剤、あるいは酸無水物硬化剤などが挙げ
られる。これらの使用量については特に制限はないが、
エポキシ基と硬化剤の化学量論量ヲ加えることが必要で
ある。
Examples of the curing agent include phenolic curing agents such as phenol novolac resins and cresol novolac resins, amine curing agents, and acid anhydride curing agents. There are no particular restrictions on the amount of these used, but
It is necessary to add stoichiometric amounts of epoxy groups and curing agent.

無機光てん剤としては、例えば結晶質シリカ、溶融シリ
カ、ケイ酸カルシウム、アルミナ、炭酸カルシウム、タ
ルク、硫酸バリウムなどの粉体か、あるいはガラス繊維
などが挙げられるが、通常は、結晶質シリカか、溶融シ
リカが用いられる。これらの無機光てん剤の全体に対す
る配合比は、選択する上記の樹脂分によっても違うが、
一般に樹脂分100直孟部に対して150〜450重量
部程度でよい。150取量部以下だと熱膨張率、成形収
縮率が大となり、また熱伝導率も低く、450屯量部以
上だと流動性低下、金型摩耗が大ぎくなる欠点がある。
Examples of inorganic photonic agents include powders such as crystalline silica, fused silica, calcium silicate, alumina, calcium carbonate, talc, and barium sulfate, or glass fibers, but usually crystalline silica or , fused silica is used. The blending ratio of these inorganic photonic agents to the total varies depending on the selected resin content, but
Generally, the amount may be about 150 to 450 parts by weight per 100 parts by weight of the resin. If it is less than 150 parts by weight, the coefficient of thermal expansion and molding shrinkage will be high, and the thermal conductivity will be low, and if it is more than 450 parts by weight, there will be disadvantages such as decreased fluidity and increased mold wear.

その他、必要に応じて加えられる成分としては、γ−グ
リシドキメゾロピルトリメトキシシランなどのシランカ
ップリング剤、イミダゾール類、フォスフイン類好まし
くはトリフェニルフォスフインなどの硬化促進剤、カー
ボンブラックなどの顔料、モンタナワックス、カルナバ
ワックスあるいはへキストワツクスなどの離型剤、臭素
化エポキシ樹脂や三酸化アンチモンなどの難燃剤などが
挙げられる。
Other components that may be added as necessary include silane coupling agents such as γ-glycidomizolopyltrimethoxysilane, curing accelerators such as imidazoles, phosphines, preferably triphenylphosphine, and carbon black. Examples include pigments, release agents such as Montana wax, carnauba wax, or Hoechst wax, and flame retardants such as brominated epoxy resins and antimony trioxide.

本発明の樹脂組成物は、各成分及び添加剤ラミキサ−で
攪拌混合し、加熱ロールにて混線し、冷却、粉砕するこ
とにより得ることができる。
The resin composition of the present invention can be obtained by stirring and mixing each component and additives in a lamixer, mixing with a heated roll, cooling, and pulverizing.

(実施例) 実施例1〜10 表に示した構造の有機シリコーン化合物を表に示した添
加量でそれぞれフェノールノボラック樹脂60重量部、
トリフェニルフォスフイン0.2重量部を140℃−で
6時間反応させ、できた生成物’r: 500 mlの
水によりオートクレーブ中で110℃で6時間抽出する
。抽出残液を80℃、30朋Hgで16時間減圧乾燥し
、ヘンシェルミキサーで粉砕した後、他の材料と表に示
した割合(重量部)で、それぞれミキサーで混合した。
(Example) Examples 1 to 10 60 parts by weight of a phenol novolac resin, 60 parts by weight of an organic silicone compound having the structure shown in the table, and the added amount shown in the table, respectively.
0.2 parts by weight of triphenylphosphine are reacted at 140 DEG C. for 6 hours and the resulting product 'r is extracted with 500 ml of water in an autoclave at 110 DEG C. for 6 hours. The extraction residue was dried under reduced pressure at 80° C. and 30 Hg for 16 hours, pulverized with a Henschel mixer, and then mixed with other materials in the proportions (parts by weight) shown in the table using a mixer.

フェノール樹脂に関しては表釦示した添加量になるよう
に不足分をさらにつけ加えた。その後この混合物乞加熱
ロールで混練し、冷却した後粉砕し、10種類の成形材
料を製造した。
Regarding the phenolic resin, the missing amount was added to the amount shown in the table. Thereafter, this mixture was kneaded with a heating roll, cooled, and then crushed to produce 10 types of molding materials.

比較例1〜8 表に示した各種シリコーン化合物について、表に示した
様な割合で実施例と同様に8種類の成形材料を環遺し、
評価した。その際、製造方法については、比較のため、
表に示した通り、フェノール変性シリコーン化合物の予
備反応や水抽出を実施しないものについ℃も行なった。
Comparative Examples 1 to 8 Regarding the various silicone compounds shown in the table, eight types of molding materials were added in the proportions shown in the table in the same manner as in the examples,
evaluated. At that time, regarding the manufacturing method, for comparison,
As shown in the table, phenol-modified silicone compounds that were not subjected to preliminary reaction or water extraction were also tested at °C.

1)、応力評価 半導体素子にかかる内部応力を評価するためピエゾ抵抗
素子(応力により抵抗値の変化するピエゾ抵抗を半導体
チップに形成したもの)を16ビンDIP型ICのフレ
ームにセットし、各組成物でトランスファー成形し、素
子にかかる応力を抵抗変化より測定した。
1) Stress evaluation In order to evaluate the internal stress applied to the semiconductor element, a piezoresistive element (a piezoresistor whose resistance value changes depending on stress is formed on a semiconductor chip) was set in the frame of a 16-bin DIP type IC, and each composition was The stress applied to the element was measured from the change in resistance.

2)、耐ヒートシヨツク性評価 アイランに?イズ4 X 7.51!11の16ピンリ
ーrフレームを各組成物によりトランスファー成形し、
その16ピンDIP型成形体な一196°Cの液体と+
260℃の液体に50秒ずつ浸漬を繰り返して成形体表
面のクラックの発生率を試料価数50個から求めた。
2) For evaluation of heat shock resistance? A 16-pin R frame with size 4 x 7.51!11 was transfer molded using each composition,
The 16-pin DIP molded body - 196°C liquid and +
The molded product was repeatedly immersed in a liquid for 50 seconds each time, and the crack occurrence rate on the surface of the molded product was determined from 50 samples.

5)、耐湿性評価 各組成物を用い、対向するアルミニウム線の電極を有す
る素子をトランスファー成形し、この封止サンプルにつ
いて、温度125℃、2.5気圧の水蒸気加圧下で、電
極間に直流20Vのバイアス電圧をかけ、時間の経過に
よるアルミニウム線のオープン不良率を試料価数50個
から求めた。このテス) Y BPCT 、(バイアス
プレッシャークツカーテスト)と呼ぶ。また同様にノン
バイアス下でもテストv行ない、このテス) r(PC
T (プレッシャークツカーテスト)と呼ぶ。
5) Moisture resistance evaluation Using each composition, a device having aluminum wire electrodes facing each other was transfer molded, and for this sealed sample, a direct current was applied between the electrodes at a temperature of 125°C and under a steam pressure of 2.5 atm. A bias voltage of 20 V was applied, and the open failure rate of the aluminum wire over time was determined from 50 samples. This test is called Y BPCT (Bias Pressure Test). Similarly, a test v was conducted under non-bias conditions, and this test) r(PC
It is called T (pressure test).

(発明の効果) 以上説明したとおり、本発明は、エポキシ樹脂、フェノ
ール樹脂、充てん剤及びフェノール変性シリコーン化合
物の組成物とすることにより封止成形品の内部応力の低
減、耐湿信頼性向上にすぐれ、しかも成形性と組成物の
強度低下がな(、用途として半導体等の電子部品の封止
にすぐれた効果を発揮するものである。
(Effects of the Invention) As explained above, the present invention provides a composition of an epoxy resin, a phenol resin, a filler, and a phenol-modified silicone compound, which reduces internal stress and improves moisture resistance reliability of a sealed molded product. Furthermore, the moldability and strength of the composition are not reduced (and it exhibits an excellent effect in sealing electronic components such as semiconductors).

特許出願人  電気化学工業株式会社 手続補正書 昭和59年11月2日 1、事件の表示 昭和59年特許願第195826号 2、発明の名称 エポキシ樹脂組成物 6、補正をする者 事件との関係  特許出願人 住所 東京都千代田区有楽町1丁目4番1号明細書の発
明の詳細な説明の欄 5、補正の内容 明細書第14頁の表を別紙のとおり訂正する。
Patent Applicant Denki Kagaku Kogyo Co., Ltd. Procedural Amendment November 2, 1980 1, Indication of the Case 1982 Patent Application No. 195826 2, Name of the Invention Epoxy Resin Composition 6, Person Making the Amendment Relationship to the Case Address of patent applicant: 1-4-1 Yurakucho, Chiyoda-ku, Tokyo The table in column 5 of the detailed description of the invention and page 14 of the detailed description of the amendment is corrected as shown in the attached sheet.

手続補正書 1.事件の表示 昭和59年特許願第195826号 2、発明の名称 エポキシ樹脂組成物 6、補正をする者 事件との関係  特許出願人 住所 東京都千代田区有楽町1丁目4番1号明細書の特
許請求の範囲の欄および発明の詳細な説明の欄 5、補正の内容 1)特許請求の範囲を別紙のとおり訂正する。
Procedural amendment 1. Description of the case 1982 Patent Application No. 195826 2 Name of the invention Epoxy resin composition 6 Person making the amendment Relationship to the case Patent applicant address 1-4-1 Yurakucho, Chiyoda-ku, Tokyo Patent claim in the specification Scope column and Detailed description of the invention column 5, Contents of amendment 1) The scope of claims is corrected as shown in the attached sheet.

る。Ru.

「基、Yは繰り返し単位を有する官能基でオキシプロピ
レン重合体、アクリルアミド重合体、ビニルアルコール
重合体、ジオキンラン重合体を示す。l、m、nは各シ
ロキサン単位の」3)明細書第6頁第1行目の「抽出除
却」を「抽1ゴ 出除去」と証正する。
"The group Y is a functional group having a repeating unit and represents an oxypropylene polymer, an acrylamide polymer, a vinyl alcohol polymer, or a dioquinrane polymer. l, m, and n are each siloxane unit." 3) Specification page 6 Proof that "extraction removal" in the first line is "extraction removal".

4)明細書第8頁最下行目の「耐熱信頼性」を「耐湿信
頼性」と訂正する。
4) "Heat-resistance reliability" on the bottom line of page 8 of the specification is corrected to "humidity-resistance reliability."

(2、 特許請求の範囲 「下記式〔I〕で表わされる有機シリコーン化合物とフ
ェノール樹脂とをあらかじめ無溶剤下で反応させ、未反
応の下記式〔I〕の有機シリコーン化合大 物を水により抽出除却したフェノール変性シリコーン化
合物、エポキシ樹脂、フェノール樹脂及び充てん剤とか
らなる半導体電子部品封止用エポキシ樹脂組成物。
(2. Claims: ``An organic silicone compound represented by the following formula [I] and a phenol resin are reacted in advance in the absence of a solvent, and the unreacted large organic silicone compound represented by the following formula [I] is extracted and removed with water. An epoxy resin composition for encapsulating semiconductor electronic components, comprising a phenol-modified silicone compound, an epoxy resin, a phenol resin, and a filler.

Claims (1)

【特許請求の範囲】 下記式〔 I 〕で表わされる有機シリコーン化合物とフ
ェノール樹脂とをあらかじめ無溶剤下で反応させ、未反
応の下記式〔 I 〕の有機シリコーン化合物を水により
抽出除却したフェノール変性シリコーン化合物、エポキ
シ樹脂、フェノール樹脂及び充てん剤とからなる半導体
電子部品封止用エポキシ樹脂組成物。 ▲数式、化学式、表等があります▼式〔 I 〕 (式 I に於てRは水素、メチル基、エチル基あるいは
フェニル基を示し、Xはエポキシ基含有有機基、Yはポ
リオキシエチレン重合体、ポリオキシプロピレン重合体
、ポリアクリルアミド重合体、ポリビニルアルコール重
合体、ポリジオキソラン重合体を示す。l、m、nは各
シロキサン単位のモル分率を示し、l=0.1〜0.9
8、m=0.01〜0.5、n=0.01〜0.7であ
る。)
[Claims] A phenol-modified product in which an organic silicone compound represented by the following formula [I] and a phenol resin are reacted in advance in the absence of a solvent, and the unreacted organic silicone compound represented by the following formula [I] is extracted and removed with water. An epoxy resin composition for encapsulating semiconductor electronic components, comprising a silicone compound, an epoxy resin, a phenol resin, and a filler. ▲There are mathematical formulas, chemical formulas, tables, etc.▼Formula [I] (In formula I, R represents hydrogen, methyl group, ethyl group, or phenyl group, X represents an epoxy group-containing organic group, and Y represents a polyoxyethylene polymer. , polyoxypropylene polymer, polyacrylamide polymer, polyvinyl alcohol polymer, polydioxolane polymer. l, m, n represent the mole fraction of each siloxane unit, l = 0.1 to 0.9
8, m=0.01-0.5, n=0.01-0.7. )
JP19582684A 1984-09-20 1984-09-20 Epoxy resin composition Granted JPS6173725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19582684A JPS6173725A (en) 1984-09-20 1984-09-20 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19582684A JPS6173725A (en) 1984-09-20 1984-09-20 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPS6173725A true JPS6173725A (en) 1986-04-15
JPH0450925B2 JPH0450925B2 (en) 1992-08-17

Family

ID=16347644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19582684A Granted JPS6173725A (en) 1984-09-20 1984-09-20 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JPS6173725A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101520A (en) * 1984-10-23 1986-05-20 Toshiba Chem Corp Sealing resin composition
JPS6346216A (en) * 1986-04-11 1988-02-27 Mitsubishi Electric Corp Epoxy resin composition for semiconductor sealing use
JPH02173025A (en) * 1988-12-26 1990-07-04 Sumitomo Bakelite Co Ltd Silicone-modified phenolic resin
JPH02202914A (en) * 1989-02-02 1990-08-13 Sumitomo Bakelite Co Ltd Resin composition
JPH02251519A (en) * 1989-03-27 1990-10-09 Sumitomo Bakelite Co Ltd Epoxy resin composition
JPH03719A (en) * 1989-05-29 1991-01-07 Sumitomo Bakelite Co Ltd Resin composition
EP0428871A2 (en) * 1989-11-22 1991-05-29 Sumitomo Bakelite Company Limited Epoxy resin composition for semiconductor sealing
EP0430254A2 (en) * 1989-11-30 1991-06-05 Dow Corning Toray Silicone Company, Limited Curable epoxy resin compositions
US8420744B2 (en) 2009-08-21 2013-04-16 Nippon Soda Co., Ltd. Process for the production of modified polysiloxanes

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261215B2 (en) * 1984-10-23 1987-12-21 Toshiba Chem Prod
JPS61101520A (en) * 1984-10-23 1986-05-20 Toshiba Chem Corp Sealing resin composition
JPH0564990B2 (en) * 1986-04-11 1993-09-16 Mitsubishi Electric Corp
JPS6346216A (en) * 1986-04-11 1988-02-27 Mitsubishi Electric Corp Epoxy resin composition for semiconductor sealing use
JPH02173025A (en) * 1988-12-26 1990-07-04 Sumitomo Bakelite Co Ltd Silicone-modified phenolic resin
JPH02202914A (en) * 1989-02-02 1990-08-13 Sumitomo Bakelite Co Ltd Resin composition
JPH02251519A (en) * 1989-03-27 1990-10-09 Sumitomo Bakelite Co Ltd Epoxy resin composition
JPH03719A (en) * 1989-05-29 1991-01-07 Sumitomo Bakelite Co Ltd Resin composition
US5143951A (en) * 1989-11-22 1992-09-01 Sumitomo Bakelite Company Limited Epoxy resin composition for semiconductor sealing
EP0428871A2 (en) * 1989-11-22 1991-05-29 Sumitomo Bakelite Company Limited Epoxy resin composition for semiconductor sealing
EP0430254A2 (en) * 1989-11-30 1991-06-05 Dow Corning Toray Silicone Company, Limited Curable epoxy resin compositions
EP0430254A3 (en) * 1989-11-30 1992-07-08 Dow Corning Toray Silicone Company, Limited Curable epoxy resin compositions
US8420744B2 (en) 2009-08-21 2013-04-16 Nippon Soda Co., Ltd. Process for the production of modified polysiloxanes

Also Published As

Publication number Publication date
JPH0450925B2 (en) 1992-08-17

Similar Documents

Publication Publication Date Title
US4720515A (en) Epoxy resin composition for encapsulating semiconductor
JPH0627180B2 (en) Epoxy resin composition and semiconductor device
JPS6173725A (en) Epoxy resin composition
JP2003213081A (en) Epoxy resin composition and semiconductor device
JPH0477013B2 (en)
JPS61163927A (en) Epoxy resin composition
JP2626377B2 (en) Epoxy resin composition and semiconductor device
JPH0496929A (en) Epoxy resin composition and semiconductor device
JPH06256364A (en) Organic silicon compound, its production and resin composition containing the same
JPS61264018A (en) Epoxy resin composition
JP3013511B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH062808B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JPS63160254A (en) Semiconductor device
JPH0749465B2 (en) Resin-sealed semiconductor device
JPH01188518A (en) Epoxy resin composition and resin-sealed semiconductor device produced by using same
KR940009422B1 (en) Process for preparation of modifier used with semiconductor and composition thereof
JP2864415B2 (en) Resin composition for semiconductor encapsulation and semiconductor device
JP2003277583A (en) Epoxy resin composition and semiconductor device
JPH10204258A (en) Epoxy resin composition and semiconductor device
JP2687764B2 (en) Resin composition for semiconductor encapsulation
JPH03167250A (en) Epoxy resin composition
JPH03157447A (en) Epoxy resin composition and cured product of epoxy resin
JPH02245055A (en) Sealing resin composition
JPS63183917A (en) Epoxy resin composition
JPH02175717A (en) Epoxy resin composition