JPS6169179A - Manufacture of solar cell panel - Google Patents

Manufacture of solar cell panel

Info

Publication number
JPS6169179A
JPS6169179A JP59191129A JP19112984A JPS6169179A JP S6169179 A JPS6169179 A JP S6169179A JP 59191129 A JP59191129 A JP 59191129A JP 19112984 A JP19112984 A JP 19112984A JP S6169179 A JPS6169179 A JP S6169179A
Authority
JP
Japan
Prior art keywords
temperature
eva
solar cell
maximum temperature
holding time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59191129A
Other languages
Japanese (ja)
Other versions
JPH0652801B2 (en
Inventor
Hirotaka Nakano
博隆 中野
Takashi Sugawara
隆 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59191129A priority Critical patent/JPH0652801B2/en
Publication of JPS6169179A publication Critical patent/JPS6169179A/en
Publication of JPH0652801B2 publication Critical patent/JPH0652801B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain external appearance to be satisfied and characteristics by using ethylene-vinyl-acetate as filters and specifying the maximum temperature and holding time of a processing machine in pressing lamination. CONSTITUTION:Ethylene-vinyl-acetate is employed as filters, and a maximum temperature after pressing is kept within a range of 140-155 deg.C and the holding time of the maximum temperature is kept within a range of 7-40min in a laminating process by pressing. When fillers are held at 143 deg.C or higher after pressing, a crosslinking reaction is attained at all positions of a solar cell panel in EVA, and a foaming phenomenon is not generated due to the cracked gas of EVA itself. Accordingly, a softening phenomenon is not generated out of door because EVA is not foamed on external appearance and the crosslinking reaction is also attained, and high reliability can be acquired even in a high- temperature high-humidity test and an outdoor exposure test because fillers are laminated by using a double vacuum system.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は太陽電池セルの製造方法に関するものである。[Detailed description of the invention] [Technical field of invention] The present invention relates to a method for manufacturing a solar cell.

[発明の技術的背景] 太lJ4電池パネルの一例として低コスト、高信頼性を
目標としたスーパーストレート型入Bq H池パネルの
一例を第1図及び第2図により説明する。
[Technical Background of the Invention] As an example of a thick lJ4 battery panel, an example of a super straight type Bq H battery panel aiming at low cost and high reliability will be explained with reference to FIGS. 1 and 2.

即ち、透明カバー・ガラス1がパネル全体の構造的支持
体となっており、このカバー・ガラス1の片面には、内
部に直列に接続された太陽電池セル3より成るストリン
グが埋め込まれた充填材2が接着されている。この充填
材2としては、通常ポリ・ビニル・ブチラール〈以下P
V8と云うンが多く用いられて来た。充1.t[材2の
川面には、−面材料4が接着されている。この裏面材料
4としては第2図に示すように中間にサンドイッチされ
た金aH例えばアルミニウム箔6及び両側のポリ・ビニ
ル・フロライド(以下PVFと云う)5の三習慣造より
成る。このアルミニウム箔6は外部からの水蒸気の透過
を防ぐためのものである。この太陽電池パネルの周辺部
は第1図に示すように絶縁材7を介してアルマイト処理
を施したアルミニウム枠8に固定されている。この絶縁
材7としては、長期の信頼性を保持し、しかも低コスト
な材料としてブチルゴムが用いられる。
That is, a transparent cover glass 1 provides the structural support for the entire panel, and on one side of this cover glass 1 there is a filler material embedded inside which is a string of solar cells 3 connected in series. 2 is glued. The filler 2 is usually polyvinyl butyral (hereinafter referred to as P
The engine called V8 has been widely used. Full 1. t[--face material 4 is adhered to the river surface of material 2. As shown in FIG. 2, the back surface material 4 is made of a three-layer structure consisting of gold aH, such as aluminum foil 6, sandwiched in the middle, and polyvinyl fluoride (hereinafter referred to as PVF) 5 on both sides. This aluminum foil 6 is for preventing water vapor from permeating from the outside. As shown in FIG. 1, the periphery of this solar cell panel is fixed to an alumite-treated aluminum frame 8 via an insulating material 7. As the insulating material 7, butyl rubber is used as a material that maintains long-term reliability and is low in cost.

然るに、近年、太陽電池パネルの低コスト化及び高信頼
性を促進させるために充填材2としてPVBに代ってエ
チレン・ビニル・アセテート(以下EVAと云う)が開
発されている。
However, in recent years, ethylene vinyl acetate (hereinafter referred to as EVA) has been developed as the filler 2 in place of PVB in order to promote cost reduction and high reliability of solar cell panels.

即ち、EVAはPVBと比較すると次のような利点があ
るからである。
That is, EVA has the following advantages when compared with PVB.

(1)  材料費がEVAの方が安く現在PVBの約7
     2.73の固設である。
(1) The material cost of EVA is lower than that of PVB.
It is a fixed installation of 2.73.

+2)  材料のプロセッシングのM4合にもEVAの
方が簡単である。
+2) EVA is also easier for M4 material processing.

即ちPVBはPVB自身の接着を防止するため通常表面
に重そうを塗布してロール状に巻いである。そのため太
l!!電池パネルの明室て工程に用いる場合には水洗処
理後、約1日の調湿処理を施さなければならない。これ
に対し、EVAは水洗工程を省略でき、調湿処理もPV
Bはど厳しくない。
That is, PVB is usually wound into a roll with a heavy coating applied to its surface to prevent the PVB from adhering itself. Therefore, thick! ! When used in the process of manufacturing battery panels in a bright room, it is necessary to perform a humidity control process for about one day after washing with water. On the other hand, EVA can omit the water washing process, and the humidity control process can also be done using PV.
B is not too strict.

(31EVAによる貼合せは、架橋反応を経て形成され
るため、耐熱性、信預性に優れている。一方PVBは架
橋反応を用いない原理により貼合されるため温度に対す
る軟化性は可逆的であり、高温で軟化する。
(Lamination using 31EVA is formed through a crosslinking reaction, so it has excellent heat resistance and reliability.On the other hand, PVB is laminated using a principle that does not use a crosslinking reaction, so its softening property against temperature is reversible. Yes, it softens at high temperatures.

また、太陽電池パネルの信頼性試験項目については、J
 P L (J et  P ropulsion l
 aboratory )等から提案されており、日本
でも標準化されつつあるが、その試験項目は、例えば−
40℃〜80℃、RH(相対湿度)90%以上の雰囲気
下での温湿度サイクル試験;80℃、R8905以上で
の高温高湿試験;−40℃での低温試験ニー40℃〜8
0℃での温度衝撃試9.:5%塩水下での塩水霧試験な
どであり、その目的は杓20年間と言われる大円電池パ
ネルの寿命を保証することである。このような試験項目
を金箔する高信頼性の太陽電池パネルをを得るためにE
VAを用いて貼合せを行なうには通常行なわれている、
ゴム袋を用いた一重の真空排気方式とは異なり、第3図
に示す如く二重真空方式を用いる必要がある。
In addition, regarding the reliability test items of solar cell panels, please refer to J.
P L (J et Propulsion l
laboratory), etc., and is being standardized in Japan, but the test items are, for example -
Temperature/humidity cycle test at 40°C to 80°C in an atmosphere of RH (relative humidity) 90% or higher; High temperature/humidity test at 80°C, R8905 or higher; Low temperature test at -40°C knee 40°C to 8
Temperature shock test at 0°C9. : Salt water fog test under 5% salt water, etc., and the purpose is to guarantee the lifespan of large round battery panels, which is said to be 20 years. In order to obtain a highly reliable solar panel that gold foils such test items, E
When laminating using VA, it is usually done.
Unlike the single vacuum evacuation method using a rubber bag, it is necessary to use a double vacuum evacuation method as shown in FIG.

即ち、第1の至11及び第2の至12の周囲は例えば剛
体により囲まれ、ダイヤフラム(隔膜)13により分離
されており、それぞれバルブv1゜\/2を経て図示し
ない真空ポンプへと通じている。
That is, the first to 11 and the second to 12 are surrounded by, for example, a rigid body and separated by a diaphragm 13, and each is connected to a vacuum pump (not shown) through a valve v1゜\/2. There is.

この第2の至12に入れられる太陽゛電池セルを含む斜
線で示す積層体14は通常、第4図に示すように構成さ
れている。
A stacked body 14 shown by diagonal lines and containing solar cells placed in the second cell 12 is normally constructed as shown in FIG.

即ち、強化処理を施した白板ガラスなどからなる透明カ
バー・ガラス1、EVA21、太陽電池セル3から成る
ストリング、EVA22、裏面材料4がこの順または逆
の順に積層されている。
That is, a transparent cover glass 1 made of tempered white glass or the like, an EVA 21, a string made of solar cells 3, an EVA 22, and a backing material 4 are laminated in this order or in the reverse order.

そして太陽電池パネルを’115Nするjq合の貼合せ
工程は例えば次の如くである。即ち第1の空11、第2
のi12を真空に排気し、積層体14をEVA21及び
22が溶融状態で、しかも架橋反応を起さない温度領域
に加熱し、次いで第2の至12を真空に保ったまま、第
1の至11を大気圧に戻す。するとダイヤフラム13を
介して積層体14は真空中で大気圧により圧着される。
For example, the jq-joint bonding process for attaching the solar cell panels to 115N is as follows. That is, the first sky 11, the second sky
The laminate 14 is heated to a temperature range where the EVA 21 and 22 are in a molten state and no crosslinking reaction occurs, and then the first is heated while the second is kept in a vacuum. Return 11 to atmospheric pressure. Then, the laminate 14 is compressed by atmospheric pressure in a vacuum via the diaphragm 13.

次にEVAが架橋反応を起こす温度領域迄加熱する。こ
の温度で架橋反応が終了する迄保持し、次いで冷FA後
、fl1体14を取り出す。以上の工程により第1図の
一部に示すようなEVAの充填材2を用いた大円′顕池
パネルが形成され、貼合せ工程が終了する。
Next, it is heated to a temperature range in which EVA undergoes a crosslinking reaction. This temperature is maintained until the crosslinking reaction is completed, and then, after cold FA, the fl1 body 14 is taken out. Through the above steps, a large round panel using the EVA filler 2 as shown in a part of FIG. 1 is formed, and the bonding step is completed.

[背景技術の問題点コ 上述の如く、EVAを用いた太陽電池パネルの貼合せ工
程に於ては、EVAが未架橋の温度領域にて加圧し、積
層体14を圧酋し、次いでEVAが全て架橋する温度並
びに時間閉域に保持しなければならない。しかし、本発
明者は、太陽電池パネル製品として必要な外観、特性を
(qるためには、その製造条件である加圧時の温度並び
に架橋反応を達成させる温度、保持時間に関しては、極
めて狭い領域でしか満足しないことを見い出した。叩ち
、保持温度がR適温度領l戎より低い場合には、E V
 Aが未架橋のままとなり、太円宵池パネル製品とした
後、高温高湿試験、温湿度サイクル試験、屋外でのフィ
ード試験に於て、未架橋のEVAが、温度により、パネ
ル周辺より流出するという現象か生じる。一方、保持温
度が最適温度領域より高い場合には、EVAの発泡更に
はEVAの黄変現象が見られる。
[Problems in the Background Art] As mentioned above, in the process of laminating solar cell panels using EVA, pressure is applied in a temperature range where EVA is not crosslinked, the laminate 14 is compressed, and then the EVA is All crosslinking temperatures and times must be kept in a closed area. However, in order to achieve the appearance and characteristics necessary for a solar cell panel product, the inventors have determined that the manufacturing conditions for the product, such as the temperature at the time of pressurization, the temperature and holding time to achieve the crosslinking reaction, are extremely narrow. It was found that E V is satisfactory only in the R range.
A remained uncrosslinked, and after being made into a Taien Yoike panel product, uncrosslinked EVA leaked out from around the panel due to temperature during high temperature and high humidity tests, temperature and humidity cycle tests, and outdoor feed tests. This phenomenon occurs. On the other hand, when the holding temperature is higher than the optimum temperature range, foaming of EVA and yellowing of EVA are observed.

また加圧時の温度が低い場合、あるいは、加圧(糸の保
持時間が長い場合には発泡現象が生じる。
Furthermore, if the temperature during pressurization is low, or if the pressurization (holding time of the yarn is long), foaming occurs.

〔発明の目的1 本発明は、上述の問題点に鑑みてなされたもので、充填
材としてEVAを用いた場合に貼合せ時の温度・時間等
の製造条件を制御することにより、外観・特性共に満足
する太陽電池パネルを提供することを目的とたものであ
る。
[Objective of the Invention 1] The present invention was made in view of the above-mentioned problems, and it is possible to improve the appearance and characteristics by controlling manufacturing conditions such as temperature and time during lamination when EVA is used as a filler. The purpose is to provide a solar cell panel that satisfies both.

[発明の概要] r    本発明は、太陽電池セルを充填材を介してカ
バーガラスと裏面ガラスとの間に積層した太陽電池パネ
ル積層体を、二重真空方式により脱気し、加熱後加圧に
よる貼合せ工程を有する太陽電池パネルの製造方法に於
て、充填材として、エチレン・ビニル・アセテートを用
い、b0圧による貼合せ工程で、加圧後の最高温度が1
40℃乃至155℃の範囲にあり、最高温度の保持時間
が7分乃至40分の範囲にあることを特数とする太陽電
池パネルの製造方法である。
[Summary of the invention] r The present invention degasses a solar panel laminate in which solar cells are laminated between a cover glass and a back glass through a filler using a double vacuum method, heats it, and then pressurizes it. In the method for manufacturing solar cell panels that includes a bonding process using ethylene vinyl acetate as a filler, the bonding process uses b0 pressure, and the maximum temperature after pressurization is 1.
This method of manufacturing a solar cell panel is characterized in that the temperature is in the range of 40° C. to 155° C., and the maximum temperature is held for 7 minutes to 40 minutes.

また、前記太陽電池パネルIn体の加熱として、熱板に
よる一方向からの加熱方式を用い、前記熱板に最も近接
した太陽電池パネル積層体の位置で、加圧後の最高温度
が140 ℃乃至155℃、その保持時間が7分乃至4
0分の範囲にあり、前記熱板より最も離れた太陽電池パ
ネル積層体の位置で、加圧後の最高温度が140℃乃至
155°C1その保持時間が1分乃至32分の範囲にあ
ることを特徴とする太陽電池パネルの製造方法である。
Further, the heating of the solar cell panel In body is performed using a heating method from one direction using a hot plate, and the maximum temperature after pressurization is 140 ° C. or less at the position of the solar cell panel stack closest to the hot plate. 155℃, holding time 7 minutes to 4
0 minutes, and the maximum temperature after pressurization at the position of the solar panel stack farthest from the heating plate is 140°C to 155°C1, and the holding time is in the range of 1 minute to 32 minutes. A method for manufacturing a solar cell panel characterized by:

[発明の実施例] 以下図面を参照して本発明の実施例を詳細に説明する。[Embodiments of the invention] Embodiments of the present invention will be described in detail below with reference to the drawings.

即ち、貼合せ装置は、第3図に示す如く第1の至11並
びに第2の至12を有する二乗真空方式のものである。
That is, the bonding apparatus is of a square vacuum type having a first column 11 and a second column 12 as shown in FIG.

加熱方式は全体を加熱するものでも良いが、第5図に示
す、fJJ体14の下方に設けた熱板15による一方向
から加熱した場合につき詳述する。
Although the heating method may be one that heats the entire body, a case in which heating is performed from one direction using a hot plate 15 provided below the fJJ body 14 as shown in FIG. 5 will be described in detail.

太陽電池パネルの積層体14は、例えば第4図に示す如
くのものである。即ち、全体の構造的支持体となる肉厚
3mの強化ガラスからなる透明カバーガラス1の片面に
は肉厚0.8sのEVAシートからなる充填材21、太
陽電池セル3を直列または並列に接続したストリング、
肉、f7 0 、8 tymのEVAシートからなる充
填材22、肉厚2oμmのアルミニウム箔が中間にサン
ドインチされ両側に肉厚25μmのPVFを有するシー
トからなる裏面材料4から成る。また、透明カバーガラ
ス1、充填材21.22、ストリング、裏面材料4の各
間には、マイクログラスと称する長ガラス繊維のマット
を少なくとも1層挿入しても良い。実際の製造工程では
、透明カバーガラス1上に順に乗せる構成、即ち、第4
図とは上下反対の構成のものを積層体14としても良い
The solar cell panel laminate 14 is, for example, as shown in FIG. 4. That is, a filler 21 made of an EVA sheet with a thickness of 0.8 seconds and a solar cell 3 are connected in series or in parallel to one side of a transparent cover glass 1 made of tempered glass with a thickness of 3 m and serving as a structural support for the whole. string,
A filler material 22 made of an EVA sheet having a thickness of 20 μm and a thickness of f7 0 of 8 tym, and a backing material 4 made of a sheet having 25 μm thick PVF on both sides with an aluminum foil sandwiched in the middle and having a thickness of 25 μm. Further, at least one layer of long glass fiber mat called microglass may be inserted between each of the transparent cover glass 1, the fillers 21 and 22, the string, and the backing material 4. In the actual manufacturing process, the fourth
The stacked body 14 may have a structure that is upside down from the one shown in the figure.

貼合せ工程での典型的なプロファイルを第6図に示す。A typical profile during the lamination process is shown in FIG.

即ち、先ず真空度を表わす曲131に示すように、子端
的な真空排気を例えば油回転ポンプにより20分間行な
う。これにより第1の至11並びに第2の至12は、共
に加熱前での真空度は、例えば0.3Torrになる。
That is, first, as shown in a curve 131 representing the degree of vacuum, partial evacuation is performed for 20 minutes using, for example, an oil rotary pump. As a result, the vacuum degree of both the first chamber 11 and the second chamber 12 before heating becomes, for example, 0.3 Torr.

次に第6図のステップ■で加熱を開始する。積層体14
の温度は、実験的に、熱板15に最も近接した位置を第
5図に示す熱雷対16により、また熱板15より最も離
れた位置を熱雷対17により測定する。カロ熱時の昇温
勾配は、熱電対16の位置で例えば4℃/分である。熱
電対16の位置での昇温曲線を第6図の温度を表わす曲
線34に、また熱雷対17の位置での昇温曲線を第6図
の温度を表わす曲線35に示す。一般に、EVAが溶融
する温度は約85℃であり、架橋反応が開始する温度は
130℃である。ステップ■のbo < 、熱゛電対1
6の位置で140℃に到達した時、真空度を表わす曲1
i132に示すように第1のWllを大気圧に戻し、積
層体14を真空圧着する。この時、曲線35に示す如く
、熱板15より最も離れた熱雷対17の位置では充分に
昇温していない。それ故、熱雷対17の位置でもEVA
が架橋するよう昇Aさせる。圧着後は、熱電対16と熱
電対17の位置は、真空による断熱が除かれ殆ど等しい
温度を示す。次にステップ■の如く、熱電対16の位置
で148°Cに到達した後、架橋反応を積層体14全体
に行なわせるため、例えば、熱雷対16の位置で25分
、対応する熱雷対17の位置で17分最高温度に保持す
る。次いでステップ■の如く、熱板を空冷管により冷却
し、しばらく後、ステップ■の如く、熱板を水冷管によ
り冷却する。積層体14の温度が、ステップ■の如く例
えば50℃以下に冷却された後、真空度を表わす曲I!
33に示すように、第2の室12を大気圧に戻す。以上
により貼合せ工程は終了する。
Next, heating is started in step (2) in FIG. Laminated body 14
The temperature is experimentally measured at a position closest to the hot plate 15 using a thermal lightning pair 16 shown in FIG. 5, and at a position farthest from the hot plate 15 using a thermal lightning pair 17. The temperature increase gradient at the thermocouple 16 is, for example, 4° C./min. The temperature increase curve at the location of the thermocouple 16 is shown as a temperature curve 34 in FIG. 6, and the temperature increase curve at the location of the thermoelectric lightning pair 17 is shown as a temperature curve 35 in FIG. Generally, the temperature at which EVA melts is about 85°C and the temperature at which the crosslinking reaction begins is 130°C. Step ■ bo < , thermocouple 1
When the temperature reaches 140℃ at position 6, song 1 represents the degree of vacuum.
As shown in i132, the first Wll is returned to atmospheric pressure and the laminate 14 is vacuum-pressed. At this time, as shown by a curve 35, the temperature at the position of the thermal lightning pair 17 farthest from the hot plate 15 is not sufficiently increased. Therefore, even at the location of thermal lightning pair 17, EVA
Raise the temperature so that it crosslinks. After crimping, the positions of thermocouple 16 and thermocouple 17 exhibit almost the same temperature since the vacuum insulation is removed. Next, as in step (2), after the temperature reaches 148°C at the position of the thermocouple 16, in order to cause the crosslinking reaction to occur throughout the laminate 14, for example, the thermocouple is heated at the position of the thermocouple 16 for 25 minutes. Hold at maximum temperature for 17 minutes at position 17. Next, as in step (2), the hot plate is cooled by an air cooling tube, and after a while, as in step (2), the hot plate is cooled by a water cooling tube. After the temperature of the laminate 14 is cooled down to, for example, 50° C. or lower as in step (2), the song I! representing the degree of vacuum is played.
As shown at 33, the second chamber 12 is returned to atmospheric pressure. The bonding process is thus completed.

然るに、太陽電池パネルとしての外観上あるい〆   
  はEVAの架橋反応の達成という観点から、貼合せ
工程に於ける温度、最高)3度保持時間、圧着のタイミ
ングの間には、庵めで狭い111しか、満足しないこと
を、本発明者は見出した。即ち、例えば、第7図に示す
如く、熱電対16の位置で最高温度に25分保持するよ
うな場合には、最高温度が141℃以下では架橋を起こ
した割合を表わすゲル分率が50%以下となった。また
143℃ではゲル分率が90%に到達した。即ち、加圧
後、143℃以上にて保持すれば、EVAは栗惧反応が
太陽電池パネルのすべての場所で達成される。
However, there are some limitations in terms of appearance as a solar panel.
The present inventor found that from the viewpoint of achieving the crosslinking reaction of EVA, only a narrow range of 111 was satisfied between the temperature in the lamination process, the maximum holding time of 3 degrees, and the timing of pressure bonding. Ta. That is, for example, as shown in FIG. 7, when the maximum temperature is maintained at the position of the thermocouple 16 for 25 minutes, when the maximum temperature is 141° C. or lower, the gel fraction, which represents the percentage of crosslinking, will be 50%. It became the following. Further, at 143°C, the gel fraction reached 90%. That is, if the temperature is maintained at 143° C. or higher after pressurization, EVA will achieve the chestnut reaction at all locations in the solar cell panel.

尚、ゲル分率の測定方法は、S Dringborn 
l aho−ratories、  Inc、: ℃r
osslinkable  Ethy−lene/ V
 1nyl  A cetate  Copolyme
r、 F ormulaA9918″T echnic
al  1 rrrormation  P ack−
et−8ystem and Process (19
80) 、 り、7に準拠した。尚、ゲル分率が7o%
以上になれば、実用上架橋反応が達成されたとする。上
述と同じ保持時間で、最高温度が154℃以上になると
、EVA自身の分解ガスに起因する発泡現象が生じた。
The method for measuring the gel fraction is S Dringborn.
l aho-ratories, Inc.: ℃r
osslinkable Ethy-lene/V
1nyl A cetate Copolyme
r, Formula A9918″ Technic
al 1 rrrormation Pack-
et-8system and Process (19
80), in accordance with 7. In addition, the gel fraction is 7o%
If the above is achieved, it is assumed that the crosslinking reaction has been practically achieved. When the maximum temperature reached 154° C. or higher under the same holding time as described above, a foaming phenomenon occurred due to the decomposition gas of EVA itself.

最高温度がさらに高くなると、発泡現象と共に、EVA
の黄変が生じた。以上、熱電対16の位置での最高温度
保持時間を25分と限っても、最適最高温度は143°
C乃至154℃と、狭い温度範囲にある。また保持時間
を長くした場合、例えば熱雷対16の位置で最高温度を
147℃に40分間保持した場合にも、EVA自身の発
泡による小泡の発生が見られた。
As the maximum temperature rises further, along with the foaming phenomenon, EVA
yellowing occurred. As mentioned above, even if the maximum temperature holding time at the position of thermocouple 16 is limited to 25 minutes, the optimal maximum temperature is 143°
It has a narrow temperature range of 154°C to 154°C. Further, when the holding time was increased, for example, when the maximum temperature was held at 147° C. for 40 minutes at the position of the thermal lightning pair 16, small bubbles were observed due to foaming of the EVA itself.

上述の実験結果を纏めると、二重真空方式により加圧後
、第7因に示す「最適領域」に於ける最−高温度並びに
その保持時間にて貼合せれば良い。
Summarizing the above experimental results, it is sufficient to apply pressure using a double vacuum system and then bond at the maximum temperature and holding time in the "optimum range" shown in factor 7.

即ち、熱板15に最も近接した8I層体14の位置であ
る熱電対16で最高温度が140℃乃至155′C1そ
の保持時間が7分乃至40分の範囲内にあり、熱板15
より最も離れた積層体14の位置である熱雷対17で、
最高温度が140℃乃至155℃、その保持時間が1分
乃至32分の範囲で貼合せれば良い。尚、架橋反応を達
成したと見なす、70%架橋線は50%と90%の線の
間にある。
That is, the maximum temperature at the thermocouple 16 at the position of the 8I layer 14 closest to the hot plate 15 is 140°C to 155'C1, and the holding time is within the range of 7 minutes to 40 minutes,
At the thermal lightning pair 17 at the farthest position of the stack 14,
The bonding may be carried out at a maximum temperature of 140° C. to 155° C. and a holding time of 1 minute to 32 minutes. Note that the 70% crosslinking line, which is considered to be the completion of the crosslinking reaction, is between the 50% and 90% lines.

「最適wA域」に於て貼合せると、EVAは架橋反応が
達成され、屋外での温度変化に対し軟化現象を起こすこ
とはない。
When laminated in the "optimal wA range", EVA undergoes a crosslinking reaction and does not soften due to outdoor temperature changes.

以上、本実施例に於ては、熱板からの一方向からの加熱
方式により昇温し貼合せを行なう場合につき詳述したが
、太陽電池パネル@層体を全体に亙って加熱する場合に
も本発明が適用される。この場合には、熱電対16と熱
電対17は、はぼ同じ温度を示すが、最iai温度が1
40℃以下ではEVAは未架橋であり、155℃以上の
場合はEVAの発泡が生じる。また、最高温度保持時間
が40分以上になって来ると、小泡が発生して来る。
In this example, we have described in detail the case in which the temperature is raised and bonded using the heating method from one direction from the hot plate, but in the case where the entire solar cell panel @layer is heated The present invention is also applicable to In this case, thermocouple 16 and thermocouple 17 show almost the same temperature, but the maximum iai temperature is 1
At temperatures below 40°C, EVA is uncrosslinked, and at temperatures above 155°C, EVA foams. Moreover, when the maximum temperature holding time reaches 40 minutes or more, small bubbles start to appear.

なお、最高温度保持時間が7分以下ではEVAは未架橋
である。いずれの加熱方式に於ても[最;べ領域」に於
て貼合せを行えば良いが、省エネルギー的には一方向か
らの加熱方式が浸れている。
Note that when the maximum temperature holding time is 7 minutes or less, EVA is not crosslinked. In either heating method, lamination can be carried out in the ``most area'', but in terms of energy saving, heating from one direction is preferred.

■発明の効果] 本発明による太陽電池パネルの製造方法を用いれば、外
観上EVAの発泡がなく、かつ架橋反応も達成している
ため、屋外での軟化現象は起らない。また二重真空方式
を用いて貼合せているため、高温高湿試験、屋外曝露試
煎に於ても高信頼性を得ることが出来る。
[Effects of the Invention] If the method for manufacturing a solar cell panel according to the present invention is used, there is no foaming of EVA in appearance, and the crosslinking reaction is also achieved, so that the softening phenomenon does not occur outdoors. In addition, since it is laminated using a double vacuum method, high reliability can be obtained even in high temperature and high humidity tests and outdoor exposure test roasting.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は大円電池パネルの断面図、第2図は裏面材料の
概略断面図、第3図は二重真空方式の貼合せ装置の概略
説明図、第4図は太陽電池パネルの積層体を示す断面図
、第5図は一方向からの加熱方式による二重真空方式の
貼合せ装置の慨略図、第6図は本発明による湿度、真空
度(圧力)と時間の関係を表わす10フ?イルの1例を
示す特性図、第7図は最高温度と保持時間によるEVA
の状態図で、最高領域を表わす図である。 1・・・カバーガラス、2.21.22・・・充填材、
3・・・太陽電池セル、4・・・裏面材料、11・・・
第1の室、12・・・第2の室、13・・・ダイヤフラ
ム、14・・・偵唐体、15・・・熱板、16.17・
・・熱電対、31.32.33・・・真空度を表わす曲
線、34゜35・・・温度を表わす曲線。 ど 出願人代理人 弁理士 鈴江武彦 第1図 第2図 /4 第3図 第4図 214 第5図 第6図 時間(余) 第7図
Fig. 1 is a cross-sectional view of a large circular battery panel, Fig. 2 is a schematic cross-sectional view of the back material, Fig. 3 is a schematic illustration of a double vacuum laminating device, and Fig. 4 is a stack of solar cell panels. 5 is a schematic diagram of a laminating apparatus using a double vacuum method using a heating method from one direction. FIG. ? Figure 7 shows the EVA characteristics according to maximum temperature and holding time.
FIG. 2 is a diagram showing the highest region in the state diagram of FIG. 1... Cover glass, 2.21.22... Filler,
3... Solar battery cell, 4... Back material, 11...
First chamber, 12... Second chamber, 13... Diaphragm, 14... Reconnaissance body, 15... Hot plate, 16.17.
...Thermocouple, 31.32.33...Curve representing degree of vacuum, 34°35...Curve representing temperature. Patent Attorney Patent Attorney Takehiko Suzue Figure 1 Figure 2 /4 Figure 3 Figure 4 214 Figure 5 Figure 6 Time (Extra) Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)太陽電池セルを充填材を介してカバーガラスと裏
面ガラスとの間に積層した太陽電池パネル積層体を、二
重真空方式により脱気し、加熱後加圧による貼合せ工程
を有する太陽電池パネルの製造方法において、充填材と
して、エチレン・ビニル・アセテートを用い、加圧によ
る貼合わせ工程で、加圧後の最高温度が140℃乃至1
55℃の範囲にあり、最高温度の保持時間が7分乃至4
0分の範囲にあることを特徴とする太陽電池パネルの製
造方法。
(1) A solar cell panel laminate in which solar cells are laminated between a cover glass and a back glass through a filler is degassed using a double vacuum method, and then bonded by heating and pressurizing. In the manufacturing method of battery panels, ethylene vinyl acetate is used as the filler, and in the bonding process by pressurization, the maximum temperature after pressurization is 140 ° C.
It is in the range of 55℃, and the maximum temperature holding time is 7 minutes to 4
A method for manufacturing a solar cell panel, characterized in that the solar cell panel is within a range of 0 minutes.
(2)前記太陽電池パネル積層体の加熱として、熱板に
よる一方向からの加熱方式を用い、前記熱板に最も近接
した太陽電池パネル積層体の位置で、加圧後の最高温度
が140℃乃至155℃、その保持時間が7分乃至40
分の範囲にあり、前記熱板より最も離れた太陽電池パネ
ル積層体の位置で、加圧後の最高温度が140℃乃至1
55℃、その保持時間が1分乃至32分の範囲にあるこ
とを特徴とする特許請求の範囲第1項記載の太陽電池パ
ネルの製造方法。
(2) The solar panel laminate is heated by a heating method from one direction using a hot plate, and the maximum temperature after pressurization is 140°C at the position of the solar panel laminate closest to the hot plate. 155℃, holding time 7 minutes to 40℃
The maximum temperature after pressurization is between 140°C and 100°C at the position of the solar panel stack farthest from the heating plate.
The method for manufacturing a solar cell panel according to claim 1, wherein the temperature is 55° C. and the holding time thereof is in the range of 1 minute to 32 minutes.
JP59191129A 1984-09-12 1984-09-12 Method of manufacturing solar cell panel Expired - Fee Related JPH0652801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59191129A JPH0652801B2 (en) 1984-09-12 1984-09-12 Method of manufacturing solar cell panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59191129A JPH0652801B2 (en) 1984-09-12 1984-09-12 Method of manufacturing solar cell panel

Publications (2)

Publication Number Publication Date
JPS6169179A true JPS6169179A (en) 1986-04-09
JPH0652801B2 JPH0652801B2 (en) 1994-07-06

Family

ID=16269353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59191129A Expired - Fee Related JPH0652801B2 (en) 1984-09-12 1984-09-12 Method of manufacturing solar cell panel

Country Status (1)

Country Link
JP (1) JPH0652801B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578141A (en) * 1993-07-01 1996-11-26 Canon Kabushiki Kaisha Solar cell module having excellent weather resistance
KR100243829B1 (en) * 1995-08-24 2000-02-01 미다라이 후지오 A solar cell module having a specific back side covering material and process for the production said solar cell module
WO2005104242A1 (en) * 2004-04-27 2005-11-03 Nakajima Glass Co., Inc. Method for manufacturing solar cell module
WO2005106969A1 (en) * 2004-04-28 2005-11-10 Nakajima Glass Co., Inc. Solar cell module manufacturing method and solar cell module
JP2008091772A (en) * 2006-10-04 2008-04-17 Bridgestone Corp Sealing film for solar battery and solar battery using the same
WO2009037962A1 (en) * 2007-09-18 2009-03-26 Nitto Denko Corporation Sealing member for solar cell panel and solar cell module
US7915518B2 (en) 2002-10-25 2011-03-29 Nakajima Glass Co., Inc. Solar battery module manufacturing method
WO2011125791A1 (en) 2010-03-31 2011-10-13 株式会社クラレ Polyvinyl acetal film and uses thereof
JP2011249835A (en) * 2011-08-01 2011-12-08 Nakajima Glass Co Inc Manufacturing method of solar cell module

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102742028B (en) * 2010-02-15 2016-02-03 迪睿合电子材料有限公司 The manufacture method of thin film type solar battery module
FR2978698B1 (en) 2011-08-04 2015-10-23 Saint Gobain GLAZING WITH DECORATIVE EFFECT

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078287A (en) * 1973-09-14 1975-06-26
JPS5817685A (en) * 1981-07-24 1983-02-01 Fuji Electric Co Ltd Resin material for sealing solar cell
JPS5863178A (en) * 1981-10-12 1983-04-14 Du Pont Mitsui Polychem Co Ltd Filling adhesive sheet for solar battery and bonding method using the same
JPS5916388A (en) * 1982-07-19 1984-01-27 Matsushita Electric Ind Co Ltd Solar battery module
JPS5922978A (en) * 1982-07-30 1984-02-06 Du Pont Mitsui Polychem Co Ltd Caulking adhesive sheet and its manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078287A (en) * 1973-09-14 1975-06-26
JPS5817685A (en) * 1981-07-24 1983-02-01 Fuji Electric Co Ltd Resin material for sealing solar cell
JPS5863178A (en) * 1981-10-12 1983-04-14 Du Pont Mitsui Polychem Co Ltd Filling adhesive sheet for solar battery and bonding method using the same
JPS5916388A (en) * 1982-07-19 1984-01-27 Matsushita Electric Ind Co Ltd Solar battery module
JPS5922978A (en) * 1982-07-30 1984-02-06 Du Pont Mitsui Polychem Co Ltd Caulking adhesive sheet and its manufacture

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5718772A (en) * 1993-07-01 1998-02-17 Canon Kabushiki Kaisha Solar cell having excellent weather resistance
US5578141A (en) * 1993-07-01 1996-11-26 Canon Kabushiki Kaisha Solar cell module having excellent weather resistance
KR100243829B1 (en) * 1995-08-24 2000-02-01 미다라이 후지오 A solar cell module having a specific back side covering material and process for the production said solar cell module
US8551803B2 (en) 2002-10-25 2013-10-08 Nakajima Glass Co., Inc. Solar battery module manufacturing method
US7915518B2 (en) 2002-10-25 2011-03-29 Nakajima Glass Co., Inc. Solar battery module manufacturing method
WO2005104242A1 (en) * 2004-04-27 2005-11-03 Nakajima Glass Co., Inc. Method for manufacturing solar cell module
JP2008294486A (en) * 2004-04-27 2008-12-04 Nakajima Glass Co Inc Method for manufacturing solar cell module
JP2009010419A (en) * 2004-04-27 2009-01-15 Nakajima Glass Co Inc Method for manufacturing solar battery module
JP2008294487A (en) * 2004-04-28 2008-12-04 Nakajima Glass Co Inc Solar cell module
WO2005106969A1 (en) * 2004-04-28 2005-11-10 Nakajima Glass Co., Inc. Solar cell module manufacturing method and solar cell module
JP2009170943A (en) * 2004-04-28 2009-07-30 Nakajima Glass Co Inc Method of manufacturing solar cell module
JP2010192909A (en) * 2004-04-28 2010-09-02 Nakajima Glass Co Inc Method of manufacturing solar cell module
JP2012069986A (en) * 2004-04-28 2012-04-05 Nakajima Glass Co Inc Method for producing solar cell module
JP2008091772A (en) * 2006-10-04 2008-04-17 Bridgestone Corp Sealing film for solar battery and solar battery using the same
JP2009071233A (en) * 2007-09-18 2009-04-02 Nitto Denko Corp Sealing material for solar battery panel, and solar battery module
JP2013138246A (en) * 2007-09-18 2013-07-11 Nitto Denko Corp Solar cell module
WO2009037962A1 (en) * 2007-09-18 2009-03-26 Nitto Denko Corporation Sealing member for solar cell panel and solar cell module
JP2014112703A (en) * 2007-09-18 2014-06-19 Nitto Denko Corp Seal material for solar cell panel and solar cell module
WO2011125791A1 (en) 2010-03-31 2011-10-13 株式会社クラレ Polyvinyl acetal film and uses thereof
US9676930B2 (en) 2010-03-31 2017-06-13 Kuraray Co., Ltd. Polyvinyl acetal film and uses thereof
US9988507B2 (en) 2010-03-31 2018-06-05 Kuraray Co., Ltd. Polyvinyl acetal film and uses thereof
JP2011249835A (en) * 2011-08-01 2011-12-08 Nakajima Glass Co Inc Manufacturing method of solar cell module

Also Published As

Publication number Publication date
JPH0652801B2 (en) 1994-07-06

Similar Documents

Publication Publication Date Title
US8551803B2 (en) Solar battery module manufacturing method
US4067764A (en) Method of manufacture of solar cell panel
JP3878386B2 (en) Intermediate film adhesive sheet and laminated glass laminate
JP5209229B2 (en) Manufacturing method of solar cell module
JPS6169179A (en) Manufacture of solar cell panel
JP2019192900A (en) Packaging method of solar battery and solar battery device
WO2019144501A1 (en) Laminated curved glass composite material and manufacturing method therefor
US8877540B2 (en) Solar cell module and manufacturing method of solar cell module
JPS6366072B2 (en)
WO2019206275A1 (en) Solar assembly packaging method and packaging device
JPS6257268B2 (en)
JPS5817685A (en) Resin material for sealing solar cell
CN114256371A (en) Lightweight photovoltaic module and preparation method and application thereof
JP4086353B2 (en) LAMINATE MANUFACTURING METHOD AND SOLAR CELL MODULE MANUFACTURING METHOD
CN103359956A (en) Laminated vacuum glass and manufacturing method thereof
JP5470341B2 (en) Manufacturing method of solar cell module
JP3099202B2 (en) Method for manufacturing flexible lightweight solar cell module
JP3856224B2 (en) Manufacturing method of solar cell module
JPS6246077B2 (en)
JP2002111014A (en) Solar light generating plastic module
JPH04116987A (en) Manufacture of solar cell module
JPS60164348A (en) Backside protecting sheet for solar battery module
JPH0558677B2 (en)
JPS61272975A (en) Back protective sheet for solar cell
CN111403513A (en) Solar power supply clothes, and packaging method and device of solar cell module

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees