JPS6172844A - Control device of engine - Google Patents

Control device of engine

Info

Publication number
JPS6172844A
JPS6172844A JP19362284A JP19362284A JPS6172844A JP S6172844 A JPS6172844 A JP S6172844A JP 19362284 A JP19362284 A JP 19362284A JP 19362284 A JP19362284 A JP 19362284A JP S6172844 A JPS6172844 A JP S6172844A
Authority
JP
Japan
Prior art keywords
engine
sensor
roughness
vibration
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19362284A
Other languages
Japanese (ja)
Other versions
JPH0536621B2 (en
Inventor
Masahiko Matsuura
松浦 正彦
Nobuo Doi
土井 伸夫
Sadashichi Yoshioka
吉岡 定七
Haruo Okimoto
沖本 晴男
Kazuhiko Ueda
和彦 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP19362284A priority Critical patent/JPS6172844A/en
Publication of JPS6172844A publication Critical patent/JPS6172844A/en
Publication of JPH0536621B2 publication Critical patent/JPH0536621B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/042Testing internal-combustion engines by monitoring a single specific parameter not covered by groups G01M15/06 - G01M15/12
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires

Abstract

PURPOSE:To high accurately suppress a vibration, by reducing the vibration of an engine to be suppressed on the basis of an output from a torque sensor only in a low speed and a low load operational range excepting an idle operational range while on the basis of an output from a roughness sensor of vibration sensor or the like in the other operational range. CONSTITUTION:A control device, comparing in a comparison discriminating device 43 an output from a roughness sensor A with a preset reference value, corrects in accordance with the compared result by a control circuit 46 a control value in a memory device 44 storing the control value of a fuel injection quantity or the like preset in accordance with the operational condition of an engine. The above roughness sensor A is constituted by a torque sensor 33 and the other roughness sensor 34. And on the basis of an output from an operational condition detecting means 50, a torque signal from a torque sensor 34, high accurately detecting a roughness condition, is selected by a sensor selecting means 51 and output to the comparison discriminating means 43.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジンのトルク変動に起因するエンジン振
動(ラフネス)を低減抑制するようにしたエンジンの制
御装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in an engine control device that reduces and suppresses engine vibration (roughness) caused by engine torque fluctuations.

(従来の技術) 近年、自動重用エンジンにおいては、エンジンの燃焼室
に供給する混合気の空燃比をリーン側に設定して、燃費
率の向上を図ることが行われる傾向にある。しかるに、
混合気の空燃比を希薄側に設定すると、燃費率が向上す
る反面、エンジンのトルク変動が次第に大きくなってエ
ンジンのラフネス状態が著しくなり、乗心地性が低下す
る。このため、エンジンのトルク変動を小さく抑制しつ
つ燃費率の向上を図る必要がある。
(Prior Art) In recent years, there has been a trend in heavy-duty automatic engines to set the air-fuel ratio of the air-fuel mixture supplied to the combustion chamber of the engine on the lean side in order to improve the fuel efficiency. However,
When the air-fuel ratio of the air-fuel mixture is set to the lean side, the fuel efficiency improves, but on the other hand, engine torque fluctuations gradually increase, the roughness of the engine becomes significant, and ride comfort deteriorates. Therefore, it is necessary to improve fuel efficiency while suppressing engine torque fluctuations.

そこで、従来、例えば特公昭56−33571号公報に
開示されるものでは、エンジン回転数を検出する回転数
センサを設け、エンジン回転数が所定値以上でトルク変
動が小さいときには、エンジンに供給する空気量を増大
させて空燃比をりmンにする一方、エンジン回転数が所
定値未満のときつまりエンジン失火に起因してトルク変
動が増大しようとするときには、エンジンに供給する空
気量を低減し空燃比をリッチにして、トルク変動を小さ
くすることにJζす、エンジンのトルク変動を抑制しつ
つ空燃比を可及的にリーン側に設定して、良好な乗心地
性の確保と燃費率の向上との両立を図るようになされて
いる。そして、エンジンの振動を検出するセンサ(いわ
ゆるラフネスセンサ)としては上記の如き回転数センサ
の他に、エンジンのトルクを検出するトルクセンサやエ
ンジンの振動自体を検出する振動センサ等を用いること
が知られている。
Therefore, conventionally, for example, in the system disclosed in Japanese Patent Publication No. 56-33571, a rotation speed sensor is provided to detect the engine rotation speed, and when the engine rotation speed is above a predetermined value and the torque fluctuation is small, air is supplied to the engine. On the other hand, when the engine speed is less than a predetermined value, that is, when the torque fluctuation is about to increase due to engine misfire, the amount of air supplied to the engine is reduced and the air-fuel ratio is reduced. Make the fuel ratio rich and reduce torque fluctuations. Set the air-fuel ratio as lean as possible while suppressing engine torque fluctuations to ensure good ride comfort and improve fuel efficiency. It is designed to be compatible with both. As sensors for detecting engine vibrations (so-called roughness sensors), in addition to the rotational speed sensor described above, it is known that a torque sensor for detecting engine torque and a vibration sensor for detecting engine vibrations themselves are used. It is being

(発明が解決しJ:うとする問題点) ところで、上記複数種類のラフネスセンサのうち何れを
採用するかについては、エンジンのトルク変動に起因す
るエンジン振動の低減抑制という本来の目的からトルク
センサを選択するのが望ましいと考えられる。
(Problems to be Solved by the Invention) By the way, as for which of the plurality of roughness sensors mentioned above to adopt, it is important to consider whether a torque sensor should be used for the original purpose of reducing and suppressing engine vibrations caused by engine torque fluctuations. It is considered desirable to select

しかるに、このようにトルクセンサを選択した場合、そ
の検出精度を仔細に見ると、アイドル運転域を除く低回
転・低負荷運転域では高い精度が得られるものの、アイ
ドル運転域ではトルクが小さいのに起因してその検出精
度は低下し、他の振動センサ等に比べて悪くなる。また
、高回転・高負荷運転域では燃料増間により燃焼が緩慢
になりトルク変動が小さくなること、慣性力の増大に起
因してトルク変動の検出が困難になること、タイヤがス
ピンし易くなりトルク変動の検出が不正確になること等
により、検出精度は低下して他の振動はンサ等に比べて
悪くなる。このため、トルクセンサを全運転域で使用し
た場合には、アイドル、運転時および高回転・高負荷運
転時においてはエンジン振動の低減効果および燃費性の
向上効果を安定して十分に発揮し得なくなるという問題
がある。
However, when a torque sensor is selected in this way, if we look closely at its detection accuracy, we find that although high accuracy is obtained in low rotation/low load operating ranges excluding the idling operating range, the torque is small in the idling operating range. As a result, the detection accuracy is lowered and is worse than that of other vibration sensors. Additionally, in high-speed, high-load operating ranges, increased fuel consumption slows down combustion and reduces torque fluctuations, increases inertia, makes it difficult to detect torque fluctuations, and makes tires more likely to spin. Due to inaccurate detection of torque fluctuations, the detection accuracy is lowered and other vibrations are worse than with sensors or the like. Therefore, if the torque sensor is used in all operating ranges, it will not be able to stably and fully demonstrate the effect of reducing engine vibration and improving fuel efficiency during idling, driving, and high-speed/high-load operation. The problem is that it disappears.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、トルクセンサの検出信号に基づくエンジン振動の
低減抑制をその検出精度の高いエンジン運転域(つまり
アイドル運転域を除く低回転・低負荷運転域)に特定制
限し、他の運転域ではトルクセンサJ:りも検出精痘の
高い振動センサ等の検出信号に基づいてエンジン振動を
低減抑制することにJ:す、エンジンの全運転域でエン
ジン振動の低減抑制と燃費性の向上とを安定確保するこ
とにある。
The present invention has been made in view of the above, and its purpose is to reduce and suppress engine vibration based on the detection signal of the torque sensor in the engine operating range where the detection accuracy is high (i.e., low rotation speeds excluding the idling operating range). In other operating ranges, engine vibration is reduced and suppressed based on detection signals from high vibration sensors such as torque sensors. The objective is to stably reduce engine vibration and improve fuel efficiency in the driving range.

(問題点を解決するための手段) 上記目的を達成するため、本和明の解決手段は、第1図
に示すJ:うに、エンジン振動を抑制するエンジンの制
御装置、つまりエンジンの運転状態に応じて予めにQ定
された燃料噴11)J量などのエンジン制御用の制御値
を記憶している記憶波@44と、エンジンのラフネス状
態を検出するラフネスセンサ八と、該ラフネスセンサA
の出力を予め設定された基tII′(11′Iと比較す
る比較判別装置43と、該比較判別装置43の出力を受
けて上記記憶装置44の制御値を補正する制御回路46
とを設【プたエンジンの制御装置において、上記ラフネ
スセンサAを、少なくともトルクセンサ34を含む複数
個のセンサ33,34で構成するとともに、エンジンの
運転状態を検出する運転状態検出手段50と、該運転状
態検出手段50の出力を受け、アイドル運転域を除く低
回転・低負荷運転域では上記ラフネスセンサAのうちト
ルクセンサ34のトルク信号を選択して比較判別手段4
3に出)jするセンサ選択手段51とを設ける構成とし
たものである。
(Means for Solving the Problems) In order to achieve the above object, Kazuaki's solution is based on the engine control device that suppresses engine vibrations, that is, the engine operating state. 11) A memory wave @ 44 that stores control values for engine control such as the fuel injection Q determined in advance, a roughness sensor 8 that detects the roughness state of the engine, and the roughness sensor A.
a comparison/discrimination device 43 that compares the output of tII'(11'I) with a preset base tII'(11'I); and a control circuit 46 that receives the output of the comparison/discrimination device 43 and corrects the control value of the storage device 44.
In the engine control device, the roughness sensor A is composed of a plurality of sensors 33 and 34 including at least a torque sensor 34, and an operating state detection means 50 for detecting the operating state of the engine; Upon receiving the output of the operating state detecting means 50, the torque signal of the torque sensor 34 of the roughness sensor A is selected in the low rotation/low load operating range excluding the idling operating range, and the comparison/discrimination means 4 selects the torque signal of the torque sensor 34 of the roughness sensor A.
3) j sensor selection means 51 is provided.

(作用) 上記構成にJ:す、本発明では、アイドル運転域を除く
低回転・低負荷運転域においてはそのときのエンジン振
動(ラフネス状態)を高精度に検出するトルクセンサが
用いられて、その検出信号に基づいてエンジン振動が低
減抑制され、他のアイドル運転域や高回転・高負荷運転
域では検出精度の劣る上記トルクセンサに代わって振動
センサ等の他のラフネスセンサが用いられて、その検出
信号に基づいてエンジン振動が低減抑制されることによ
り、エンジンの全運転域に亘ってエンジンのラフネス状
態が高精度に正確に検出されることになり、エンジン振
動の低減抑制と燃費性の向上とが全運転域で安定して得
られるのである。
(Function) Based on the above configuration, in the present invention, a torque sensor is used to detect the engine vibration (roughness state) with high accuracy in the low rotation/low load operating range excluding the idling operating range, Based on the detection signal, engine vibration is reduced and suppressed, and in other idle operating ranges and high rotation/high load operating ranges, other roughness sensors such as vibration sensors are used in place of the torque sensor, which has poor detection accuracy. By reducing and suppressing engine vibration based on the detection signal, the roughness state of the engine can be detected with high accuracy over the entire operating range of the engine, thereby reducing and suppressing engine vibration and improving fuel efficiency. The improvement can be stably obtained over the entire operating range.

(実施例) 以下、本発明の実施例を第2図以下の図面に基づいて詳
細に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings from FIG. 2 onwards.

第2図において、1はエンジン、2はエンジン1のシリ
ンダ3に摺動自在に嵌挿したピストン4にJ:り形成さ
れた燃焼室、5は一端が大気に連通し他端が燃焼室2に
開口して吸気を供給するための吸気通路であって、該吸
気通路5の途中には吸入空気量を制御するスロットル弁
6と、該スロットル弁6下流側において燃料を噴射供給
する燃料噴射弁7が配設されているとともに、燃焼室2
への間口部には吸気弁8が配置されている。また、9は
一端が燃焼室2に開口し他端が大気に開放されて排気を
排出するための排気通路であって、該排気通路9の燃焼
室2への開口部には排気弁10が配置されているととも
に、該排気通路9の途中には排気ガス浄化用の触媒装置
11が介設されている。尚、15は吸気通路5のスロッ
トル弁6をバイパスするバイパス通路16に介設されて
アイドル運転時に吸入空気量を増大させるバイパスパル
ブ、17は排気通路9の排気ガスの一部を吸気通路5の
スロットル弁6下流側に還流させる排気還流通路18に
介設された還流制御バルブ、19は該還流制御バルブ1
7を作動制御する電磁弁、20はディストリビュータ、
21はイグニッションコイル、22はバッテリ、23は
キースイッチ、24はスタータである。
In FIG. 2, 1 is an engine, 2 is a combustion chamber formed by a piston 4 that is slidably inserted into a cylinder 3 of the engine 1, and 5 is a combustion chamber 2 with one end communicating with the atmosphere and the other end. An intake passage opens to supply intake air, and in the middle of the intake passage 5 there is a throttle valve 6 for controlling the amount of intake air, and on the downstream side of the throttle valve 6 there is a fuel injection valve for injecting and supplying fuel. 7 is arranged, and the combustion chamber 2
An intake valve 8 is arranged at the frontage of the engine. Reference numeral 9 denotes an exhaust passage with one end opening into the combustion chamber 2 and the other end opening to the atmosphere for discharging exhaust gas, and an exhaust valve 10 is provided at the opening of the exhaust passage 9 to the combustion chamber 2. A catalyst device 11 for purifying exhaust gas is interposed in the middle of the exhaust passage 9. Reference numeral 15 denotes a bypass valve which is interposed in a bypass passage 16 that bypasses the throttle valve 6 of the intake passage 5 and increases the amount of intake air during idle operation, and 17 supplies a part of the exhaust gas from the exhaust passage 9 to the intake passage 5. The recirculation control valve 19 is interposed in the exhaust recirculation passage 18 for recirculating the exhaust gas to the downstream side of the throttle valve 6;
7 is a solenoid valve that controls the operation; 20 is a distributor;
21 is an ignition coil, 22 is a battery, 23 is a key switch, and 24 is a starter.

また、30は吸入空気量を計測するエアフローセンサ、
31は吸気通路5のスロットル弁6下流側の吸気負圧を
検出するブーストセンサ、32はスロットル弁6の聞麿
を検出するスロットル開度センサ、33はエンジン1の
振動を検出する第1のラフネスセンサとしての振動セン
サ、34はエンジン1の出ノ〕軸に配設されてエンジン
1のトルクを検出する第2のラフネスセンサとしてのト
ルクセンサ、35はエンジン冷却水温を検出する水温セ
ンサ、36はクランク角の検出によりエンジン回転数を
検出する回転数センサ、37は触媒温度を検出する触媒
センサ、38は排気ガス中の酸素濃度成分により空燃比
を検出する02センサ、39は)!流制御バルブ17の
開度を検出するポジションセンサであって、上記ブース
トセンサ31と回転数センサ36とによりエンジン1の
運転状態を検出でるようにした運転状態検出手段50を
構成している。そして、上記各センサ30〜39の各検
出信号はCPUを備えたコントロールユニット40に入
力されている。
In addition, 30 is an air flow sensor that measures the amount of intake air;
31 is a boost sensor that detects the intake negative pressure on the downstream side of the throttle valve 6 in the intake passage 5; 32 is a throttle opening sensor that detects the openness of the throttle valve 6; and 33 is a first roughness sensor that detects vibrations of the engine 1. A vibration sensor 34 is a second roughness sensor disposed on the output shaft of the engine 1 and detects the torque of the engine 1. 35 is a water temperature sensor that detects the engine cooling water temperature. A rotation speed sensor detects the engine speed by detecting the crank angle, 37 is a catalyst sensor that detects the catalyst temperature, 38 is an 02 sensor that detects the air-fuel ratio based on the oxygen concentration component in the exhaust gas, and 39 is)! It is a position sensor that detects the opening degree of the flow control valve 17, and constitutes an operating state detection means 50 that can detect the operating state of the engine 1 using the boost sensor 31 and the rotation speed sensor 36. Each detection signal from each of the sensors 30 to 39 is input to a control unit 40 including a CPU.

上記コントロールユニット40は、第3図に示すように
その内部に、振動センサ33およびトルクセンサ34か
らの検出信号の何れか一方を運転状態検出手段50から
のエンジン運転状態信号に応じて選択する本発明の構成
上重要なセンサ選択手段51と、該センサ選択手段51
からの選択されたラフネス信号を積分してA/D変換す
る積分器41と、該積分器41からのラフネス信号を基
準値設定器42で設定される基準値と大小比較すル比較
判別手段としての差動増幅器43とを備工ているととも
に、予め基本燃料噴射ff1T(エンジン制御用の制御
値)がエンジン回転数と吸入空気量とで定まるエンジン
運転状態に応じてマツプ化−〇  − されて記憶されている記憶装置としてのRAM44と、
上記回転数センサ36およびエア70−センサ30から
の信号を受けて現在のエンジン運転状態に対応する基本
燃料噴射量TをRAM44から読み出す基本燃料噴tJ
J量演算装置45と、該演算装置45の基本燃料噴射量
Tを上記差動増幅器43からの出力信号並びに水温セン
サ35およびo2センサ38からの出力信号に基づいて
補正する制御回路46と、該制御回路46で補正された
補正燃料噴射IT’を噴射供給するよう燃料噴射弁7を
作動制御する出力手段47とを備えている。
As shown in FIG. 3, the control unit 40 has a built-in book that selects one of the detection signals from the vibration sensor 33 and the torque sensor 34 according to the engine operating state signal from the operating state detecting means 50. Sensor selection means 51 which is important in the structure of the invention, and the sensor selection means 51
an integrator 41 that integrates and A/D converts a roughness signal selected from the integrator 41, and a comparison/discrimination means that compares the roughness signal from the integrator 41 with a reference value set by a reference value setting device 42; In addition, the basic fuel injection ff1T (control value for engine control) is mapped in advance according to the engine operating state determined by the engine speed and the intake air amount. A RAM 44 as a storage device in which data is stored;
Basic fuel injection tJ that reads out the basic fuel injection amount T corresponding to the current engine operating state from the RAM 44 in response to the signals from the rotation speed sensor 36 and the air 70-sensor 30.
J amount calculating device 45; a control circuit 46 that corrects the basic fuel injection amount T of the calculating device 45 based on the output signal from the differential amplifier 43 and the output signals from the water temperature sensor 35 and the O2 sensor 38; The fuel injection valve 7 is provided with an output means 47 for controlling the operation of the fuel injection valve 7 so as to inject and supply the corrected fuel injection IT' corrected by the control circuit 46.

そして、上記センサ選択手段51は、予め第4図に示す
ようにエンジン運転状態を4つに区分した。アイドル運
転域、該アイドル運転域を除く低回転・低負荷運転域、
燃料カット域並びに高回転・高負荷運転域を内部に記憶
している。
The sensor selection means 51 previously classifies the engine operating states into four categories as shown in FIG. Idle operating range, low rotation/low load operating range excluding the idle operating range,
The fuel cut range and high rotation/high load operation range are stored internally.

次に、上記コントロールユニット40の基本的な作動を
第5図のフローチャートに基づいて説明する。先ず、ス
テップS1でイニシャライズしたのち、ステップS2で
振動センサ33からのエンジン振動信号Rとトルクセン
サ34からのトルク信@qとを読込むとともに、エンジ
ン回転数および吸入空気量の各信号を読込んで現在のエ
ンジン運転状態を判別し、ステップS3で現在のエンジ
ン運転状態に対応する基本燃判噴tJJfflTeRA
M44から読み出ず。
Next, the basic operation of the control unit 40 will be explained based on the flowchart shown in FIG. First, after initialization in step S1, in step S2, the engine vibration signal R from the vibration sensor 33 and the torque signal @q from the torque sensor 34 are read, as well as the engine rotational speed and intake air amount signals. In step S3, the basic fuel injection tJJfflTeRA corresponding to the current engine operating state is determined.
Cannot read from M44.

しかる後、上記基本燃料哨tJJ量Tをエンジン運転状
態に応じて補正すべく、ステップ$4で現在のエンジン
運転状態が予め記憶したアイドル運転域にあるか否かを
判別し、アイドル運転域にあるYESの場合にはステッ
プS5において振動センサ33からのエンジン振動信号
Rをラフネス信号として選択し、これを基準値設定器4
2におけるアイドル運転域での基準値「電(第6図(イ
)参照)と大小比較してその偏差X(=R−r+)を演
算する。そして、ステップS6で該偏差×がrOJ以上
か否かを判別し、x<QのNoの場合げ    にはエ
ンジン振動が小さく良好であると判断して、ステップS
7で燃料低減m X +を次式 X+ =X1→−IX
I ・6丁(八Tは補正率)で演算して燃=  11 
− 判低減量を増大したのち、ステップSoで補正燃料噴射
量T′を次式 T−T−X+で演算して減量する。一方
、×≧OのYESの場合にはエンジン振動が大きいと判
断して燃料噴tA量を増量方向に補正すべく、ステップ
S8で燃料低減I X +を次式 X+ =X+ −X
 ・ΔTで演算して燃料低減量を減少補正したのち、さ
らにステップS9で燃料低減Jet X +が「0」以
上か否かを判別し、×1≧0のYESの場合には基本燃
料噴射量Tまでの増量側補正であると判断してステップ
S ++で補正燃料噴射jitT’を前回よりも増量す
る一方、X+〈0のNoの場合には基本燃料噴射In下
を越えた増量補正になると判断してステップShoで燃
料低減I X IをrOJに再補正して、ステップS+
+で補正燃料噴!)l邑T′を旙本燃料噴射量Tに設定
する。
Thereafter, in order to correct the basic fuel amount tJJ amount T according to the engine operating state, it is determined in step $4 whether the current engine operating state is in the pre-stored idle operating range, and the engine is adjusted to the idle operating range. In a certain case of YES, the engine vibration signal R from the vibration sensor 33 is selected as a roughness signal in step S5, and this is selected as the roughness signal by the reference value setting device 4.
The deviation X (=R-r+) is calculated by comparing the magnitude with the reference value "Electricity" (see Figure 6 (a)) in the idle operating range in step S6. Then, in step S6, it is determined whether the deviation If x<Q is No, it is determined that the engine vibration is small and good, and step S is performed.
7, the fuel reduction m
I ・Calculate with 6 guns (8 T is correction factor) and get fuel = 11
- After increasing the size reduction amount, in step So, the corrected fuel injection amount T' is calculated by the following formula T-T-X+ and reduced. On the other hand, in the case of YES (×≧O), it is determined that the engine vibration is large, and in order to correct the fuel injection amount tA in the direction of increase, the fuel reduction I
- After correcting the fuel reduction amount by calculating with ΔT, it is further determined in step S9 whether the fuel reduction Jet It is judged that the correction is on the increasing side up to T, and the correction fuel injection jitT' is increased from the previous time in step S++, while if X+<0 is No, the increase correction exceeds the basic fuel injection In. After making a judgment, the fuel reduction I
Correct fuel injection with +! ) Set T' to the actual fuel injection amount T.

その後、ステップ812で後述する低回転・低負荷運転
域および高回転・高負荷運転域での燃料低減IIXz、
Xsを「0」にクリアしたのち、ステップS 13で燃
料噴射タイミングを持ってステップ814で上記補正燃
料噴cN量T′を噴射供給するよう燃料噴射弁7を出力
処理してステップs2に戻る。
After that, in step 812, fuel reduction IIXz in a low rotation/low load operating range and a high rotation/high load operating range, which will be described later, is performed.
After clearing Xs to "0", the fuel injection timing is determined in step S13, and in step 814, the fuel injection valve 7 is outputted so as to inject and supply the corrected fuel injection cN amount T', and the process returns to step s2.

また、上記ステップS4でアイドル運転域にないNOの
場合には、ステップS +sで燃料カット域にあるか否
かを判別し、燃料カット域にないNOの場合はさらにス
テップ816で低回転・低負荷運転域(アイドル運転域
を除く)にあるが否かを判別し、該運転域にあるYES
の場合にはステップ817でトルクセンサ34からのト
ルク信号qをラフネス信号として選択したのち、これの
前回と今回との偏差Q’  (=Q  (n ) −Q
  (n −+ )を演算する。そして、ステップS 
+6で該偏差q′が大きなエンジン振動の発生時に相当
する基準ll1Q。
Further, if NO in step S4, which is not in the idle operation range, it is determined in step S+s whether or not the engine is in the fuel cut range, and if NO, in the case of NO, which is not in the fuel cut range, further proceeds to step 816, where the engine is running at low speed and low speed. Determine whether it is in the load operating range (excluding the idle operating range), and if it is in the operating range YES
In this case, in step 817, the torque signal q from the torque sensor 34 is selected as the roughness signal, and then the deviation Q' (=Q (n) - Q
(n −+ ) is calculated. And step S
The reference ll1Q is +6 and the deviation q' corresponds to the occurrence of large engine vibration.

(第6図(ロ)参照)以上か否かを判別し、1q’−〇
〇I<OのNoの場合にはエンジン振動が小さく良好で
あると判断してステップ81Bで燃料低減量X2を次式
 X2−X;r + I t I・ΔT(t−1q’ 
−qo l)で演算して燃料低減量を増大したのち、ス
テップ823で補正燃料噴射量T′を次式 T’=T−
X2で演算して減量する。
(Refer to Figure 6 (B)) It is determined whether or not the above is satisfied, and if 1q'-〇〇I<O, it is determined that the engine vibration is small and good, and the fuel reduction amount X2 is determined in step 81B. The following formula X2-X; r + I t I・ΔT(t-1q'
-qo l) and increase the fuel reduction amount, in step 823, the corrected fuel injection amount T' is calculated using the following formula: T'=T-
Calculate with X2 to reduce the amount.

一方、上記ステップS +eでlq’−qol≧OのY
ESの場合にはエンジン振動が大きいと判断して燃料噴
射量を増量方向に補正すべく、ステップ820で燃料低
減Mk X 2を次式 X2 =X2−j ・ΔTで演
算して燃料低減量を減少補正したのち、さらにステップ
821でこの燃料低減量×2が「0」以上か否かを判別
し、×2≧0のYESの場合には基本燃料噴射量Tまで
の増量側補正であると判断して、ステップ823で補正
燃料噴射量を前回よりも増量し、X2 <OのNoの場
合には基本燃料噴射ITを越えた増量補正になると判断
して、ステップ822で燃料低減量×2をrOJに再補
正してステップ823で補正燃料噴射IT’を基本燃料
噴射量Tに設定する。しかる後、ステップS 24でア
イドル運転域および高回転・高負荷運転域における燃料
低減量X+ 、XaをrOJにリセットしたのちステッ
プS+s、S+<に戻って所定の燃料噴射タイミングで
燃料を噴射供給してステップS2に戻る。
On the other hand, in the above step S +e, Y of lq'-qol≧O
In the case of ES, it is determined that the engine vibration is large, and in order to correct the fuel injection amount in the direction of increasing it, in step 820, the fuel reduction Mk After the reduction correction, it is further determined in step 821 whether or not this fuel reduction amount x 2 is greater than "0", and if x 2 ≧ 0 (YES), it is determined that the correction is on the increase side up to the basic fuel injection amount T. Then, in step 823, the corrected fuel injection amount is increased from the previous time, and if X2 < O, it is determined that the increased correction exceeds the basic fuel injection IT, and in step 822, the fuel injection amount is increased by 2. is re-corrected to rOJ, and in step 823, the corrected fuel injection IT' is set to the basic fuel injection amount T. Thereafter, in step S24, the fuel reduction amounts X+ and Xa in the idle operating range and high rotation/high load operating range are reset to rOJ, and then the process returns to steps S+s and S+< to inject and supply fuel at a predetermined fuel injection timing. Then, the process returns to step S2.

同様に、上記ステップ816で低回転・低負荷運転域に
ないNoの場合には高回転・高負荷運転域にあると判断
して、ステップ825で今度は振動センサ33からのエ
ンジン振動信号Rをラフネス信号として選択したのち、
これを基準値設定器42における高回転・高負荷運転域
での基準値r2(r、、>rl、第6図(ハ)参照)と
大小比較してその偏差X(−Rr2)を演算する。しか
る後、ステップ82+1で該偏差×がrOJ以上か否か
を判別し、×くOのNOの場合にはエンジン振動が小さ
く良好であると判断して、ステップS 27で燃It低
減IA X gを次式 ×3−×3+1×1・八Tで演
算して燃料低減量を増大したのち、ステップS3+で補
正燃料噴tA量T′を次式 T’ =T−×3で演算し
て8i量する。一方、上記ステップS囚で×≧0のYE
Sの場合にはエンジン振動が大きいと判断して燃料噴射
量を増量方向に補正すべく、ステップ828で燃料低減
fl X 3を次式X3=X3−X ・ΔTで演算して
燃料低減量を減少補正したのち、ステップ829でさら
に該燃料低減JIX3がrOJ以上か否かを判別し、×
3≧OのYESの場合には基本燃料噴射ITまでの増量
側補正であると判断してステップS 31で補正燃料噴
tA量T′を前回よりも増量し、X3 <OのNOの場
合には基本燃料噴射量Tを越えた増量補正になると判断
してステップS31+で燃料低減量×3を「0」に再補
正して、ステップS3+で補正燃料噴射量T′を基本燃
お1噴射邑王に設定する。その後、ステップ832でア
イドル運転域および低回転・低負荷運転域における燃料
低減量X+ 、X2をrOJにリセットしたのち、ステ
ップSI3.8I4に戻って所定の燃料噴射タイミング
で燃料を噴射供給してステップS2に戻る。
Similarly, in the case of No in step 816, which is not in the low rotation/low load operating range, it is determined that the engine is in the high rotation/high load operating range, and in step 825, the engine vibration signal R from the vibration sensor 33 is detected. After selecting it as a roughness signal,
This is compared in size with the reference value r2 (r, , >rl, see FIG. 6 (c)) in the high rotation/high load operating range in the reference value setter 42, and the deviation X (-Rr2) is calculated. . Thereafter, in step 82+1, it is determined whether the deviation x is equal to or greater than rOJ. If the answer is NO, it is determined that the engine vibration is small and the engine is good, and in step S27, the fuel consumption reduction IA After increasing the fuel reduction amount by calculating with the following formula ×3-×3+1×1·8T, in step S3+, calculate the corrected fuel injection amount T' with the following formula T' = T-×3 to obtain 8i Measure. On the other hand, in the above step S prisoner, YE with ×≧0
In the case of S, it is determined that the engine vibration is large, and in order to correct the fuel injection amount in the direction of increasing it, in step 828, the fuel reduction fl X 3 is calculated using the following formula: After the reduction correction, it is further determined in step 829 whether the fuel reduction JIX3 is equal to or greater than rOJ, and ×
If 3≧O, YES, it is determined that the correction is to increase up to the basic fuel injection IT, and in step S31, the corrected fuel injection tA amount T' is increased from the previous time, and if X3<O, NO, then is determined to be an increase correction that exceeds the basic fuel injection amount T, and in step S31+, the fuel reduction amount x 3 is corrected again to "0", and in step S3+, the corrected fuel injection amount T' is changed to the basic fuel injection amount. Set to king. After that, in step 832, the fuel reduction amounts X+ and X2 in the idle operating range and low rotation/low load operating range are reset to rOJ, and then the process returns to step SI3.8I4 to inject and supply fuel at a predetermined fuel injection timing. Return to S2.

一方、上記ステップS +sで燃料カット域にあるYE
Sの場合には、ステップ833で全ての燃料低減量X+
 、X2 、X3を「0」にリセットしたのち、直ちに
ステップS2に戻る。
On the other hand, YE in the fuel cut region in step S+s above
In the case of S, in step 833 all fuel reduction amounts X+
, X2, and X3 to "0", the process immediately returns to step S2.

よって、上記ステップ816でエンジン運転状態が低回
転・低負荷運転域(アイドル運転域を除く)にあると判
断されたときには、ステップSayでトルクセンサ34
からのトルク信号qを選択して、これの前回と今回との
偏差q′をステップSzaでの基準1flqoとの大小
比較に供するようにしたセンサ選択手段51を構成して
いる。
Therefore, when it is determined in step 816 that the engine operating state is in the low rotation/low load operating range (excluding the idling operating range), the torque sensor 34 is activated in step Say.
The sensor selection means 51 is configured to select the torque signal q from , and compare the deviation q' between the previous time and the current time with the reference 1flqo in step Sza.

したがって、上記実施例においては、第6図(イ)〜(
ハ)に示すように、エンジン振動が各エンジン運転域に
応じた基準値’I+Qo+r2に収束制御されるので、
エンジン振動が小さく抑制されつつ、燃料消費量が各エ
ンジン運転域毎にそれぞれ基本燃料噴射量Tから基準値
rl+QO+r2に対応する燃料噴射量T+ 、T2 
、Taまでの最T−T+ 、 T−T2 、 T−Ts
だけ低減されて、燃費性の向上が図られることになる。
Therefore, in the above embodiment, FIGS.
As shown in c), since the engine vibration is controlled to converge to the reference value 'I+Qo+r2 according to each engine operating range,
The fuel injection amounts T+, T2 correspond to the basic fuel injection amount T to the reference value rl+QO+r2 for each engine operating range while engine vibration is suppressed to a small level.
, maximum T-T+ up to Ta, T-T2, T-Ts
This results in an improvement in fuel efficiency.

その際、第6図(ロ)に示す低回転・低負荷運転時(ア
イドル運転時を除く)には該運転域で検出精度の高いト
ルクセンサ34からのトルク信号に基づいてエンジン振
動が基準値qOに低減抑制されるとともに、アイドル運
転時および高回転・高負荷運転時には検出精度が劣る上
記トルクセンサ34に代わってそれよりも検出精度の高
い振動センサ33からのエンジン振動信号に基づいてエ
ンジン振動が対応する基準値rl、r2に低減抑制され
るので、エンジン運転状態に拘わらず常にエンジン振動
を上記基準値r1.qo、rzに正確に低減抑制できる
とともに、それに伴い燃料噴射量を基準値r l + 
q o + r 2に対応するリーン側の値T+ 、T
2 、T3に正確に制御することができ、よってエンジ
ン振動の低減抑制と燃費性の向上との両立を安定して図
ることができる。
At that time, during low rotation/low load operation (excluding idling operation) shown in Fig. 6 (b), the engine vibration is at the reference value based on the torque signal from the torque sensor 34, which has high detection accuracy in the operating range. qO, and engine vibration is detected based on the engine vibration signal from the vibration sensor 33, which has a higher detection accuracy than the torque sensor 34, which has a lower detection accuracy during idling operation and high rotation/high load operation. are reduced to the corresponding reference values rl, r2, so engine vibrations are always reduced to the reference values r1.r2, regardless of the engine operating state. It is possible to accurately reduce the amount of fuel injection to qo and rz, and accordingly reduce the fuel injection amount to the reference value r l +
Lean side values T+, T corresponding to q o + r 2
2, T3 can be accurately controlled, and therefore it is possible to stably achieve both reduction and suppression of engine vibration and improvement of fuel efficiency.

尚、上記実施例では、アイドル運転時におけるエンジン
振動の低減抑制を振動センサ33からのエンジン振動信
号Rに基づいて行うようにしたが、その他、回転数セン
サ36からのエンジン回転数信号(クランク角信号)に
基づいて行っても良い。
In the above embodiment, the engine vibration during idling is suppressed to be reduced based on the engine vibration signal R from the vibration sensor 33. signal).

しかし、エンジン1の回転数は回転数センサ36からの
エンジン回転数信号の受信周期から演算して算出される
関係上、これを行うべく第5図の制御フローチャートに
割込む必要がある。したがって、高回転・高負荷運転時
においては、その割込回数が増大して補正燃料噴tA量
などの主要な演悴の遅延を生じるため、上記振動センサ
33を使用する方が好ましい。
However, since the rotational speed of the engine 1 is calculated from the reception period of the engine rotational speed signal from the rotational speed sensor 36, it is necessary to interrupt the control flowchart of FIG. 5 to perform this. Therefore, during high-speed, high-load operation, the number of interruptions increases, causing a delay in major performance such as the corrected fuel injection amount tA, so it is preferable to use the vibration sensor 33.

□また、上記実施例では、エンジンに噴射供給する燃料
量を補正制御することにより燃費性の向上を図るように
したが、その他、エンジン制御用の制御値としてエンジ
ンの点火時期を選び、これを申独で又は燃判噴Dj f
lと共に補正制御することにより燃費性の向上を図るよ
うにしてもよいのは勿論である。
□In addition, in the above embodiment, the fuel efficiency was improved by correcting and controlling the amount of fuel injected to the engine, but in addition, the engine ignition timing was selected as a control value for engine control, and this Shin-Germany or a firestorm Dj f
Of course, it is also possible to improve fuel efficiency by performing correction control together with l.

(発明の効果) 以上説明したように、本発明のエンジンの1lilJ御
装置によれば、アイドル運転域を除く低回転・低負荷運
転域においてのみトルクセンサからの検出信号に基づき
、他の運転域では振動センサ等の他のラフネスセンサの
検出信号に基づいてエンジン振動を低減抑制するように
したので、全エンジン運転域でエンジン振動の低減抑制
を高精麿に行う1    ことができ、よってエンジン
振動の低減抑制と、燃費性の向−ヒとの両立を安定して
図ることができるものである。
(Effects of the Invention) As explained above, according to the engine 1lilJ control device of the present invention, based on the detection signal from the torque sensor only in the low rotation/low load operating range excluding the idling operating range, Since engine vibration is reduced and suppressed based on detection signals from other roughness sensors such as vibration sensors, engine vibration can be reduced and suppressed with high precision in all engine operating ranges. Therefore, it is possible to stably achieve both suppression of reduction in fuel consumption and improvement of fuel efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図、第2図〜第6
図は本発明の実施例を示し、第2図は全体構成図、第3
図はコントロールユニットの内部構成を示すブロック図
、第4図はセンサ選択手段の記憶内容を示す図、第5図
はコントローラの作動を示すフローチャート図、第6図
(イ)〜(ハ)は作動説明図である。 1・・・エンジン、33・・・振動センサ(ラフネスセ
ンサ)、34・・・トルクセンサ(ラフネスセンサ)、
43・・・差動増幅器(比較判別装置)、44・・・R
AM(記憶装置)、46・・・制御回路、50・・・運
転状態検出手段、51・・・センサ選択手段。 特開昭G1−72844(8) 1緘clI(K町護距)
Figure 1 is a block diagram showing the configuration of the present invention, Figures 2 to 6
The figures show an embodiment of the present invention, and Fig. 2 is an overall configuration diagram, and Fig. 3 is an overall configuration diagram.
Figure 4 is a block diagram showing the internal configuration of the control unit, Figure 4 is a diagram showing the memory contents of the sensor selection means, Figure 5 is a flowchart diagram showing the operation of the controller, and Figures 6 (a) to (c) are operations. It is an explanatory diagram. 1... Engine, 33... Vibration sensor (roughness sensor), 34... Torque sensor (roughness sensor),
43...Differential amplifier (comparison/discrimination device), 44...R
AM (memory device), 46... control circuit, 50... operating state detection means, 51... sensor selection means. Unexamined Japanese Patent Publication Showa G1-72844 (8) 1 clI (K-cho guard distance)

Claims (1)

【特許請求の範囲】[Claims] (1)エンジンの運転状態に応じて予め設定されたエン
ジン制御用の制御値を記憶している記憶装置と、エンジ
ンのラフネス状態を検出するラフネスセンサと、該ラフ
ネスセンサの出力を予め設定された基準値と比較する比
較判別装置と、該比較判別装置の出力を受けて上記記憶
装置の制御値を補正する制御回路とを設けたエンジンの
制御装置において、上記ラフネスセンサを、少なくとも
トルクセンサを含む複数個のセンサで構成するとともに
、エンジンの運転状態を検出する運転状態検出手段と、
該運転状態検出手段の出力を受け、アイドル運転域を除
く低回転・低負荷運転域では上記ラフネスセンサのうち
トルクセンサのトルク信号を選択して比較判別手段に出
力するセンサ選択手段とを設けたことを特徴とするエン
ジンの制御装置。
(1) A storage device that stores control values for engine control that are preset according to the operating state of the engine; a roughness sensor that detects the roughness state of the engine; An engine control device comprising a comparison/discrimination device for comparing with a reference value and a control circuit for correcting a control value of the storage device in response to an output of the comparison/discrimination device, wherein the roughness sensor includes at least a torque sensor. Operating state detection means configured with a plurality of sensors and detecting the operating state of the engine;
Sensor selection means is provided which receives the output of the operating state detection means, selects a torque signal from a torque sensor among the roughness sensors in a low rotation/low load operating range excluding an idling operating range, and outputs the selected torque signal to the comparison/discrimination means. An engine control device characterized by:
JP19362284A 1984-09-14 1984-09-14 Control device of engine Granted JPS6172844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19362284A JPS6172844A (en) 1984-09-14 1984-09-14 Control device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19362284A JPS6172844A (en) 1984-09-14 1984-09-14 Control device of engine

Publications (2)

Publication Number Publication Date
JPS6172844A true JPS6172844A (en) 1986-04-14
JPH0536621B2 JPH0536621B2 (en) 1993-05-31

Family

ID=16310999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19362284A Granted JPS6172844A (en) 1984-09-14 1984-09-14 Control device of engine

Country Status (1)

Country Link
JP (1) JPS6172844A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0484691A2 (en) * 1990-11-09 1992-05-13 Robert Bosch Gmbh Method and apparatus for detecting anomalies in the operation of combustion engines
US5616858A (en) * 1990-12-19 1997-04-01 Siemens Aktiengesellschaft Diagnostic method for recognizing combustion misfiring in an internal-combustion engine
KR20020058847A (en) * 2000-12-30 2002-07-12 이계안 Method of controlling idle for vehicles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0484691A2 (en) * 1990-11-09 1992-05-13 Robert Bosch Gmbh Method and apparatus for detecting anomalies in the operation of combustion engines
US5616858A (en) * 1990-12-19 1997-04-01 Siemens Aktiengesellschaft Diagnostic method for recognizing combustion misfiring in an internal-combustion engine
KR20020058847A (en) * 2000-12-30 2002-07-12 이계안 Method of controlling idle for vehicles

Also Published As

Publication number Publication date
JPH0536621B2 (en) 1993-05-31

Similar Documents

Publication Publication Date Title
KR0150432B1 (en) Apparatus and method for injernal combustion engine
US5592919A (en) Electronic control system for an engine and the method thereof
JPH0747944B2 (en) Engine controller
JP2002047973A (en) Fuel injection controller of direct injection engine
US4977876A (en) Fuel injection control system for internal combustion engine with fuel cut-off control at high engine speed range suppressive of recovery shock upon fuels resumption
US6951205B2 (en) Method and arrangement for correcting a fuel quantity which is supplied to an internal combustion engine
JPH0275760A (en) Ignition timing control device for internal combustion engine
JP2503387B2 (en) Electronic internal combustion engine controller
JPS6172844A (en) Control device of engine
JP2706389B2 (en) Control device for internal combustion engine
JPH0623553B2 (en) Engine air-fuel ratio control method
JPS62150040A (en) Fuel feed control device of internal-combustion engine
JP2515300B2 (en) Ignition timing control device for internal combustion engine
JPH08291739A (en) Air-fuel ratio control device
JP2684885B2 (en) Fuel injection amount control device for internal combustion engine
JP2615561B2 (en) Fuel injection amount control device for internal combustion engine
JP3538862B2 (en) Engine ignition timing control device
JP2563100B2 (en) Engine controller
JPH0627813Y2 (en) Engine fuel controller
JP2855381B2 (en) Air-fuel ratio control device for internal combustion engine
JPS59141730A (en) Method of controlling fuel injection quantity of internal-combustion engine
JPH0536620B2 (en)
JPH0536619B2 (en)
JPS6255440A (en) Engine control device
JPH01277661A (en) Control device for engine