JPS59141730A - Method of controlling fuel injection quantity of internal-combustion engine - Google Patents
Method of controlling fuel injection quantity of internal-combustion engineInfo
- Publication number
- JPS59141730A JPS59141730A JP1577183A JP1577183A JPS59141730A JP S59141730 A JPS59141730 A JP S59141730A JP 1577183 A JP1577183 A JP 1577183A JP 1577183 A JP1577183 A JP 1577183A JP S59141730 A JPS59141730 A JP S59141730A
- Authority
- JP
- Japan
- Prior art keywords
- fuel injection
- injection amount
- engine
- fuel
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/06—Introducing corrections for particular operating conditions for engine starting or warming up
- F02D41/068—Introducing corrections for particular operating conditions for engine starting or warming up for warming-up
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は内燃機関の燃料噴射量制御方法に係り、特に、
電子式燃料噴射装置が搭載された車両用エンジンの燃料
噴射量を制御するのに好適な内燃機関の燃料噴射量制御
方法に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a fuel injection amount control method for an internal combustion engine, and in particular,
The present invention relates to a fuel injection amount control method for an internal combustion engine suitable for controlling the fuel injection amount of a vehicle engine equipped with an electronic fuel injection device.
電子式燃料噴射装置が搭載された車両用エンジンにおい
て、機関冷間時における燃料増量、始動時における燃料
増量、始動後における燃料増量、加速時における燃料増
量など各種の燃料増量の制御が行なわれている。このう
ち機関冷間時における撚口増量はキャブレターのチョー
クに相当する制御である。In vehicle engines equipped with electronic fuel injection systems, various types of fuel increase controls are performed, including increasing fuel when the engine is cold, increasing fuel when starting, increasing fuel after starting, and increasing fuel during acceleration. There is. Among these, increasing the amount of twisting port when the engine is cold is a control equivalent to a carburetor choke.
機関冷間時における燃料増量は、機関冷間時に吸入空気
鷺から基本燃料噴射量を算出し、この算出された基本燃
料噴射量をエンジン水温により補正して基本燃料噴射量
を上まわる燃料増量としての燃料噴射量の0期値を設定
し、この設定された0期値をエンジン回転毎に一定の割
合で基本燃料噴射量まで漸次減少し、辺期値の減少に応
じた噴射量で燃料を噴射することが従来から行なわれて
いた。To increase the amount of fuel when the engine is cold, calculate the basic fuel injection amount from the intake air when the engine is cold, correct the calculated basic fuel injection amount based on the engine water temperature, and increase the amount of fuel to exceed the basic fuel injection amount. The zero period value of the fuel injection amount is set, and this set zero period value is gradually reduced to the basic fuel injection amount at a constant rate every engine rotation, and the fuel is injected at an injection amount corresponding to the decrease in the initial value. Traditionally, injection has been carried out.
ところで、一般に、機関の温度、例えばエンジン水温が
低くなるほどエンジンの燃焼状態が正常になるまでには
時間がかかる。一方、常温時は短時間でエンジンの燃焼
状態が正常になる。そのため、エンジン水温が80〜9
0℃などの低温時には常温時よりも長い時間燃料増量を
行なう必要が・ ある。By the way, generally speaking, the lower the engine temperature, for example the engine water temperature, the longer it takes for the combustion state of the engine to become normal. On the other hand, at room temperature, the combustion state of the engine returns to normal in a short period of time. Therefore, the engine water temperature is 80-9
At low temperatures such as 0°C, it is necessary to increase the amount of fuel for a longer period of time than at room temperature.
しかし、燃料噴射量の初期値減衰量の割合を低温時のエ
ンジン状態に適合させたのでは常温時における燃料増量
時間が長くなり、工ばツションの増大をまねく。そこで
、燃料噴射量の功期値減衰蓋の割合な常温時のエンジン
状態に適合させた減衰率として定め、エンジ/回転毎に
一定の割合で初期値を減少させ、エミッションの増大を
防止する燃料噴射量制御方法がとられていた。However, if the ratio of the initial value attenuation amount of the fuel injection amount is adapted to the engine condition at low temperature, the fuel increase time at room temperature becomes long, leading to an increase in engine tension. Therefore, the effective value of the fuel injection amount is determined as a damping rate that is adapted to the engine condition at room temperature, and the initial value is reduced at a constant rate for each engine/revolution to prevent an increase in fuel emissions. An injection amount control method was used.
ところが、常温時の運転状態に適合する辺期値減衰量の
割合で燃料増量の制御を行なったのでは、機関冷間時に
おける燃料増量時間が短かくなるので、機関冷間時にド
ライバビリティが悪化するという不具合があった。However, if the fuel increase is controlled at the rate of marginal value attenuation that matches the operating condition at room temperature, the fuel increase time will be shortened when the engine is cold, resulting in worsening of drivability when the engine is cold. There was a problem with that.
本発明は、前記従来の昧題に鑑みて為されたものであり
、その目的は、機関冷間時におけるドライバビリティの
向上が図れる内燃機関の燃料噴射量制御方法を提供する
ことにある。The present invention has been made in view of the problems of the prior art, and an object thereof is to provide a fuel injection amount control method for an internal combustion engine that can improve drivability when the engine is cold.
前記目的を達成するために、本発明は、機関冷間時、吸
入空気量から基本燃料噴射量を算出し、この算出された
基本燃料噴射量をエンジン水温により補正して燃料噴射
量を上まわる燃料増量としての燃料噴射量の初期値を設
定し、この設定された0期値をエンジン回転の累積に応
じて基本燃料噴射量まで漸次減少し、初期値の減少に応
じた噴射量で燃料を噴射する内燃機関の燃料噴射量制御
方法において、前記燃料噴射蓋の辺期値減衰量の割合を
、吸入空気温の上昇に伴なって増加する減衰率として機
関冷間時の温度変化範囲に亘って−予め定め、前記燃料
噴射量の初期値が設定されたとき、吸入空気温を検出し
、この吸入空気温に応じた減衰率を基に前記設定された
燃料噴射量のり期値をエンジン回転の累積に応じて基本
燃料噴射量まで漸次減少することを特徴とする。In order to achieve the above object, the present invention calculates the basic fuel injection amount from the intake air amount when the engine is cold, and corrects the calculated basic fuel injection amount based on the engine water temperature to exceed the fuel injection amount. The initial value of the fuel injection amount as a fuel increase is set, and this set 0-stage value is gradually reduced to the basic fuel injection amount according to the accumulation of engine rotation, and the fuel is injected at an injection amount corresponding to the decrease in the initial value. In the method for controlling the amount of fuel injected into an internal combustion engine, the ratio of the marginal value attenuation of the fuel injection lid is set as a attenuation rate that increases as the intake air temperature rises over a temperature change range when the engine is cold. - When the initial value of the fuel injection amount is set in advance, the intake air temperature is detected, and the set initial value of the fuel injection amount is adjusted to the engine speed based on the attenuation rate according to the intake air temperature. The fuel injection amount is gradually reduced to the basic fuel injection amount according to the accumulation of the fuel injection amount.
以下、図面に基づいて本発明の好適な実施例を説明する
。Hereinafter, preferred embodiments of the present invention will be described based on the drawings.
第1図には、本発明の好適な実施例の構成が示されてい
る。FIG. 1 shows the configuration of a preferred embodiment of the present invention.
第1図において、エンジンlOの吸気系には、吸入空気
の温度を検出する吸気温セ/す12、吸入空気量を検出
するニアフロメータ重4、スロットルバルブの開度を検
肚するスロットルポジションセンサ16が設けられて′
いる。エアクリーナ18を介して吸入された空気はエア
フロメータ14、スロットルバルブ20を開してインテ
ークマニホールド22に供給され、インジェクタ24か
ら噴射される燃料と混合する。混合器は吸入弁26を介
して燃焼室28に供給され、シリンダヘッド30に設け
られた点火プラグ32によって燃焼され排、気弁34を
介して排気系に排出される。In FIG. 1, the intake system of the engine 10 includes an intake temperature sensor 12 that detects the temperature of intake air, a near flow meter 4 that detects the amount of intake air, and a throttle position sensor 16 that detects the opening degree of the throttle valve. is provided'
There is. Air taken in through the air cleaner 18 opens the air flow meter 14 and the throttle valve 20, is supplied to the intake manifold 22, and is mixed with fuel injected from the injector 24. The mixer is supplied to a combustion chamber 28 through an intake valve 26, burned and exhausted by a spark plug 32 provided in a cylinder head 30, and discharged through an air valve 34 to an exhaust system.
又、シリンダブロック36にはエンジン水温を検出する
水温センサ38が設けられている。Further, the cylinder block 36 is provided with a water temperature sensor 38 that detects the engine water temperature.
又、イグナイタ40からの点火信号を各気筒に分配する
ディストリビュータ42には、エンジン回転速度を検出
するための回転角センサ44が内蔵されている。Further, the distributor 42 that distributes the ignition signal from the igniter 40 to each cylinder has a built-in rotation angle sensor 44 for detecting the engine rotation speed.
エンジン10の各種運転状態を検出する吸気温センサ1
2、エアフロメータ14などの各種センサの検出出力及
びイグニッションスイッチ46、車速センサ48の出力
が制御装置50に供給されている。Intake temperature sensor 1 that detects various operating states of engine 10
2. Detection outputs of various sensors such as the air flow meter 14 and outputs of the ignition switch 46 and vehicle speed sensor 48 are supplied to the control device 50.
制御装置50はA / Dコンバータ52、入力インタ
ーフェイス回路54、定電圧電源56、CPU58、R
OM60、RAM62、出力インターフェイス回路64
から構成されており、A/Dコンバータ52、入力イン
ターフェイス回路54、cptr5B、ROM60、R
AM62、出力インターフェイス回路64がそれぞれパ
スライン66で接続されている。The control device 50 includes an A/D converter 52, an input interface circuit 54, a constant voltage power supply 56, a CPU 58, and an R
OM60, RAM62, output interface circuit 64
It consists of an A/D converter 52, an input interface circuit 54, cptr5B, ROM60, R
The AM 62 and the output interface circuit 64 are connected by a pass line 66, respectively.
吸気温センサ12、エアフロメータ”、水温セy?38
の各検出出力はA / Dコンバータ52に供給されて
いる。又、スロットルポジションセyすto、回転角セ
ンサ44、イグニツシミンスイッチ46、車速センサ4
8の各検出出方は大刀インターフェイス回路54に供給
されている。Intake temperature sensor 12, air flow meter, water temperature setting 38
Each detection output is supplied to an A/D converter 52. Also, a throttle position sensor, a rotation angle sensor 44, an ignition switch 46, and a vehicle speed sensor 4.
Each detection output of 8 is supplied to a large sword interface circuit 54.
イグナイタ40は出方インターフェイス回路64から供
給される制御信号によりディストリビュータ42に点火
信号を供給することができる。又、インジェクタ24は
出方インターフェイス回路14から供給される制御信号
により燃料噴射時間を制御することができる。The igniter 40 is capable of providing an ignition signal to the distributor 42 by a control signal provided from the output interface circuit 64. Further, the injector 24 can control the fuel injection time by a control signal supplied from the output interface circuit 14.
又、ROM60には エンジンの各種運転状態に応じた
燃料噴射時間の数値データ及び吸入空気量に対応ずけら
れた基本燃料噴射量の数値データ及び、第2図に示され
るように、エンジン水温に対応した燃料噴射量の初期値
のデータが格納されている。In addition, the ROM 60 contains numerical data of fuel injection time corresponding to various operating conditions of the engine, numerical data of basic fuel injection amount corresponding to intake air amount, and as shown in FIG. Data of the initial value of the corresponding fuel injection amount is stored.
ここで、本発明は、燃料噴射量の初期値減衰量の割合を
、吸入空気量の上昇に伴なって増加する減衰率として機
関冷間時の温度変化範囲に亘って予め定め、燃料噴射量
の初期値が設定されたとき、この吸入空気温に応じた減
衰率を基に設定された燃料噴射量の初期値をエンジン回
転の累積に応じて基本燃料噴射量まで漸次減少すること
を特徴とするところから、本実施例においては、第3図
に示されるように、燃料噴射量の初期値減衰量の割合を
示す減衰率がアイドル時以外の減衰率に1、アイドル時
の減衰率に2とに設定されており、各減衰率kl、k2
の数値データがROM60に格納されている。各減衰率
kl、k2は吸入空気温の上昇に伴って増加する特性と
して機関冷間時の温度変化範囲一に亘って定められてい
る。Here, in the present invention, the ratio of the initial value attenuation amount of the fuel injection amount is predetermined as a damping rate that increases as the intake air amount increases over a temperature change range when the engine is cold, and the fuel injection amount is When the initial value of the fuel injection amount is set, the initial value of the fuel injection amount set based on the attenuation rate according to the intake air temperature is gradually reduced to the basic fuel injection amount according to the cumulative engine rotation. Therefore, in this embodiment, as shown in FIG. 3, the attenuation rate indicating the ratio of the initial value attenuation amount of the fuel injection amount is 1 for non-idling and 2 for idling. and each damping rate kl, k2
Numerical data is stored in the ROM 60. Each of the damping rates kl and k2 is determined over a temperature change range when the engine is cold as a characteristic that increases as the intake air temperature rises.
本実施例は以上の構成からなり、次にその作用を説明す
る。The present embodiment has the above configuration, and its operation will be explained next.
第4図のフローチャートには、第1図のシステムに本発
明を適用した場合の処理ルーチンが示されている。The flowchart of FIG. 4 shows a processing routine when the present invention is applied to the system of FIG. 1.
第4図において、まずステップ100において、エアフ
ロメータ14の検出出力に基づいて基本燃料噴射量をに
出しステップ102に移る。ステップ102においては
水温セシサ38の検出出力に基づいてステップ100で
算出された基本燃料噴射量を補正して基本燃料噴射量を
上まわる燃料増量としての燃料噴射量の初期値を設定す
る。即ちλ第2図に示されるように、エンジン水温に応
じた燃料噴射量の初期値が設定される。次にステップ1
04に移り機関冷間時における燃料増量を行なうか否か
の判定を行なう。即ち、ステップ104においてはステ
ップ102で算出された初期値WLが下限値WLmiを
越えたか否かの判定を行なう。このステップでYFi8
と判定され、初期値Wしく下限値WLmiのときには機
関冷間時における燃料増量は行なわないので次の処理に
移る。In FIG. 4, first, in step 100, a basic fuel injection amount is determined based on the detected output of the air flow meter 14, and the process moves to step 102. In step 102, the basic fuel injection amount calculated in step 100 is corrected based on the detection output of the water temperature sensor 38 to set an initial value of the fuel injection amount as a fuel increase that exceeds the basic fuel injection amount. That is, as shown in FIG. 2, the initial value of the fuel injection amount is set according to the engine water temperature. Next step 1
04, it is determined whether or not to increase the amount of fuel when the engine is cold. That is, in step 104, it is determined whether the initial value WL calculated in step 102 exceeds the lower limit value WLmi. In this step YFi8
When it is determined that the initial value W is the lower limit value WLmi, the fuel amount is not increased when the engine is cold, so the process moves to the next step.
ステップ104でNoと判定され初期値WL〉下限値W
Lmiのときにはステップ106に移る。If No is determined in step 104, initial value WL>lower limit W
When it is Lmi, the process moves to step 106.
ステップ106においてはスロットルポジションセンサ
16の検出出力に基づいてアイドル時か否かの判定を行
なう。このステップでNoと判定されアイドル時以外の
ときにはステップ108に移る。ステップ108におい
ては、吸気温センサ12の検出出力に基づいて第3図に
示される吸入空気温に対応した減衰率に1をROM 6
0から取込み、W L −k、 を新たな初期値WL
として設定し、他の処理に移る。W期値WLがW L
−k、 として設定されると、インジェクタ24の燃
料噴射時間も燃料噴射量の初期値減衰量の割合に対応し
て設定される。そのため、機関冷間時のアイドル−以外
は、ステップ108で算出された減衰率に1を基に、燃
料増量としての燃料噴射量がエンジン回転の累積に応じ
て基本燃料噴射量まで漸次減少される制御が行なわれる
。In step 106, it is determined whether or not the vehicle is idling based on the detection output of the throttle position sensor 16. If the determination in this step is No, and the time is not idle, the process moves to step 108. In step 108, based on the detection output of the intake air temperature sensor 12, 1 is set to the attenuation rate corresponding to the intake air temperature shown in FIG.
Take in from 0 and set WL −k, to the new initial value WL
, and move on to other processing. W period value WL is WL
-k, the fuel injection time of the injector 24 is also set corresponding to the ratio of the initial value attenuation amount of the fuel injection amount. Therefore, except when the engine is idling when the engine is cold, the fuel injection amount as a fuel increase is gradually reduced to the basic fuel injection amount according to the cumulative engine rotation based on the attenuation rate calculated in step 108. Control takes place.
一方、ステップ106でYESと判定されたアーイドル
時にはステップ110に移る。ステップ110において
も、ステップ108の処理と同様吸気温セ/すI2の検
出出方に基づく減衰率に2をROM60から取込み、ス
テップ102で算出された初期値WLをWL k、
とする新たな初期値を設定する。ステップ110におい
てもステンプ108の処理と同様、インジェクタ24の
燃料噴射時間は燃料噴射量の初期値減衰量の割合にえ2
に対応して定められる。そのためステップ110の処理
の後は減衰率に2を基に、ステップ102で設定された
燃料噴射量のW期値をエンジン回転の累積に応じて基本
燃料噴射量まで漸次減少する燃料噴射量でエンジン10
が制御される。On the other hand, when the determination in step 106 is YES, the process moves to step 110. In step 110, similarly to the process in step 108, 2 is taken in from the ROM 60 as the attenuation rate based on the detection method of the intake temperature C/I2, and the initial value WL calculated in step 102 is set as WL k,
Set a new initial value. In step 110, as in the process of step 108, the fuel injection time of the injector 24 is set to the ratio of the initial value attenuation amount of the fuel injection amount.
It is determined in accordance with Therefore, after the processing in step 110, based on the attenuation rate of 2, the W period value of the fuel injection amount set in step 102 is set to the fuel injection amount that gradually decreases to the basic fuel injection amount according to the accumulation of engine rotations. 10
is controlled.
このように、本実施例においては、燃料噴射量の初期値
減衰量の割合を、吸入空気温の上昇に伴なって増加する
減衰率として、低温から常温までのエンジンの温度変化
範囲に亘って予め定め、機関冷間時における燃料増量を
行なうための燃料噴射量の初期値が設定されたとき、吸
入空気温に応じた減衰率を基に、前記設定された燃料噴
射量の初期値をエンジン回転の累積に応じて基本燃料噴
射量まで漸次減少するようにしたので、常温時の燃料増
量によってもエミッションの増大をまねくこともなく、
又低温時にドライバビリティが悪化するのな防止するこ
とができる。As described above, in this embodiment, the ratio of the initial value attenuation amount of the fuel injection amount is set as the attenuation rate that increases as the intake air temperature rises over the engine temperature change range from low temperature to room temperature. When the initial value of the fuel injection amount for increasing the amount of fuel when the engine is cold is set in advance, the initial value of the fuel injection amount is set to the engine based on the attenuation rate according to the intake air temperature. Since the fuel injection amount is gradually reduced to the basic fuel injection amount according to the cumulative rotation, even if the amount of fuel is increased at room temperature, emissions will not increase.
Furthermore, deterioration of drivability at low temperatures can be prevented.
以上説明したように、本発明によれば、燃料噴射量の初
期値減衰量の割合を、吸入空気温の上昇に伴なって増加
する減衰率として機関冷間時の温度変化範囲に亘って予
め定め、機関冷間時における燃料増量を行なうための燃
料噴射量の初期値が設定されたとき、吸入空気温を検出
し、この吸入空気温に応じた減衰率を基に、前記設定さ
れた燃料噴射量の初期値をエンジン回転の累積に応じて
基本燃料噴射量まで漸次減少し、常温時における燃料増
量を少なりシ、低温時における燃料増量、を多クシたの
で、常温時にエミッションの増大をまねくことなく、低
温時におけるドライバビリティの向上が図れるという優
れた効果がある。As explained above, according to the present invention, the ratio of the initial value attenuation amount of the fuel injection amount is set in advance as a attenuation rate that increases as the intake air temperature rises over the temperature change range when the engine is cold. When the initial value of the fuel injection amount for increasing the amount of fuel when the engine is cold is set, the intake air temperature is detected, and the set fuel The initial value of the injection amount is gradually reduced to the basic fuel injection amount according to the accumulation of engine rotations, and the fuel amount is increased less at room temperature and more at low temperature, so that the increase in emissions at room temperature is reduced. This has the excellent effect of improving drivability at low temperatures without causing damage.
第1図は本発明を適用したシステムの構成図、第2図は
エンジン水温と燃料噴射量のW期値との関係を示す線図
、第3図は吸入空気温と減簑率との関係を示す線図、第
4図は第1図のシステムに本発明を適用した場合の作用
を説明するためのフローチャートである。
10・・・エンジン 12・・・吸気温センサ、
14・・・エアフロメータ、
16・・・スロットルポジションセンサ、24・・・イ
ンジェクタ、 38・・・水温センサ、44・・・回
転センサ、
46・・・イグニッションスイッチ、
50・・・制御装置。
代理人 鵜 沼 辰 之
(ほか2名)
第2図
第3図
第4図Figure 1 is a configuration diagram of a system to which the present invention is applied, Figure 2 is a diagram showing the relationship between engine water temperature and W period value of fuel injection amount, and Figure 3 is a diagram showing the relationship between intake air temperature and reduction rate. FIG. 4 is a flowchart for explaining the operation when the present invention is applied to the system of FIG. 1. 10... Engine 12... Intake temperature sensor,
14... Air flow meter, 16... Throttle position sensor, 24... Injector, 38... Water temperature sensor, 44... Rotation sensor, 46... Ignition switch, 50... Control device. Agent Tatsuyuki Unuma (and 2 others) Figure 2 Figure 3 Figure 4
Claims (1)
を算出し、この算出された基本燃料噴射量をエンジン水
温により補正して燃料噴射量を上まわる燃料増量として
の燃料噴射蓋の0期値を設定し、この設定された0期値
をエンジン回転の累積に応じて基本燃料噴射量まで漸次
減少し、初期値の減少に応じた噴射量で燃料を噴射する
内燃機関の燃料噴射量制御方法において、前記燃料噴射
蓋の初期値減衰量の割合を、吸入空気温の上昇に伴なっ
て増加する減衰率として機関冷間時の温度変化範囲に亘
って予め定め、前記燃料噴射蓋のり期値が設定されたと
き、吸入空気温を検出し、この吸入空気温に応じた減衰
率を基に前記設定された燃料噴射量の初期値をエンジン
回転の累積に応じて基本燃料噴射量まで漸次減少するこ
とを特徴とする内燃機関の燃料噴射量制御方法。fil Calculate the basic fuel injection amount from the intake air when the engine is cold, correct the calculated basic fuel injection amount based on the engine water temperature, and calculate the 0-stage value of the fuel injection lid as a fuel increase that exceeds the fuel injection amount. A fuel injection amount control method for an internal combustion engine, in which the set zero-stage value is gradually reduced to a basic fuel injection amount according to the accumulation of engine rotation, and fuel is injected at an injection amount corresponding to the decrease in the initial value. In this step, the ratio of the initial value attenuation amount of the fuel injection lid is predetermined as a damping rate that increases as the intake air temperature rises over a temperature change range when the engine is cold, and the initial value of the fuel injection lid is determined in advance. is set, the intake air temperature is detected, and based on the attenuation rate according to this intake air temperature, the initial value of the set fuel injection amount is gradually reduced to the basic fuel injection amount according to the cumulative engine rotation. A fuel injection amount control method for an internal combustion engine, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1577183A JPS59141730A (en) | 1983-02-02 | 1983-02-02 | Method of controlling fuel injection quantity of internal-combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1577183A JPS59141730A (en) | 1983-02-02 | 1983-02-02 | Method of controlling fuel injection quantity of internal-combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59141730A true JPS59141730A (en) | 1984-08-14 |
Family
ID=11898063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1577183A Pending JPS59141730A (en) | 1983-02-02 | 1983-02-02 | Method of controlling fuel injection quantity of internal-combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59141730A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63167048A (en) * | 1986-12-27 | 1988-07-11 | Honda Motor Co Ltd | After-starting fuel supply control method for fuel injection type internal combustion engine |
JPS6453035A (en) * | 1987-08-20 | 1989-03-01 | Honda Motor Co Ltd | Fuel supply controller for internal combustion engine |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51117236A (en) * | 1975-03-19 | 1976-10-15 | Bosch Gmbh Robert | Metod and apparatus for start at low temperature of fuel injection device |
JPS6311308U (en) * | 1986-07-03 | 1988-01-25 |
-
1983
- 1983-02-02 JP JP1577183A patent/JPS59141730A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51117236A (en) * | 1975-03-19 | 1976-10-15 | Bosch Gmbh Robert | Metod and apparatus for start at low temperature of fuel injection device |
JPS6311308U (en) * | 1986-07-03 | 1988-01-25 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63167048A (en) * | 1986-12-27 | 1988-07-11 | Honda Motor Co Ltd | After-starting fuel supply control method for fuel injection type internal combustion engine |
JPS6453035A (en) * | 1987-08-20 | 1989-03-01 | Honda Motor Co Ltd | Fuel supply controller for internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5857445A (en) | Engine control device | |
JPS61101635A (en) | Apparatus for controlling quantity of fuel supplied to internal-combustion engine | |
US4461261A (en) | Closed loop air/fuel ratio control using learning data each arranged not to exceed a predetermined value | |
JPS59141730A (en) | Method of controlling fuel injection quantity of internal-combustion engine | |
JPH0316498B2 (en) | ||
JPH0689686B2 (en) | Air-fuel ratio controller for engine | |
JPH0584383B2 (en) | ||
JPS61155638A (en) | Method for controling idle rotating number | |
JP2873506B2 (en) | Engine air-fuel ratio control device | |
JP2822716B2 (en) | Exhaust gas recirculation control device for internal combustion engine | |
JP2860855B2 (en) | Electronic control fuel supply device for internal combustion engine | |
JP2511864B2 (en) | Electronic fuel injection device | |
JPH0429855B2 (en) | ||
JPH051614A (en) | Control device for internal combustion engine | |
JPS63170536A (en) | Fuel cut control device for internal combustion engine | |
JPS6123841A (en) | Air-fuel ratio controlling method in internal-combustion engine | |
JPS6062661A (en) | Ignition-timing controller for engine | |
JPH0536624B2 (en) | ||
JPS59134337A (en) | Method of controlling fuel injection of engine | |
JPH0255618B2 (en) | ||
JPS61201842A (en) | Control device for rarefied air-fuel ratio during idling of internal-combustion engine | |
JPS61126351A (en) | Control device of fuel injection quantity in fuel-injection engine | |
JPS6027745A (en) | Fuel supply controlling method for engine | |
JPS61129444A (en) | Air fuel ratio feedback control for electronic control engine | |
JPS59226242A (en) | Apparatus for starting electronically controlled fuel injection in internal-combustion engine |