WO2005106969A1 - Solar cell module manufacturing method and solar cell module - Google Patents

Solar cell module manufacturing method and solar cell module Download PDF

Info

Publication number
WO2005106969A1
WO2005106969A1 PCT/JP2005/008009 JP2005008009W WO2005106969A1 WO 2005106969 A1 WO2005106969 A1 WO 2005106969A1 JP 2005008009 W JP2005008009 W JP 2005008009W WO 2005106969 A1 WO2005106969 A1 WO 2005106969A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
sealing
cell module
sealing resin
pressure
Prior art date
Application number
PCT/JP2005/008009
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Yuuki
Masaru Akiyama
Keizo Masada
Original Assignee
Nakajima Glass Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakajima Glass Co., Inc. filed Critical Nakajima Glass Co., Inc.
Priority to JP2006512808A priority Critical patent/JP4359308B2/en
Priority to CN2005800214758A priority patent/CN1977391B/en
Publication of WO2005106969A1 publication Critical patent/WO2005106969A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/04Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the partial melting of at least one layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/60In a particular environment
    • B32B2309/68Vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for manufacturing a solar cell module and a solar cell module.
  • the present invention relates to a method for manufacturing a solar cell module in which solar cells are sealed with resin between a light-receiving-surface-side transparent plate and a back plate.
  • EVA ethylene-vinyl acetate copolymer
  • a method using a double vacuum chamber type laminator and a method using a single vacuum chamber type laminator are mainly known.
  • the double vacuum chamber type laminator is capable of independently controlling the degree of vacuum in the two chambers separated by a gas-impermeable flexible sheet.
  • the structure is complicated.
  • a single vacuum type laminator tends to cause bubbles to remain and cell cracks, but the structure of the laminator is simple.
  • These laminators are used depending on the specifications of the solar cell module.
  • the laminate is placed on a plate having a built-in heater, and the laminate is heated and sealed while evacuating the space where the laminate exists.
  • Patent Document 1 discloses a double-vacuum solar cell panel laminate in which solar cells are laminated between a power bar glass and a back surface material via a filler. Degassed by a method, and applied to a method of manufacturing a solar cell panel that has a bonding process by heating and pressing. A method of manufacturing a solar cell panel using EVA as a filler and maintaining a double vacuum chamber in a specific temperature range for a specific time is described. By bonding under specific temperature conditions, EVA can be crosslinked without foaming or yellowing. Under the conditions described in the examples, the pressure was reduced to 0.3 Torr (approximately 0.0004 MPa), and then calo-heat was started.
  • Torr approximately 0.0004 MPa
  • Patent Document 2 JP-A-59-22978 discloses a filling adhesive for a solar cell module containing an ethylene-based copolymer and an organic peroxide and having embossed patterns on both surfaces thereof. The sheet is described. It is said that the adhesive sheet has an embossed pattern so that blocking of the sheet can be prevented, the degassing property in the modularizing process is excellent, and bubbles are hardly generated.
  • the example of the publication describes a laminating method in which the temperature is raised to 150 ° C. in a vacuum laminator while the pressure is reduced, the pressure is reduced at 150 ° C. for 1 hour, the glass is cooled, and the pressure is stopped. ing.
  • the laminator used in the examples of this publication is a vacuum laminator separated into two chambers by silicone rubber.
  • Patent Document 3 discloses that a photovoltaic element is formed as a laminate between a front surface member and a back surface member with an encapsulant resin interposed therebetween. It describes a solar cell module that is held at a vacuum degree of 5 ⁇ or less for 5 to 40 minutes, heat-pressed at a vacuum degree of 5 Torr or less, cooled and bonded after the heat-press bonding. It is described that a module that is hardly peeled off from the surface member and hardly generates bubbles is provided by thermocompression bonding under such conditions.
  • the single-vacuum laminator used in the embodiment of the publication has a laminated body serving as a module placed on a plate in which a heater is embedded, and a silicone rubber sheet is placed thereon, and the exhaust force of the plate is also reduced. It can be evacuated with a vacuum pump. It also describes that the problem of remaining air bubbles can be improved by inserting a non-woven fabric between the solar cell and the sealing resin and letting the air in the laminate escape through the voids in the non-woven fabric.
  • Patent Document 4 discloses a laminated structure in which two plate-like members are joined via an adhesive sheet such that a solar cell is sandwiched between two adhesive sheets.
  • a laminate is described in which a sheet piece having substantially the same thickness as the solar cell is sandwiched in a gap formed between the adhesive sheets outside the solar cell. With such a configuration, thus, the thickness of the peripheral portion of the laminate can be made uniform, and the external force is less likely to penetrate moisture and the like into the gap, so that separation can be prevented.
  • EVA is used as an adhesive sheet
  • a glass sheet is used as a plate-like body on both sides.
  • Patent Document 5 discloses a solar cell module in which a plurality of solar cells are arranged between a front cover and a back cover and sealed with a transparent filler such as EVA. Describes a solar cell module in which a translucent spacer (setting block) is arranged between solar cells. It is described that it is optimal to use a spacer having the same material as the transparent filler and the same thickness as the solar cell as the spacer. It is said that this spacer can secure an air flow path that is not deformed by the weight of the cover alone. It is described that this allows a solar cell module having no air to remain therein.
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2001-7376 describes a solar cell module in which solar cell is sealed with resin between curved glass plates.
  • a transparent acrylic resin anaerobic adhesive is used as the sealing resin, and a spacer is arranged at the peripheral portion between the two substrates, and the liquid adhesive is injected. And harden.
  • the resin obtained by curing has a satisfactory performance such as adhesiveness and durability.
  • Patent Document 7 discloses a method in which a filling sheet made of EVA resin is placed on both sides of a solar battery cell, and the layers are joined by heating under vacuum and preliminarily. It describes a method for manufacturing a solar cell module, in which a formed sheet is formed, and then the preformed sheet is placed on a curved glass and heated and joined by vacuum.
  • the preformed sheet and the curved glass are inserted into a rubber bag, set in a heating chamber, and heated while vacuuming the rubber bag with a vacuum pump. The method is described. By adopting such a method, bonding to curved glass is also possible. The joining operation twice is complicated, Is not applicable to a configuration in which is covered with curved glass.
  • Patent Document 1 JP-A-61-69179
  • Patent Document 2 JP-A-59-22978
  • Patent Document 3 Japanese Patent Application Laid-Open No. 9-36405
  • Patent Document 4 Utility Model Registration No. 2500974
  • Patent Document 5 JP-A-2003-110127
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2001-7376
  • Patent Document 7 Japanese Patent Application Laid-Open No. 9-92867
  • the present invention has been made to solve such a problem, and relates to a method for manufacturing a solar cell module in which solar cells are sealed with resin, in various shapes and sizes. It is an object of the present invention to provide a method for manufacturing a solar cell module which can seal a solar cell module by a simple operation and at a low cost with a simple operation. It is another object of the present invention to provide a solar cell module having a module fixing bracket.
  • the object is to provide a method for manufacturing a solar cell module in which a solar cell is sealed with resin between a light-receiving-surface-side transparent plate and a back plate.
  • a first sealing resin sheet covering substantially the entire surface of the transparent plate on the light-receiving surface is disposed between the transparent plate on the light-receiving surface and the solar cell, and the rear plate is substantially disposed between the rear plate and the solar cell.
  • a second sealing resin sheet covering the entire surface is arranged to produce a laminate, The laminate is placed in a sealing treatment container made of a gas-impermeable flexible sheet, and a plurality of sealing treatment containers containing the laminate are introduced into an oven and arranged in parallel at intervals.
  • the inside of the sealing processing container is decompressed to discharge air between the light-receiving surface side transparent plate and the back plate, and the laminate is heated by flowing hot air in the oven in a direction parallel to the laminate.
  • the problem is solved by providing a method for manufacturing a solar cell module, which solidifies the sealing resin by successively cooling.
  • the sealing treatment container is a bag made of a gas-impermeable flexible sheet. It is also preferable to cover the outer edge of the laminate with a breathable cloth and then put the laminate in a sealed container. It is a preferred embodiment to heat the laminate while maintaining the inside of the oven at substantially atmospheric pressure. It is preferable that a plurality of solar cells are arranged at intervals and connected to each other by a conductor, and at this time, a plurality of sets in which a plurality of solar cells are connected to each other in a serial direction by a conductor are arranged at intervals.
  • the laminate it is also a preferred embodiment to form the laminate by arranging the laminate in parallel with each other and to heat the oven so that the air flow in the oven is parallel to the serial direction. It is also preferable that the oven has a hot air inlet and a hot air outlet provided on the opposite side.
  • the sealing container is connected to a vacuum pump via a pipe, and a set of a pressure gauge and a valve is provided for each of the plurality of pipes, and the set is connected to a sealing processing container in which a leak is detected by the pressure gauge. It is also preferred that the closed valve is closed. It is also preferable that each of the sealing processing containers is connected to a vacuum pump via a pipe, and a tank is provided between the sealing processing container and the vacuum pump.
  • a pressure gauge for measuring the pressure in the tank and outside air are introduced into the tank. It is preferable to have a valve and to finely adjust the pressure in the tank. It is also preferable to provide at least one temperature control chamber adjacent to the oven and perform a preheating operation or a cooling operation in the temperature control chamber.
  • a sealing resin sheet piece thicker than the thickness of the solar cell may be disposed in a gap between the solar cells or in a margin outside the solar cell. It is suitable.
  • both the light receiving surface side transparent plate and the back plate are glass plates.
  • at least one of the light-receiving-surface-side transparent plate and the back plate is curved.
  • the laminate has a light-receiving-surface-side transparent plate or a member protruding outward on the back surface. At this time, it is preferable that the member protruding outward is a metal fitting for fixing the module.
  • the sealing resin is made of a resin selected from the group consisting of ethylene-vinyl acetate copolymer, polyvinyl butyral and polyurethane.
  • a step of heating the sealing resin while maintaining the pressure in the sealing processing container at 0.05 MPa or more (step 1), when sealing in the sealing processing container, Step of depressurizing the inside of the sealing container at a temperature lower than the melting point of the resin to 0. OlMPa or less (Step 2), and step of raising the temperature to a temperature equal to or higher than the melting point of the sealing resin while maintaining the reduced pressure 3)
  • a sealing operation including a step of increasing the pressure in the sealing container (Step 4) and a step of cooling (Step 6) is performed.
  • the sealing resin sheet is made of a crosslinkable thermoplastic resin, and is sealed at a temperature lower than the melting point of the sealing resin when sealing in a sealing treatment container.
  • step 2 Depressurizing the inside of the processing vessel to a pressure of not more than 0.1 OlMPa (step 2), raising the temperature to a temperature equal to or higher than the melting point of the sealing resin while maintaining the reduced pressure (step 3), Perform a sealing operation that increases the pressure of each step (step 4), the step of raising the temperature to the temperature range where the crosslinking reaction proceeds (step 5), and the step of cooling (step 6). .
  • the object described above is a solar cell module having a sealing resin layer between a light-receiving-surface-side transparent plate and a back plate, and a solar cell sealed in the sealing resin layer.
  • a metal fitting for fixing the module the metal fitting is inserted into a through hole formed in one of the transparent plate on the light-receiving surface side and the back plate, and the end on the head side of the metal fitting is formed on the sealing resin layer side.
  • Located on the opposite side of the bracket The problem is solved by providing a solar cell module characterized in that the side end protrudes outward. At this time, it is preferable that a spacer is not provided on the peripheral edge of the sealing resin layer. It is also preferable that the through hole is a countersink, and the head of the metal fitting is fitted into the countersink.
  • a method for manufacturing a solar cell module in which solar cells are sealed with resin is provided.
  • FIG. 1 is a schematic cross-sectional view of an example of a solar cell module after a sealing operation.
  • FIG. 2 is a schematic cross-sectional view of an example of a laminate before a sealing operation.
  • FIG. 3 is a schematic cross-sectional view of another example of a laminate before a sealing operation.
  • FIG. 4 is a schematic cross-sectional view of another example of a laminate before a sealing operation.
  • FIG. 5 is an enlarged schematic cross-sectional view of a laminate before a sealing operation in the example of FIG. 2 is started.
  • FIG. 6 is an enlarged schematic cross-sectional view of a laminate during heating and heating in the example of FIG. 2.
  • FIG. 7 is an enlarged schematic cross-sectional view of a laminate after a sealing operation in the example of FIG. 2.
  • FIG. 8 is a schematic view of an example of a sealing apparatus.
  • FIG. 9 is a schematic diagram showing a case where heating is performed so that an air flow in an oven is in a direction parallel to a series direction of solar cells.
  • FIG. 10 is a schematic diagram showing a case where heating is performed so that an airflow in an oven is in a direction perpendicular to a series direction of solar cells.
  • FIG. 11 is a view (No. 1) showing a procedure of a laminating step in Examples 1 and 2.
  • FIG. 12 is a view (No. 2) showing a procedure of a laminating step in Examples 1 and 2.
  • FIG. 13 is a view (No. 3) showing a procedure of a laminating step in Examples 1 and 2.
  • FIG. 14 is a diagram showing temperature and pressure during a sealing process in Examples 1 and 2.
  • FIG. 1 is a schematic cross-sectional view of an example of a solar cell module after a sealing operation.
  • 2 to 4 are schematic cross-sectional views of an example of the laminate before the sealing operation.
  • FIG. 5 is an enlarged schematic cross-sectional view of the laminated body before the start of the sealing operation in the example of FIG.
  • FIG. 6 is an enlarged schematic cross-sectional view of the laminate during heating and heating in the example of FIG.
  • FIG. 7 is an enlarged schematic cross-sectional view of the laminate after the sealing operation in the example of FIG.
  • FIG. 8 is a schematic diagram of an example of the sealing apparatus.
  • FIG. 1 is a schematic cross-sectional view of an example of a solar cell module after a sealing operation.
  • 2 to 4 are schematic cross-sectional views of an example of the laminate before the sealing operation.
  • FIG. 5 is an enlarged schematic cross-sectional view of the laminated body before the start of the sealing operation in the example of FIG.
  • FIG. 6 is an enlarged schematic cross-
  • FIG. 9 is a schematic diagram showing a case where heating is performed so that the airflow in the oven is in a direction parallel to the direction in which the solar cells are arranged in parallel.
  • FIG. 10 is a schematic diagram showing a case where heating is performed so that the airflow in the oven is in a direction perpendicular to the series direction of the solar cells.
  • the solar cell module 1 obtained by the manufacturing method of the present invention is one in which a solar cell 4 is sealed with a resin 5 between a light-receiving-side transparent plate 2 and a back plate 3.
  • the number of the solar cells 4 sealed in the solar cell module 1 may be one, but usually, The number of solar cells 4 is sealed.
  • the light receiving surface 6 and the back surface 7 of the adjacent solar cell 4 are connected via the conducting wire 8.
  • Figure 1 shows a schematic cross-sectional view of that case.
  • various solar cells such as a single-crystal silicon solar cell, a polycrystalline silicon solar cell, an amorphous silicon solar cell, and a compound semiconductor solar cell can be used.
  • These solar cells are generally thin plates having a thickness of 1 mm or less, more generally 0.5 mm or less, and are often rectangular with a side of 5 cm or more.
  • a semiconductor substrate such as silicon or germanium, a glass substrate, a metal substrate, or the like can be used, but a silicon substrate is most important practically.
  • a thin plate is desired in terms of cost requirements, but since it is a hard and brittle material, it is necessary to take care to seal the substrate particularly easily at the time of sealing.
  • the number of solar cells 4 sealed in one solar cell module 1 is not particularly limited, and may be only one. In that case, only the wiring to the outside of the solar cell is connected. As the number of solar cells 4 sealed in one solar cell module 1 increases, the overall dimensions of solar cell module 1 increase. Since large-sized solar cell modules 1 are often custom-made in various shapes or dimensions, there is a great benefit in adopting the manufacturing method of the present invention. Therefore, it is preferable that 10 or more, preferably 30 or more solar cells 4 are arranged in one solar cell module 1. In addition, when a large number of solar cells 4 are sealed, air bubbles are likely to be generated, and when the solar cells 4 move during the sealing operation, a problem in appearance tends to occur. Also, as the number of solar cells 4 sealed in one solar cell module 1 increases, the defective product rate due to damage to the solar cells 4 increases, so it is necessary to carefully seal It is.
  • the width of the gap 9 between the adjacent solar cells 4 is not particularly limited, but is usually 0.5 mm or more, and when it is less than 0.5 mm, the adjacent solar cells 4 come into contact with each other to be sealed. In such a case, the cell may be damaged. If priority is given to daylighting, it is preferable to make the gap 9 wide. If priority is given to light use efficiency, it is preferable to make the gap 9 narrow. It is adjusted appropriately according to the requirements of the application and design. [0030] The plurality of solar cells 4 are arranged via a predetermined width, and are connected to each other by a conductive wire 8.
  • the adjacent solar cells 4 are connected to each other by the conducting wire 8 between the light receiving surface 6 and the back surface 7, and a large number of solar cells 4 are connected in series.
  • the connection between the light receiving surface 6 or the back surface 7 and the conductive wire 8 is performed using a conductive adhesive such as solder.
  • a conductive adhesive such as solder.
  • non-adjacent cells or conductors 8 located at distant positions are connected to each other, or a hole is made in the back plate 3 to lead the conductor 8 out.
  • the conducting wire 8 is also called an interconnector.
  • the material is not particularly limited, and a copper wire or the like is used. It is preferable to use a thin ribbon-shaped conductor 8 because it is sandwiched between the light receiving surface side transparent plate 2 and the back plate 3, and the thickness thereof is usually 0.5 mm or less, and preferably 0.5 mm or less. 3 mm or less. It is usually 0.05 mm or more. It is preferable that the conductive wire 8 be coated with a conductive adhesive such as solder in advance, since the connection work becomes easy. In the state where the conductor 8 is connected, the surface force of the photovoltaic cell 4 The height of the conductor 8 up to the highest part is a force that varies from place to place. In some cases, it is about 5mm thicker.
  • the material of the light-receiving-surface-side transparent plate 2 may be, for example, polycarbonate resin, acrylic resin, or the like, in addition to glass, as long as it is transparent to sunlight. It is preferable to use glass in consideration of durability, hardness, flame retardancy, and the like while pressing. A glass plate having a surface compressive stress of 20 MPa or more is preferable because a structural material having a large area is often formed. In addition, if the area is large, thermal cracks are likely to occur due to temperature rise due to sunshine or the like. Therefore, it is preferable to use a glass plate having a surface compressive stress of 20 MPa or more also from this point.
  • the surface compressive stress of the sheet glass is a value measured according to JIS R3222.
  • Specific examples of a glass sheet having a surface compression stress of 20 MPa or more include double-strength glass and tempered glass. Lath, ultra-tempered glass and the like. Double-strength glass usually has a surface compressive stress of 20 to 60 MPa, tempered glass has a surface compressive stress of usually 90 to 130 MPa, and ultra-tempered glass has a surface compressive stress of usually 180 to 250 MPa. . As the surface compressive stress increases, the strength increases, but the warpage tends to increase and the manufacturing cost tends to increase. Further, double strength glass is preferable in that a glass with relatively small warpage is manufactured or when the glass breaks immediately, the glass does not fall into small pieces.
  • the glass plate is selected according to the application and purpose.
  • the back plate 3 a plate similar to the light-receiving surface-side transparent plate 2 is preferably used.
  • a thin and flexible material such as a plastic film can be used.
  • the back plate 3 does not necessarily have to be transparent, but it is better for the back plate 3 to be transparent to sunlight if lighting is taken into consideration. Further, for the same reason as the light-receiving-surface-side transparent plate 2, it is preferable to use glass, particularly a glass plate having a surface compressive stress of 20 MPa or more.
  • the material of the glass is not particularly limited, and among the powers in which soda-lime glass is preferably used, a high transmission glass (so-called white plate glass) is preferably used for the light-receiving surface side transparent plate 2.
  • High transmission glass is soda lime glass with a low iron content and high light transmittance.
  • the thickness of the glass plate is not particularly limited, but is preferably 3 mm or more, more preferably 5 mm or more, when used as a structural material. Care must be taken when using such a thick glass plate because the cell may be damaged when the glass plate is overlaid on the cell before bonding because the influence of its own weight is large.
  • the thickness of the glass plate is usually 20 mm or less. Further, when the area of the glass is equal to or more than the force lm 2 adjusted according to the application, there is a great benefit to adopt the manufacturing method of the present invention.
  • the light-receiving-surface-side transparent plate 2 and the back plate 3 used in the present invention may be flat or curved. At least one of the light-receiving side transparent plate and the back plate In the case where the gap is curved, it is difficult to use a laminator, which has been widely used in the past, for sealing, and therefore, there is a great advantage in employing the manufacturing method of the present invention.
  • Solar cell
  • the portion other than 4 may be greatly curved, but usually, in a region where the solar cell 4 is present, a region having a curvature radius of 500 to 10,000 mm is preferable. If the radius of curvature is less than 500 mm, it may be difficult to seal while preventing cell cracking, and it is preferably 700 mm or more. On the other hand, when the radius of curvature exceeds 10,000 mm, the difficulty in sealing using the curved light-receiving surface-side transparent plate 2 is reduced, and the necessity of employing the present invention may be reduced.
  • the radius of curvature is preferably 5,000 mm or less, more preferably 2,000 mm or less.
  • the shape of the light-receiving-surface-side transparent plate 2 may be a part of a cylinder or a part of a sphere.
  • the radius of curvature in the present invention refers to the minimum radius of curvature in the region where the solar battery cell 4 exists.
  • the light-receiving-surface-side transparent plate 2 and the back plate 3 used in the present invention may have holes.
  • the method of building the glass wall of a building by the DPG (Dot Point Glazing) method has been widely adopted.
  • DPG Dot Point Glazing
  • the sealing may be performed in a state where the metal fitting is attached to the hole.
  • the advantage of adopting the manufacturing method of the present invention using the sealing processing container 61 made of a flexible sheet is particularly advantageous. large.
  • the material of resin 5 is not particularly limited as long as it is transparent and has adhesiveness and flexibility, but ethylene-butyl acetate copolymer (EVA), polybutyral, and polyurethane are also used. A type of resin whose group strength is also selected is preferably used. At this time, the crosslinked resin is preferable in terms of strength and durability. Therefore, it is preferable that the raw material of the resin 5 is a crosslinkable thermoplastic resin, particularly a resin whose crosslinking reaction proceeds when heated.
  • Such resin is sandwiched between the transparent plate 2 on the light-receiving surface side and the back plate 3 in the form of a sheet, heated and melted, and then a crosslinking reaction is allowed to proceed if necessary, and then cooled and solidified to form a solar cell.
  • Seal 4 By using a material which is crosslinked by heating, it is possible to obtain a material having excellent durability and adhesiveness.
  • a crosslinkable thermoplastic resin The type of resin selected from the group consisting of ethylene-butyl acetate copolymer (EVA), polyvinyl butyral, and polyurethane is preferably used, as long as the crosslinking reaction proceeds when heated.
  • EVA ethylene-butyl acetate copolymer
  • polyvinyl butyral polyurethane
  • crosslinking can be carried out by reacting an isocyanate group with a hydroxyl group.
  • polyurethane since the crosslinking reaction proceeds at a relatively low temperature, it is suitable when, for example, a resin plate having low heat resistance is used for at least one of the transparent plate on the light-receiving surface side and the back plate.
  • polyurethane is excellent in flexibility, so peeling will occur even when a combination of materials with significantly different coefficients of thermal expansion, such as glass and plastic, is used for the transparent plate on the light-receiving side and the back plate. ⁇ It is suitable.
  • polyurethane has excellent penetration strength.
  • thermoplastic resin containing a crosslinking agent it is preferable to use a thermoplastic resin containing a crosslinking agent.
  • the thermoplastic resin at this time is not particularly limited as long as the crosslinking reaction proceeds when heated together with the crosslinking agent, but the ethylene-vinyl acetate copolymer (excellent in transparency, flexibility, durability, etc.) EVA) is most preferably used.
  • the sealing resin sheet is sandwiched between the transparent plate 2 on the light-receiving surface side and the back plate 3, and is heated and melted and then cooled and solidified to seal the solar cell 4.
  • the sealing resin sheet contains a cross-linking agent in the EVA resin, in which case the cross-linking reaction proceeds after heating and melting, followed by cooling to seal with the cross-linked EVA. Can be stopped.
  • the EVA in the sealed resin sheet should have a melting point of 50 to 80 ° C. as measured by the DSC method. The viewpoint of the balance between transparency and shape retention is also preferable.
  • the sealing resin sheet has an appropriate embossing on one or both sides, because blocking can be prevented and bubbles remaining can be easily suppressed.
  • the preferred emboss depth is 10 to 100 m, and if it is too deep, air bubbles may remain on the contrary.
  • the thickness of the sheet is preferably 0.2 to 2 mm, more preferably 0.3 to 1 mm, and one or a plurality of the sheets may be stacked and adjusted for use.
  • FIG. 2 shows the flat transparent plate 2 on the light-receiving surface side and the back surface. This is an example in which a sealing resin sheet piece thicker than the thickness of the solar cell 4 is arranged in both the gap 9 between the solar cells 4 and the margin 10 outside the solar cell 4 using the plate 3. .
  • FIG. 2 is a schematic cross-sectional view of an example of the stacked body 60 before the sealing operation, and shows a cross section cut in parallel to a direction in which a plurality of solar cells 4 are connected in series.
  • the second sealing resin sheet 30 is overlaid on the back plate 3 so as to cover substantially the entire surface.
  • the operation of superimposing the force on the back plate 3 is performed.
  • the transparent plate 2 on the light receiving surface side may be first placed on the lower surface, and then may be laminated in the reverse order.
  • the thickness of the second sealing resin sheet 30 is preferably 0.5 mm or more, more preferably 1 mm or more. Also, it is usually 5 mm or less, preferably 3 mm or less. By setting the thickness to a certain value or more, the solar cell 4 can be effectively protected.
  • the second sealing resin sheet 30 is preferably configured by laminating a plurality of sealing resin sheets. This is because it becomes easy to adjust the thickness of the second sealing resin sheet 30 according to the application and required performance. In the example of FIG. 2, three sealing resin sheets 31, 32, and 33 are stacked to form a second sealing resin sheet 30.
  • the second encapsulating resin sheet 30 may be partially omitted as long as it covers a substantially entire surface of the back plate 3, for example, to arrange conductive wires. It may be composed of a plurality of sealed resin sheets.
  • the solar cell 4 is placed on the second sealing resin sheet 30. At this time, the plurality of solar cells 4 connected to each other in the above-described manner are placed, and if necessary, are arranged in the same length and width. In this case, the solar cell 4 connected in advance may be placed, the connection may be made on the first sealing resin sheet 20, or the partially connected one may be placed and the force remains. May be connected.
  • sealing resin disposed substantially continuously over the entire periphery of the margin 10 on the second sealing resin sheet 30.
  • a sheet piece 40 and a sealing resin sheet piece 41 that is overlapped with the sheet piece 40 and arranged at an interval from each other are arranged.
  • sealing resin sheet pieces 42 and 43 are arranged in gaps 9 between solar cells 4.
  • the sealing resin sheet pieces 40, 41 or the sealing whose total thickness is larger than the thickness of the solar cell 4 ⁇
  • the resin sheet pieces 42 and 43 By arranging the resin sheet pieces 42 and 43, when the inside is decompressed, the atmospheric pressure from both sides
  • the sealing resin sheet pieces 40, 41 or the sealing resin sheet pieces 42, 43 which do not directly apply a load to the solar cell 4, receive the load. Therefore, it is possible to prevent the load of the light-receiving-surface-side transparent plate 2 from being directly applied to the solar battery cells 4 arranged in the module, and to prevent cell cracking in the decompression step.
  • a vertical load of the laminated body 60 receives a load derived from the atmospheric pressure during the sealing operation, and thus such a configuration is preferable.
  • the total thickness refers to the total thickness of the overlapping portions when a plurality of sealing resin sheet pieces are used in an overlapping manner.
  • the total thickness force of the sealing resin sheet pieces is preferably thicker than the total value of the thickness of the solar cell 4 and the thickness of the conductive wire 8, and preferably 0.2 mm or more than the total value. More preferred. Further, it is preferable that the total thickness of the sealing resin sheet pieces is 0.3 mm or more than the thickness of the solar cell 4, and it is more preferable that the thickness is 0.6 mm or more. Specifically, it is preferable that the total thickness of the sealing resin sheet pieces is 0.5 to 5 mm. The total thickness of the sealing resin sheet pieces is more preferably 0.8 mm or more, and even more preferably 1 mm or more. If the thickness is too thin, cell cracking may occur during the sealing operation. On the other hand, the total thickness of the sealing resin sheet pieces is more preferably 3 mm or less, and more preferably 2 mm or less. If the thickness is too large, air bubbles are likely to remain around the solar cell 4.
  • the sealing resin sheet pieces 40, 41, 42, and 43 are arranged at intervals in the horizontal direction so that the internal air can be discharged therefrom. By securing a passage for actively discharging the internal air, the remaining air bubbles can be suppressed, and the solar cell module 1 having a good appearance can be manufactured. At this time, if the sealing resin sheet pieces are directly overlapped with each other, at least one of the sealing resin sheet pieces is horizontally spaced between the resin sheet pieces, and the internal air is discharged therefrom. It is good if it can be discharged.
  • the sealing resin sheet piece 40 in the margin 10 outside the solar cell 4, it is disposed substantially continuously over the entire periphery of the margin 10 on the second sealing resin sheet 30. Sealing resin sheet piece 40 and a sealing resin sheet piece 41 overlapped with the sealing resin sheet piece 41 are arranged, and the first sealing resin sheet 20 is stacked thereon. By arranging the sealing resin sheet piece 40 continuously over the entire circumference at a position at the same height as the solar cell 4, uniform filling of the molten resin is possible, and generation of bubbles can be prevented.
  • the sealing resin sheet piece 40 preferably has a width of at least 50% of the width of the margin portion 10, and more preferably has a width of at least 70%.
  • the sealing resin sheet piece 40 may be composed of a plurality of sheet pieces arranged in parallel. It is preferable to dispose the sealing resin sheet pieces 41 on the sealing resin sheet pieces 40 at a distance from each other, whereby the internal air can be discharged smoothly.
  • sealing resin sheet pieces 42 and 43 are arranged on second sealing resin sheet 30 in gap 9 between solar cells 4.
  • two sealing resin sheet pieces are arranged in an overlapping manner.
  • FIGS. Fig. 5 is an enlarged cross-sectional schematic view of the laminate before the start of the sealing operation
  • Fig. 6 is an enlarged cross-sectional schematic view of the laminate during heating and heating
  • Fig. 7 is an enlarged cross-sectional view of the laminate after the sealing operation. It is a cross section schematic diagram. In this case, it is possible to reliably receive loads from above and below in the vicinity of the individual solar battery cells 4, so that cell cracking can be effectively prevented.
  • the width of the sealing resin sheet pieces 42 and 43 arranged in the gap 9 is preferably smaller than the width V of the gap 9 by V. By doing so, the thickness of the sealing resin sheet pieces 42, 43, which is thicker than the solar cell 4, can be easily spread over the entire gap 9 with a constant thickness. When the molten resin moves over a wide area, the solar cell 4 also moves with it. There is.
  • the width is adjusted in consideration of the thickness of the solar cell 4 and the sealing resin sheet pieces 42 and 43, the area of the gap 9, and the like.
  • the width of the gap 9 is 0.1 to 0.95. It is twice. More preferably, it is 0.3 times or more and 0.9 times or less.
  • the length of the sealing resin sheet pieces 42 and 43 is not particularly limited, and may be shorter than one side of the solar cell 4 and may be V, and may extend from one end of the solar cell module to the other end. It may be taped.
  • the internal air can be discharged from between the sealing resin sheet pieces arranged in the gap 9.
  • the sealing resin sheet pieces have a configuration in which a plurality of sealing resin sheets are laminated
  • at least one of the sealing resin sheet pieces has an interval between the resin sheet pieces, and the internal It is sufficient if air can be exhausted.
  • the sealing resin sheet pieces are arranged so as to cross each other, the internal air can be discharged from a thin portion other than the crossing portion.
  • the sealing resin sheet pieces 42 and 43 in the gap 9 between the solar cells 4.
  • the width of the gap 9 is preferably 5 mm or more, more preferably 10 mm or more, and still more preferably 20 mm or more. If the width of the gap portion 9 is narrow, it is difficult to arrange the sealing resin sheet pieces 42 and 43, so that the sealing resin sheet pieces are only provided in the margin 10 outside the solar cell 4. It is better to arrange.
  • Such a configuration is suitable when the width of the gap 9 is preferably 10 mm or less, more preferably 5 mm or less, and still more preferably 3 mm or less.
  • the first sealing resin sheet 20 is placed thereon.
  • the preferable configuration and the preferable thickness of the first sealing resin sheet 20 are the same as those of the second sealing resin sheet 30.
  • three sealing resin sheets 21, 22, and 23 are stacked to form a first sealing resin sheet 20.
  • the light-receiving-surface-side transparent plate 2 is placed on the light-receiving surface.
  • FIG. 3 is an example in which both the light receiving surface side transparent plate 2 and the back plate 3 are curved.
  • FIG. 3 is a schematic cross-sectional view of an example of the stacked body 60 before the sealing operation, and shows a cross section cut in parallel to a direction in which a plurality of solar cells 4 are connected in series. .
  • the operation of superimposing the force on the light-receiving-surface-side transparent plate 2 is performed.
  • the reverse operation may be performed after the lower surface plate 3 is firstly disposed.
  • the first sealing resin sheet 20, the solar cell 4, the sealing resin sheet pieces 40, 41, 42, 43, and the second sealing resin The force for stacking the resin sheet 30 in this order
  • the specific method is the same as in the example of FIG.
  • the back plate 3 is placed on the second sealing resin sheet 30.
  • the back plate 3 preferably has a curvature having substantially the same radius of curvature as the light-receiving-surface-side transparent plate 2, and is stacked with the convex surface facing downward.
  • the laminate 60 can be uniformly heated by the heat transfer from the heater. Because of the difficulty, it is particularly preferable to employ the production method of the present invention.
  • the sealing treatment container 61 should be a bag made of a gas-impermeable flexible sheet. Like,.
  • FIG. 4 is an example in which a countersunk hole 52 is provided in the back plate 3 and a module mounting bracket 53 is inserted therein.
  • FIG. 4 is a schematic cross-sectional view of an example of the laminate 60 before the sealing operation, and shows a cross section cut in parallel to a direction in which a plurality of solar cells 4 are connected in series.
  • the stacking order is not particularly limited. However, it is preferable to stack the module mounting bracket 53 so that the tip end 54 of the module mounting bracket 53 is protruded so that the side of the module mounting bracket 53 is on the upper side. Therefore, in the example of FIG. 4, it is more preferable to perform an operation in which the light receiving surface side transparent plate 2 is placed downward and the force is also superimposed.
  • the resin sheet 30 is stacked in this order 1S
  • the specific method is the same as that of the example of FIG.
  • the back plate 3 having the countersink hole 52 is placed on the second sealing resin sheet 30, and at this time, the head 55 of the module mounting bracket 53 is fitted into the countersink hole 52.
  • the module mounting bracket 53 can be firmly fixed without making a hole in the transparent plate 2 on the light-receiving surface. can do.
  • the form of the module mounting bracket 53 is not particularly limited, it is preferable that the module mounting bracket 53 has a head 55 shaped so as to be able to follow the countersunk hole 52. Further, threading or the like may be appropriately performed.
  • FIG. 8 is a schematic view of an example of the sealing apparatus.
  • This sealing treatment apparatus has a plurality of sealing treatment containers 61 accommodating a laminate 60 therein, and is capable of performing an air discharging operation and a heating operation.
  • part or all of the sealing processing container 61 is made of a gas-impermeable and flexible film.
  • the material of the membrane is a flexible membrane that is impermeable to gas and has a certain degree of flexibility and strength, and when the inside of the membrane is evacuated, the external pressure is evenly applied to the entire laminate 60.
  • the sealing container 61 is merely a bag, it can flexibly cope with the production of solar cell modules of various shapes and dimensions, and can be used for products of various dimensions such as building materials. It is suitable for applications that require the production of
  • the sealing treatment container 61 when at least one of the light receiving surface side transparent plate 2 and the back surface plate 3 in the laminate 60 is curved, it is preferable to use such a sealing treatment container 61.
  • the inside of the container 61 is decompressed and a vertical load is applied to the laminate 60, the light-receiving-side transparent plate 2 or the back plate 3 can be prevented from breaking.
  • the bag which is the sealing processing container 61, be sealed along the surfaces of the transparent plate 2 on the light-receiving surface side and the back plate 3 with a force.
  • the laminate 60 has a member protruding outward from the light-receiving-surface-side transparent plate 2 or the back plate 3, it is preferable to use such a sealing treatment container 61. Also in this case, it is preferable to seal the bag, which is the sealing processing container 61, after conforming to the shape of the protruding member. Depending on the shape of the protruding member, a bag having a pocket corresponding to the shape may be used. In order to prevent an excessive load from being applied to the protruding portion, it is also preferable to cover the protruding portion with a cover that is not easily deformed when depressurizing, and then introduce the protruding portion into the sealing treatment container 61. By doing so, it is also possible to prevent the sealing processing container 61 from being damaged.
  • the outer edge of the laminate 60 is covered with a bleeder 62 made of a gas-permeable material, and the molten resin inside the laminate 60 flows out.
  • a bleeder 62 made of a gas-permeable material, and the molten resin inside the laminate 60 flows out.
  • a material used for the leader 62 a woven fabric, a knitted fabric, a non-woven fabric or the like can be used.
  • the plurality of sealing treatment containers 61 in which the laminates 60 are put in this way are introduced into the oven 63, and are arranged in parallel at intervals.
  • the laminates 60 in the sealing container 61 are arranged in parallel with each other.
  • the plurality of sealing processing containers 61 are arranged one above the other with a space therebetween in the vertical direction.
  • the method of arranging at predetermined intervals is not particularly limited, and a method of providing shelves with predetermined intervals in the oven 63 is exemplified.
  • the laminate 60 is heated by flowing hot air in a direction parallel to the laminate 60 in the oven 63.
  • hot air By flowing hot air in a direction parallel to the laminate 60, heat can be efficiently and uniformly transmitted to the laminate 60.
  • the hot air also comes into contact with the lower surface of the sealing treatment container 61.
  • a method of disposing a spacer between the sealing treatment container 61 and the shelf, A method of using a net as a shelf is suitably adopted.
  • the method for supplying the hot air is not particularly limited, and a heater may be provided in the oven 63 and the hot air may be flown in a direction parallel to the stacked body 60 using a fan.
  • the oven 63 has a hot air inlet and a hot air outlet provided on the opposite side, and a plurality of ovens are provided between passages flowing from the hot air inlet to the hot air outlet. It is preferable that the sealing processing container 61 is disposed. Further, it is preferable to heat the laminate while maintaining the inside of the oven 63 at substantially the atmospheric pressure in view of the cost of the apparatus.
  • FIG. 9 shows a case where the heating is performed so that the air flow in the oven 63 is parallel to the series direction.
  • FIG. 10 shows a case where the heating is performed so that the air flow in the oven 63 is oriented in a direction perpendicular to the in-line direction.
  • the arrows in FIGS. 9 and 10 indicate the direction of the airflow.
  • the rows of the solar cells 4 connected in series are arranged as shown in FIG. It turned out to be curved like the dashed line inside. This is considered to be due to the distribution of the speed at which heat is transmitted in the laminate 60. Therefore, in order to manufacture a regularly arranged solar cell module, it was revealed that it is preferable to heat the oven 63 so that the air flow in the oven 63 is in a direction parallel to the serial direction.
  • the pressure between the light receiving surface side transparent plate 2 and the back surface plate 3 is exhausted by reducing the pressure in the sealing process container 61.
  • a pipe 64 for exhausting air is connected to each sealing chamber 61.
  • the three pipes 64 are connected together and connected to the pipe 65!
  • six pipes 65 (partially omitted from the drawing) assembled in this way are connected to the tank 66.
  • the tank 66 is connected to a vacuum pump 67 so that the air inside the sealed processing container 61 can be discharged.
  • the number of the sealing containers 61 is not particularly limited as long as it is plural, but in consideration of production efficiency, it is preferably 6 or more, and more preferably 12 or more.
  • Each of the six pipes 65 is connected to a pressure gauge 69 via a valve 68, and is provided with an electromagnetic valve 70 capable of cutting off the flow in the pipe 65.
  • the pressure gauge 69 detects an increase in pressure, and the control circuit 71 sends a signal to the solenoid valve 70 to send a signal. Solenoid valve 70 close. Accordingly, even if a leak occurs in one sealing processing container 61 during the sealing operation, it is possible to prevent the other sealing processing container 61 from being adversely affected.
  • the sealing treatment container 61 used in the present invention is made of a flexible sheet, and it is necessary to prepare various shapes according to the form of the solar cell module, so that leakage may occur. . Moreover, solar cell modules are quite expensive. Therefore, it is preferable to adopt such a control method.
  • the force that performs one control for each of the three sealed processing containers 61 is based on the balance between the equipment cost and the effect.
  • the number of sets of the pressure gauge 69 and the solenoid valve 70 may be two or more, but is preferably three or more, and more preferably five or more.
  • An alarm signal can be output from the control circuit 71 to notify the operator.
  • the six pipes 65 are connected to the tank 66, and when the solenoid valve 70 is open, all the sealing treatment containers 61 are in communication with the tank 66.
  • the air in the tank 66 is discharged by a vacuum pump 67. Further, outside air can be introduced into the tank 66 through the control valve 72.
  • the pressure in the sealing container 61 needs to be strictly controlled.
  • the pressure inside all the sealing treatment containers 61 can be controlled simultaneously by controlling the pressure inside the tank 66.
  • the pressure inside the tank 66 is measured by a pressure gauge 74 connected via a valve 73, and a control circuit 75 receiving the pressure data sends a signal to the control valve 72 to take in the outside air to achieve a desired pressure. adjust.
  • the vacuum pump 67 continues to operate.
  • the vacuum pump 67 is operated with the solenoid valve 70 and the control valve 72 closed so that the pressure in the tank 66 is reduced in advance. You can keep it. In this case, the air in the sealed processing container 61 can be quickly discharged by opening the solenoid valve 70. Thus, even if the exhaust capability of the vacuum pump 67 is small, it is useful to quickly reduce the pressure in the sealing processing container 61.
  • the capacity of the tank 66 is not particularly limited, but is preferably 10 liters or more. More preferably, it is 20 liters or more. If the capacity is too large, pressure control by the control valve 72 may not be able to be performed quickly. Therefore, the pressure is preferably 500 liter or less.
  • the sealing apparatus used in the examples described later was equipped with a 50-liter tank 66! / ⁇ .
  • a preheating operation can be performed in the oven 63.
  • a temperature control chamber (not shown) adjacent to the power oven 63 is provided, and the preheating operation is performed in the temperature control chamber. It is preferable from the viewpoint of the utilization efficiency of the oven 63 that the sealing treatment is performed in the inside. In this way, it is possible to preheat other modules while sealing the module in the oven 63.
  • the cooling can be performed in the oven 63 or externally. It is also possible. However, when cooling in the oven 63, the use time of the oven 63 is prolonged, so that the productivity is reduced. On the other hand, when cooling is performed externally, it becomes difficult to adjust the cooling rate. Therefore, it may be preferable to provide a temperature control chamber adjacent to the oven 63, perform a sealing process in the oven 63, and then cool in the temperature control chamber. This makes it possible to cool other modules while sealing the modules in the oven 63. In particular, the effect is great when it is desired to reduce the cooling rate.
  • the temperature control chamber is not particularly limited as long as it can control the internal temperature and is provided adjacent to the oven 63.
  • the external force also preferably has a door for introducing the sealing treatment container 61 into the temperature control room, and preferably has a door between the oven 63 and the temperature control room.
  • a device that can move a carriage on which a large number of the sealing processing containers 61 are placed, and guide the carriage from the outside to the oven 63 via the temperature control chamber.
  • only one temperature control room may be provided, or two or more temperature control rooms may be provided.
  • the sealing treatment container 61 When one temperature control chamber is provided, it can be used for either a preheating operation or a cooling operation.
  • the sealing treatment container 61 is introduced from outside into the temperature After performing the operation, the product is introduced into the oven 63, sealed, and then can be led out.
  • the sealing treatment container 61 can be introduced into the oven 63 from the outside, subjected to the sealing treatment, then introduced into the temperature control chamber, and cooled, and then taken out. In this case, the sealing container 61 normally passes in one direction.
  • the temperature control chambers 61 may pass through the sealing treatment container 61 in one direction or may reciprocate.
  • the sealing treatment container 61 is introduced into the temperature control chamber from the outside, a preheating operation is performed, and the sealing treatment container 61 is introduced into the oven 63. After being introduced into the temperature control room and performing a cooling operation, it is led out.
  • the sealing container 61 is introduced from the outside into the temperature control chamber, pre-heated, introduced into the oven 63, sealed, and then subjected to the same temperature adjustment. Return to the room, perform the cooling operation, and then take it out.
  • the cooling operation and the preheating operation are performed in the temperature control room 1 and the sealing process is performed in the oven 63 when the cooling operation and the preheating operation are performed in the other temperature control room.
  • the sealing process is performed in the oven 63 when the cooling operation and the preheating operation are performed in the other temperature control room.
  • the air between the light-receiving surface side transparent plate 2 and the back plate 3 is exhausted, heated to melt the resin, and cooled by force to seal. I do.
  • the temperature condition at this time is not particularly limited, and if the temperature is raised to a temperature at which the resin can be melted, the resin may be heated to a temperature higher than the melting point of the resin if the resin is crystalline. If the sealing resin is a crosslinkable thermoplastic resin, the temperature is raised to a crosslinkable temperature and maintained at a crosslinkable temperature for a predetermined time.
  • the pressure is not particularly limited as long as the pressure can be reduced to such a level that the air in the laminate 60 can be exhausted and the residual air bubbles can be reduced.
  • Step 1 a step of heating the sealing resin while maintaining the pressure in the sealing treatment container 61 at 0.05 MPa or more.
  • Step of reducing the pressure inside the sealing vessel 61 to a pressure of 0. OlMPa or less Step 2 at a temperature lower than the melting point of the fat (Step 2).
  • Step 3 a step of increasing the pressure in the sealing container 61
  • step 6 a step of cooling
  • the vertical force of the laminate 60 can also be prevented from applying a large load to the cell. More preferably, the pressure is at least 0.06 MPa.
  • the sealing resin sheet piece is placed only in the margin 10 outside the solar cell 4 and the sealing resin sheet piece is not placed in the gap 9 between the solar cells 4, cell cracking may occur. It is preferred to adopt step 1 to prevent this.
  • the transparent plate 2 on the light-receiving surface side or the back plate 3 is made of unstrengthened bent glass, it is preferable to adopt Step 1 in order to prevent breakage of the plate.
  • the sealing is performed and a sealing resin sheet piece is arranged in the gap 9 between the solar cells 4, it is preferable to omit the step 1 from the viewpoint of production efficiency.
  • the pressure in the sealing treatment container 61 in step 1 may be atmospheric pressure (0. IMPa), but by reducing the pressure to, for example, 0.09 MPa or less, the leakage of the sealing treatment container 61 may be reduced. You can check.
  • step 1 since the sealing resin has not been melted yet, if there is a leak in the sealing processing container 61, it can be repaired at this stage. Since the sealing container 61 used in the manufacturing method of the present invention is formed of a flexible sheet and is easily broken, it is preferable to slightly reduce the pressure in this manner. When reducing the pressure from the atmospheric pressure to a predetermined pressure of 0.05 MPa or more, it is preferable that the time required for the pressure reducing operation is 10 minutes or more. Although a large load is not applied, sudden decompression operation may cause cell cracking.
  • the sealing resin is softened in advance by heating the sealing resin in a state where the pressure in the sealing processing container 61 is high.
  • the temperature reached by the heating at this time is a temperature at which the elastic modulus decreases while the sealing resin does not melt.
  • the temperature at which the sealing resin does not melt generally means a temperature lower than the melting point (Tm), preferably (Tm-5) ° C or less, more preferably (Tm-5) ° C. 10) It is below ° C. If the sealing resin does not have a melting point, the melting point may be replaced with a glass transition point or a softening point here.
  • a suitable temperature for many sealing resins is 65 ° C. or less, and a more preferred temperature is 60 ° C. or less.
  • the temperature reached by the heating is preferably (Tm ⁇ 30) ° C. or more, more preferably (Tm ⁇ 20) ° C. or more.
  • the temperature is 40 ° C. or more, and the more preferred temperature is 45 ° C. or more.
  • the temperature is too low, the elastic modulus of the sealing resin is not sufficiently reduced, and if the pressure in the sealing container 61 is reduced in step 2, cell cracking may occur. It is preferable to maintain the temperature in such a temperature range for 5 minutes or more and to start the depressurizing operation in step 2 with the force.
  • Step 2 is a step of reducing the pressure in the sealing treatment container 61 to a pressure of not more than 0.1 OlMPa at a temperature lower than the melting point of the sealing resin. It is a process that is performed continuously. By reducing the pressure at a temperature lower than the melting point of the sealing resin, a passage through which the air inside the laminate 60 is discharged is secured. At this time, the pressure in the sealing container 61 is preferably reduced to 0.005 MPa or less. By sufficiently reducing the pressure, the remaining air bubbles after sealing can be effectively suppressed.
  • the temperature during the pressure reduction in step 2 from 0.05 MPa to 0.0 OlMPa is preferably maintained in the same temperature range as the temperature reached by the heating described in step 1. Also, in order to prevent cell cracking due to a rapid pressure reduction operation, it is preferable to slowly reduce the pressure from 0.05 MPa to 0.0 OlMPa over 5 minutes or more.
  • Step 3 is a step in which the temperature is raised to a temperature equal to or higher than the melting point of the sealing resin while the pressure is reduced, and is a step performed after step 2.
  • the temperature of the sealing resin is raised, the elastic modulus is greatly reduced near the melting point and changes to a highly viscous liquid.
  • step 3 is a step in which the pressure is reduced until such temperature is reached. . If the pressure is reduced and the pressure is increased while the elastic modulus is high, air may flow into the inside of the laminate 60, and air bubbles may remain in the sealing resin.
  • the lower limit of the temperature reached by the temperature raising operation in step 3 is preferably (Tm + 10) ° C or more, and more preferably (Tm + 20) ° C or more.
  • the preferred lower limit of many sealing resins is at least 80 ° C, more preferably at least 85 ° C.
  • the upper limit is usually 200 ° C or less.
  • the rate of temperature rise is preferably slow, and the time required to raise the temperature from room temperature to the above temperature is preferably 15 minutes or more, and is preferably 30 minutes or more. Better More preferably, it is one hour or more.
  • the heating rate may be changed midway, or a balancing operation may be performed to stop the heating and cancel the temperature distribution inside the stacked body 60. From the viewpoint of productivity, the heating time is usually less than 20 hours.
  • Step 4 is a step of increasing the pressure inside the sealing container 61
  • step 6 is a step of cooling, and both are steps performed after step 3. Either step 4 or step 6 may be performed first, or both steps may be performed simultaneously.
  • step 4 it is preferable that the pressure be increased slowly, and the time required for the pressure increase be 5 minutes or more, more preferably 10 minutes or more, and more preferably 20 minutes or more. More preferred. From the viewpoint of productivity, the pressurization time is usually 5 hours or less, preferably 2 hours or less.
  • the pressure after the pressure can be increased to the same pressure as the atmospheric pressure (0. IMPa), which is preferably 0.05 MPa or more, more preferably 0.07 MPa or more. At this time, the pressure may be increased stepwise. If the temperature at the time of increasing the pressure in step 4 is too high, the molten resin may flow unnecessarily, and the cells may move. Usually, it is preferably 120 ° C or lower, more preferably 100 ° C or lower.
  • the step 4 includes a step of simultaneously raising the temperature while increasing the pressure in the sealing processing container 61.
  • the pressure applied to the laminate 60 can be gradually released in the process of gradually increasing the fluidity, and the molten resin flows unnecessarily while suppressing the generation of residual air bubbles.
  • the temperature at the start of boosting is (13 ⁇ 41 10) to (13 ⁇ 41 + 20), more preferably (Tm-5) ° C to (Tm + 15) ° C, and 3 to 30 It is desirable to increase the pressure while increasing the temperature by 5 ° C, more preferably 5 to 20 ° C.
  • the temperature rise rate (° CZ minute) vs. the pressure rise rate (MPaZ minute) it should be 0.001 to 0.1 (MPa / ° C), and 0.002 to 0.05 (MPa / ° C) is more preferable! / ,.
  • cooling is usually performed to around room temperature. However, if the cooling rate is too fast, the glass may be cracked. Therefore, cooling is preferably performed for 10 minutes or more, more preferably for 30 minutes or more. I do. Above all, when melting the sealing resin (melting point: Tm (° C)) and cooling it with ( It is preferable to perform cooling so that the time required for cooling from Tm + 10) ° C to (Tm ⁇ 20) ° C is 20 minutes or more. The above-mentioned time is more preferably 30 minutes or more, and still more preferably 60 minutes or more. By cooling slowly around the melting point, residual stress can be suppressed and cell cracking can be suppressed.
  • Tm melting point
  • the main cause of cell cracking in the sealing operation is that when air is discharged between the light-receiving surface side transparent plate 2 and the back surface plate 3 to melt the resin, a load is applied in the vertical direction. It is believed to be due to However, the present invention shows that cell cracking does not occur at that timing, and that there may be cell breakage during subsequent cooling while undamaged solar cells exist in the molten resin. Found them. This is because, during the sealing operation, when the laminate at a temperature higher than the melting point was observed, no cell cracking was found. This phenomenon has been clarified by the recognition of the phenomenon that occurs.
  • the reason why cell cooling can be suppressed by lowering the cooling rate is not necessarily clear, but it is possible that the rate of crystallization can be reduced or that stress relaxation can easily progress.
  • the sealing resin does not have a melting point, the melting point mentioned here may be replaced with a glass transition point or a softening point. Even when the sealing resin is an amorphous resin having no melting point, it solidifies with shrinkage near the glass transition point or the softening point.
  • a method of cooling slowly as described above it is preferable to use a method of cooling slowly as described above to seal the cell.
  • a solar cell with a large area, a solar cell with a small thickness, a solar cell with light-transmitting small holes, or an uneven surface It is suitable for sealing a solar cell or the like having the same.
  • step 3 When a crosslinkable thermoplastic resin is used as the sealing resin, after the step (step 3) of raising the temperature to near the melting point of the sealing resin while reducing the pressure, the sealing is performed. After the step of increasing the pressure in the processing vessel 61 (step 4), the process must have a step of raising the temperature to a temperature range where the crosslinking reaction proceeds (step 5) and a step of cooling (step 6). Is preferred.
  • the temperature is once cooled to a temperature equal to or lower than the melting point, and then increased in step 5 to a temperature range in which the crosslinking reaction proceeds.
  • the pressure is increased, it is possible to raise the temperature to the temperature range where the crosslinking reaction proceeds.However, once the cooling is performed, the time during which the residual stress is relaxed can be secured, and the molten resin protrudes. Sinking (the part where the resin is missing at the end) and cell movement can be more effectively suppressed.
  • the temperature is raised to a temperature range in which the crosslinking reaction proceeds in step 5, and the crosslinking reaction proceeds.
  • the crosslinking reaction is usually carried out by heating to 100 ° C. or higher, preferably 120 ° C. or higher, more preferably 130 ° C. or higher, and still more preferably 140 ° C. or higher.
  • a crosslinking temperature of 200 ° C or less is usually adopted.
  • the time for keeping the temperature range in which the crosslinking reaction proceeds varies depending on the desired degree of crosslinking and the like, but is usually 5 minutes to 2 hours, preferably 10 minutes to 1 hour.
  • the pressure in the sealing container 61 when the crosslinking reaction proceeds in step 5 is preferably 0.05 MPa or more, more preferably 0.06 MPa or more.
  • ⁇ ⁇ atmospheric pressure ⁇ means a state in which ⁇ ⁇ atmospheric pressure is positively applied or decompressed, for example, in order to forcibly blow hot air into the oven 63 with a fan, and Even if it is too high, it is substantially the same as atmospheric pressure.
  • step 5 After the cross-linking reaction is allowed to proceed in step 5, it is subjected to the cooling step in step 6.
  • the cooling process 6 is as described above.
  • the solar cell module thus obtained is filled with the sealing resin up to the periphery of the module, and has no spacer at the periphery of the sealing resin layer. Since the peripheral portion can be sealed with a sealing resin having excellent adhesion and durability, a highly reliable solar cell module can be provided.
  • the thickness of the sealing resin layer is preferably 2 to 6 mm in total. More preferably, it is 3 mm or more and 5 mm or less.
  • the sealing operation can be performed even when at least one of the light-receiving-surface-side transparent plate 2 and the back plate 3 is curved.
  • a solar cell module sandwiched between bent glass can be provided, it is possible to meet a demand for diversification of a building design.
  • a metal fitting for fixing the module is provided, and the metal fitting is inserted into a through hole formed in a gap between the transparent plate on the light receiving surface side and the rear plate, and an end on the head side of the metal fitting is sealed with a sealing resin layer.
  • a solar cell module disposed on the side and having the opposite end of the metal fitting protruding outward can also be provided. This makes it possible to provide a solar cell module that can be applied to the DPG method that has been widely used in recent years.
  • the plurality of solar cells 4 are regularly arranged between the light receiving surface side transparent plate 2 and the back surface plate 3 so as not to be damaged. Since a large number of solar cells 4 can be sealed with resin without damage, a large solar cell module can be provided. In addition, since the residual air bubbles are suppressed, the resin is prevented from protruding from the ends, and they are properly aligned and have a beautiful appearance, they are suitably used for the outer walls, roofs, windows, etc. of various buildings.
  • the solar cell 4 40 square polycrystalline silicon solar cells of 125 mm X I 25 mm X O. 35 mm were used. The four corners are chamfered by several mm.
  • a solder dip copper ribbon wire manufactured by Hitachi Cable, Ltd. was used as the conductor 8. The width of the ribbon wire is 1.5 mm and the thickness is 0.15 mm. Solder is printed in advance on the portion of the solar cell 4 where the light-receiving surface 6 and the back surface 7 are bonded to the conductor 8. One end of the conductor 8 was overlapped and soldered on the solder printing portion of the light receiving surface 6 of the solar cell 4, and the other end was overlapped and soldered on the solder printing portion of the back surface 7 of the adjacent solar cell 4. Adjacent cells were connected by two conductors 8 so that the distance between them was 50 mm. That is, the width of the gap 9 is 50 mm.
  • a 1000 mm x 1500 mm x 10 mm float plate reinforced glass blue plate glass
  • the surface compressive stress of the tempered glass is 100MPa.
  • an encapsulating resin sheet a 0.6 mm thick Solar Eva SC36J manufactured by Hi-Sheet Industry Co., Ltd. was used.
  • the encapsulating resin sheet was made of ethylene-vinyl acetate copolymer (EVA). It contains a crosslinking agent, a silane coupling agent, a stabilizer, etc., and the melting point of the resin before crosslinking is 71 ° C as measured by the DSC method.
  • the two sealing resin sheets 31 and 32 constitute a second sealing resin sheet 30 having a thickness of 1.2 mm.
  • the plurality of solar cells 4 connected to each other in the manner described above were placed on the second sealing resin sheet 30, and arranged vertically and horizontally as shown in FIG.
  • the width of the gap 9 between the adjacent solar cells 4 was set to 50 mm both vertically and horizontally.
  • the width of the margin 10 outside the solar cell 4 is 75 mm in the longitudinal direction (the direction in which eight cells are arranged) and 87.5 mm in the width direction (the direction in which five cells are arranged).
  • the sealing resin sheet piece 44 was arranged in the gap 9 between the solar cells 4, and the sealing resin sheet piece 45 was arranged in the margin 10.
  • the width of the sealing resin sheet piece 44 was 40 mm, and the width of the sealing resin sheet piece 45 was 60 mm.
  • the sealing resin sheet piece 44 was disposed at a position near the center between the adjacent solar cells 4 so as to press the conductive wire 8.
  • the upper sealing resin sheet piece 46 crosses over the lower sealing resin sheet piece 44.
  • the width of the upper sealing resin sheet piece 46 is 40 mm.
  • the upper sealing resin sheet piece 47 was disposed on the lower sealing resin sheet piece 45.
  • the size of the upper sealing resin sheet piece 47 arranged on the side of the margin 10 is 60 mm X I 25 mm, and the upper sealing resin sheet piece 48 is also arranged at the corner.
  • the total thickness of the sealing resin sheet piece at the intersection is 1.2 mm, and this portion can support the vertical load.
  • the sealing resin sheet pieces 47 and 48 on the upper side of the margin 10 are intermittently arranged, and there is a gap except at the intersection, so that a passage for discharging the internal air can be secured, The rest can be prevented.
  • sealing resin sheet pieces 44 to 48 were arranged as described above, two sealing resin sheets 21 and 22 having dimensions of 1000 mm x 1500 mm were stacked thereon.
  • the two sealing resin sheets 21 and 22 constitute a first sealing resin sheet 20 having a thickness of 1.2 mm.
  • a 1000 mm X 1500 mm X 10 mm float tempered glass (white sheet glass) was placed on the light receiving surface side transparent plate 2 thereon.
  • the surface compressive stress of the tempered glass is 1 OOMPa.
  • a sealing operation was performed using the laminated body 60 thus obtained and using the sealing apparatus shown in FIG. First, the entire periphery of the outer edge of the laminated body 60 was covered with a bleeder 62, put into a rubber bag serving as a sealing container 61, connected to a pipe 64, and put into an oven 63. At this time, as shown in FIG. 9, the airflow in the oven 63 was made parallel to the series direction of the solar cells 4 connected to each other.
  • step 1 which is a “step of heating the sealing resin while maintaining the pressure in the sealing processing vessel at 0.05 MPa or more” is not employed in this example.
  • a sealing resin sheet piece is placed in the gap 9 between the solar cells 4, and a flat reinforcement is applied even if the light-receiving-side transparent plate 2 and the back plate 3 are misaligned. Since glass is used, cell cracking and substrate cracking can be prevented without using step 1.
  • Step 2 “Step of depressurizing the inside of the sealing container to a pressure of 0.1 OlMPa or less at a temperature lower than the melting point of the sealing resin”
  • Step 3 Step of raising the temperature to a temperature equal to or higher than the melting point of the sealing resin while reducing the pressure
  • Step 4 “Step of increasing the pressure in the sealing treatment container”
  • the temperature was raised from 71 ° C to 90 ° C over 90 minutes, and at the same time, the pressure, which was less than 0.005 MPa, was raised to 0.07 MPa over 90 minutes.
  • the ratio of the pressure raising rate (MPaZ component) to the temperature raising rate (° CZ component) was 0.337 (MPaZ ° C).
  • the temperature was maintained at 90 ° C for 30 minutes, cooled to 40 ° C over 60 minutes, and maintained at 40 ° C for 30 minutes, while maintaining the pressure of 0.07 MPa.
  • Step 5 Step of raising the temperature to a temperature range in which the crosslinking reaction proceeds to promote the crosslinking reaction. Subsequently, the temperature is raised from 40 ° C to 155 ° C over 90 minutes, and at 155 ° C for 36 minutes. The cross-linking reaction was allowed to proceed while maintaining. During this time, a pressure of 0.07 MPa was maintained.
  • Step 6 "Cooling step"
  • Example 1 a sealing process was performed in the same manner as in Example 1 except that the orientation of the laminate 60 was rotated by 90 degrees as compared with that in Example 1. That is, as shown in FIG. 10, the airflow in the oven 63 was set to be perpendicular to the series direction of the solar cells 4 connected to each other.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

In a method of manufacturing a solar cell module wherein a solar cell is sealed with a resin between a light receiving side transparent board and a rear board, a laminate body (60) is manufactured by arranging a plurality of the solar cells between the light receiving side transparent board and the rear board, and the laminate body (60) is put in a sealing process container (61) composed of a gas impermeable flexible sheet. A plurality of the sealing process containers (61) containing the laminate bodies (60) are introduced into an oven (63) and are arranged in parallel at intervals. Inside the sealing process container (61) is depressurized to exhaust the air between the light receiving side transparent board and the rear board. The laminate body (60) is heated to melt the sealing resin by permitting a hot blast to flow parallel to the laminate body (60) in the oven (63), then the laminate body is cooled to solidify the sealing resin. Thus, the solar cell modules having various shapes and sizes can be manufactured by the simple operation at a low cost.

Description

明 細 書  Specification
太陽電池モジュールの製造方法及び太陽電池モジュール  Method of manufacturing solar cell module and solar cell module
技術分野  Technical field
[0001] 本発明は、太陽電池モジュールの製造方法及び太陽電池モジュールに関する。特 に、受光面側透明板と裏面板との間に太陽電池セルが榭脂で封止されてなる太陽 電池モジュールの製造方法に関する。  The present invention relates to a method for manufacturing a solar cell module and a solar cell module. In particular, the present invention relates to a method for manufacturing a solar cell module in which solar cells are sealed with resin between a light-receiving-surface-side transparent plate and a back plate.
背景技術  Background art
[0002] 近年、環境保護の意識が高まり、太陽光発電はその重要性を一段と増している。太 陽電池セルは、保護材で挟まれ、透明樹脂で封止されて太陽電池モジュールとして 屋外で使用される。封止のための透明榭脂としては、エチレン 酢酸ビニル共重合 体 (以下、 EVAと略することがある。)榭脂などが使用されており、それを保護材と太 陽電池セルの間に挟んで、加熱溶融してから固化させることで封止している。太陽電 池セルを効率的に配置して配線するためには、複数の太陽電池セルを一つの太陽 電池モジュール内に封止することが好まし 、。  [0002] In recent years, awareness of environmental protection has increased, and solar power generation has become even more important. Solar cells are sandwiched between protective materials and sealed with transparent resin, and used outdoors as solar cell modules. As a transparent resin for encapsulation, ethylene-vinyl acetate copolymer (hereinafter sometimes abbreviated as EVA) resin or the like is used, which is placed between the protective material and the solar cell. It is sealed by being sandwiched, heated and melted, and then solidified. In order to arrange and wire the solar cells efficiently, it is preferable to seal a plurality of solar cells in one solar cell module.
[0003] 複数の太陽電池セルを太陽電池モジュール内に封止する方法としては、主として、 二重真空室方式のラミネーターを使用する方法と、一重真空室方式のラミネーターを 使用する方法とが知られている。二重真空室方式のラミネーターは、気体非透過性 の柔軟なシートで隔てられた二室の真空度をそれぞれ独立に調整できるために、封 止時に気泡の残留やセル割れを抑制できる力 ラミネーターの構造が複雑である。 一方、一重真空方式のラミネーターは気泡の残留やセル割れが発生しやすいが、ラ ミネ一ターの構造が簡単である。これらのラミネーターは、太陽電池モジュールの仕 様によって使い分けられている。多くの場合、上記いずれのラミネーターにおいても、 ヒーターを内蔵したプレートの上に積層体を載せて、当該積層体の存在する空間を 真空にしながら、加熱を施して封止している。  [0003] As a method of sealing a plurality of solar cells in a solar cell module, a method using a double vacuum chamber type laminator and a method using a single vacuum chamber type laminator are mainly known. ing. The double vacuum chamber type laminator is capable of independently controlling the degree of vacuum in the two chambers separated by a gas-impermeable flexible sheet. The structure is complicated. On the other hand, a single vacuum type laminator tends to cause bubbles to remain and cell cracks, but the structure of the laminator is simple. These laminators are used depending on the specifications of the solar cell module. In many cases, in any of the above-mentioned laminators, the laminate is placed on a plate having a built-in heater, and the laminate is heated and sealed while evacuating the space where the laminate exists.
[0004] 特開昭 61— 69179号公報 (特許文献 1)には、太陽電池セルを充填材を介して力 バーガラスと裏面材料との間に積層した太陽電池パネル積層体を、二重真空方式に より脱気し、加熱後加圧による貼り合せ工程を有する太陽電池パネルの製造方法に おいて、充填材として EVAを使用し、二重真空室を特定の温度範囲に特定の時間 保持する太陽電池パネルの製造方法が記載されて!、る。特定の温度条件で貼り合 せることで、 EVAを発泡、黄変させることなぐ全て架橋させることができるとしている 。実施例に記載された条件では、 0. 3Torr (約 0. 0004MPa)まで減圧してからカロ 熱を開始し、ヒーター側の基板表面の温度が 140°Cに達したところで真空圧着し、 1 48°Cで架橋反応させた後、 50°C以下に冷却して力も真空圧着を解除している。当 該公報の実施例で使用された二重真空方式のラミネーターは、積層体を熱板の上に 載置し、加熱するものである。 Japanese Patent Application Laid-Open No. 61-69179 (Patent Document 1) discloses a double-vacuum solar cell panel laminate in which solar cells are laminated between a power bar glass and a back surface material via a filler. Degassed by a method, and applied to a method of manufacturing a solar cell panel that has a bonding process by heating and pressing. A method of manufacturing a solar cell panel using EVA as a filler and maintaining a double vacuum chamber in a specific temperature range for a specific time is described. By bonding under specific temperature conditions, EVA can be crosslinked without foaming or yellowing. Under the conditions described in the examples, the pressure was reduced to 0.3 Torr (approximately 0.0004 MPa), and then calo-heat was started. When the temperature of the substrate surface on the heater side reached 140 ° C., vacuum compression was performed. After the cross-linking reaction at ° C, the pressure was cooled to 50 ° C or less, and the vacuum pressure bonding was released. The double-vacuum laminator used in the examples of this publication places the laminate on a hot plate and heats it.
[0005] 特開昭 59— 22978号公報 (特許文献 2)には、エチレン系共重合体及び有機過酸 化物を含有し、その両面にエンボス模様が施されている太陽電池モジュール用充填 接着材シートが記載されている。当該接着材シートは、エンボス模様を有することで、 シートのブロッキングを防止でき、モジュールィ匕過程での脱気性に優れ、気泡を生じ にくいとされている。該公報の実施例には、真空ラミネーター中で減圧したまま 150 °Cまで昇温し、 150°Cで 1時間減圧を続けてカゝら冷却し、減圧を停止する貼り合せ方 法が記載されている。当該公報の実施例で使用されているラミネーターは、シリコー ンゴムで 2室に分離された真空ラミネーターである。  [0005] JP-A-59-22978 (Patent Document 2) discloses a filling adhesive for a solar cell module containing an ethylene-based copolymer and an organic peroxide and having embossed patterns on both surfaces thereof. The sheet is described. It is said that the adhesive sheet has an embossed pattern so that blocking of the sheet can be prevented, the degassing property in the modularizing process is excellent, and bubbles are hardly generated. The example of the publication describes a laminating method in which the temperature is raised to 150 ° C. in a vacuum laminator while the pressure is reduced, the pressure is reduced at 150 ° C. for 1 hour, the glass is cooled, and the pressure is stopped. ing. The laminator used in the examples of this publication is a vacuum laminator separated into two chambers by silicone rubber.
[0006] 特開平 9 36405号公報 (特許文献 3)には、表面部材と裏面部材との間に光起電 力素子が封止材榭脂を介して積層体とされ、該積層体が、 5ΤοπΓ以下の真空度で 5 〜40分間保持された後、 5Torr以下の真空度において加熱圧着され、該加熱圧着 後に冷却されて貼り合された太陽電池モジュールが記載されて 、る。このような条件 で加熱圧着することによって表面部材の剥離の生じにくい、気泡残りの生じにくいモ ジュールが提供されるとされている。当該公報記載の方法によれば、簡単な構造の 一重真空室方式のラミネーターを使用しても、残留気泡の発生を抑制できるとされて いる。当該公報の実施例で使用されている一重真空方式のラミネーターは、ヒーター が埋め込まれたプレートの上に、モジュールとなる積層体を載置し、その上にシリコ ーンゴムシートを重ね、プレートの排気口力も真空ポンプで排気できるものである。ま た、太陽電池セルと封止材榭脂との間に不織布を挿入し、不織布中の空隙を伝って 積層体の空気を逃がすことによって気泡残りの問題を改善できることも記載されてい る。 [0006] Japanese Patent Application Laid-Open No. 9-36405 (Patent Document 3) discloses that a photovoltaic element is formed as a laminate between a front surface member and a back surface member with an encapsulant resin interposed therebetween. It describes a solar cell module that is held at a vacuum degree of 5Τππ or less for 5 to 40 minutes, heat-pressed at a vacuum degree of 5 Torr or less, cooled and bonded after the heat-press bonding. It is described that a module that is hardly peeled off from the surface member and hardly generates bubbles is provided by thermocompression bonding under such conditions. According to the method described in the publication, generation of residual air bubbles can be suppressed even when a simple vacuum chamber type laminator having a simple structure is used. The single-vacuum laminator used in the embodiment of the publication has a laminated body serving as a module placed on a plate in which a heater is embedded, and a silicone rubber sheet is placed thereon, and the exhaust force of the plate is also reduced. It can be evacuated with a vacuum pump. It also describes that the problem of remaining air bubbles can be improved by inserting a non-woven fabric between the solar cell and the sealing resin and letting the air in the laminate escape through the voids in the non-woven fabric. The
[0007] ところで、太陽電池の設置場所も最近では多様になっており、建築物の屋根の上 のみではなぐ壁の部分にも使用されるようになってきている。壁に使用する場合に は、外壁に取り付けるのみではなぐ壁そのものを太陽電池モジュールで構成するこ とも行われている。この場合には、建築物の外観に大きな影響を与えるので、欠陥の ない、規則正しく配置された太陽電池モジュールとすることが重要である。また同時 に、建築物の構造体としての十分な強度を有する大面積の太陽電池モジュールが要 求されている。しかも、建築物ごとのデザインに対応した多様な形状やサイズの太陽 電池モジュールが求められている。また、近年では、建築物に要求されるデザインの 多様性に対応し、曲げガラスを建築物の外壁に使用する場合も増加している。したが つて、湾曲した基板の間に太陽電池セルを封入することが望まれている。しかしなが ら、太陽電池セルは破損しやすいので、湾曲した基板の間に封入するのは困難であ つた。さらに、近年では、 DPG (Dot Point Glazing)工法によって建築物のガラス壁面 を構築する方法も広く採用されている力 この場合には、ガラスに開けられた孔に金 具を挿入することが必要になる。このように多様な太陽電池モジュールを製造する場 合には、前述のような構造のラミネーターでは封止することが困難である。  [0007] By the way, the installation location of a solar cell has recently become diversified, and it has been used not only on the roof of a building but also on a wall. When used on a wall, the solar cell module is used not only for mounting on the outer wall but also for the wall itself. In this case, the appearance of the building will be greatly affected, so it is important to have a regular and free solar cell module with no defects. At the same time, there is a need for large-area solar cell modules that have sufficient strength as building structures. Moreover, there is a need for solar cell modules of various shapes and sizes corresponding to the design of each building. In recent years, the use of bent glass for the exterior walls of buildings has been increasing in response to the variety of designs required for buildings. Therefore, it is desired to enclose solar cells between curved substrates. However, solar cells were easily damaged and difficult to encapsulate between curved substrates. Furthermore, in recent years, the method of building the glass wall of a building by the DPG (Dot Point Glazing) method has been widely adopted.In this case, it is necessary to insert a bracket into the hole formed in the glass. Become. In the case of manufacturing such various solar cell modules, it is difficult to seal with a laminator having the above-described structure.
[0008] また、多数のセルを連結して 2枚の板の間に挟んで加熱圧着して封止する際には、 太陽電池セルの損傷を避けることは困難であった。特に、セル枚数が多くてモジユー ル全体の面積が大きい場合には、大きな荷重が不均一に力かりやすぐ過剰な荷重 を受ける一部のセルの破損が避けられなかった。モジュール内では多数のセルは相 互に直列に連結されているので、一つのセルが破損すると連結されている一連のセ ルが機能を果たさなくなる。セルの破損が生じた場合には、単に外観を損なうのみな らず、発電性能も大きく低下してしまうので、不良品として廃棄せざるを得ない。した 力 て、できるだけセルの破損が生じにくい封止方法も望まれている。 [0008] Furthermore, when a large number of cells are connected, sandwiched between two plates and sealed by heating and compression, it has been difficult to avoid damage to the solar cells. In particular, when the number of cells was large and the area of the entire module was large, it was unavoidable that some of the cells were subjected to a large load unevenly or an excessive load soon. In a module, many cells are connected in series with each other, so that if one cell is damaged, a series of connected cells will not function. If the cell is damaged, it will not only impair the appearance, but also greatly reduce the power generation performance, and must be discarded as a defective product. Accordingly, a sealing method that makes the cell less likely to be damaged is also desired.
[0009] 実用新案登録第 2500974号公報 (特許文献 4)には、 2枚の接着シート間に太陽 電池を挟持するように、接着シートを介して 2枚の板状体を接合してなる積層体にお いて、太陽電池の外側で接着シート間に形成される隙間に、太陽電池と略等しい厚 さのシート片を挟み込んだ積層体が記載されている。このような構成にすることによつ て、積層体の周縁部の厚みを均一にでき、また前記隙間に外部力も水分などが浸入 しにくいので剥離を防止することができるとしている。接着シートとして EVAを使用し 、板状体として両面とも板ガラスを使用することが記載されて ヽる。 [0009] Utility model registration No. 2500974 (Patent Document 4) discloses a laminated structure in which two plate-like members are joined via an adhesive sheet such that a solar cell is sandwiched between two adhesive sheets. In the body, a laminate is described in which a sheet piece having substantially the same thickness as the solar cell is sandwiched in a gap formed between the adhesive sheets outside the solar cell. With such a configuration, Thus, the thickness of the peripheral portion of the laminate can be made uniform, and the external force is less likely to penetrate moisture and the like into the gap, so that separation can be prevented. It is described that EVA is used as an adhesive sheet, and a glass sheet is used as a plate-like body on both sides.
[0010] 特開 2003— 110127号公報 (特許文献 5)には、表面カバーと裏面カバーとの間 に複数の太陽電池セルを配置して EVAなどの透明充填材で封止した太陽電池モジ ユールにおいて、太陽電池セル間に透光性のスぺーサー(セッティングブロック)を配 置した太陽電池モジュールが記載されている。このスぺーサ一としては、透明充填材 と同一の材質で、太陽電池セルと同一厚みであるものを使用することが最適であるこ とが記載されている。このスぺーサ一は、カバーの自重だけでは変形することなぐ空 気の流路を確保できるとされている。これによつて、内部に空気の残留のない太陽電 池モジュールが製造できることが記載されて 、る。  [0010] Japanese Patent Application Laid-Open No. 2003-110127 (Patent Document 5) discloses a solar cell module in which a plurality of solar cells are arranged between a front cover and a back cover and sealed with a transparent filler such as EVA. Describes a solar cell module in which a translucent spacer (setting block) is arranged between solar cells. It is described that it is optimal to use a spacer having the same material as the transparent filler and the same thickness as the solar cell as the spacer. It is said that this spacer can secure an air flow path that is not deformed by the weight of the cover alone. It is described that this allows a solar cell module having no air to remain therein.
[0011] 特開 2001— 7376号公報 (特許文献 6)には、湾曲したガラス板の間に太陽電池セ ルを榭脂で封入した太陽電池モジュールが記載されている。ここで、封止榭脂として は透明アクリル榭脂嫌気性接着剤が使用されており、 2枚の基板の間の周縁部にス ぺーサ一を配置して力 液状の前記接着剤を注入して力 硬化させて 、る。このよう に、太陽電池セルに荷重が力からないようにして硬化させることによって、湾曲したガ ラス板の間に封入することが可能であった。し力しながら、液状の接着剤を封入する 操作は必ずしも容易ではなぐ複数の太陽電池セルの配列を整えることも困難である 。し力も、硬化して得られる榭脂の接着性や耐久性などについても必ずしも満足した 性能が得られる訳ではな 、。  [0011] Japanese Patent Application Laid-Open No. 2001-7376 (Patent Document 6) describes a solar cell module in which solar cell is sealed with resin between curved glass plates. Here, a transparent acrylic resin anaerobic adhesive is used as the sealing resin, and a spacer is arranged at the peripheral portion between the two substrates, and the liquid adhesive is injected. And harden. In this way, by curing the solar cell without applying a load to the solar cell, it was possible to enclose the cell between curved glass plates. However, it is not always easy to enclose the liquid adhesive, and it is also difficult to arrange the arrangement of a plurality of solar cells. However, it does not necessarily mean that the resin obtained by curing has a satisfactory performance such as adhesiveness and durability.
[0012] 特開平 9— 92867号公報 (特許文献 7)には、太陽電池セルの両面にあら力じめ E VA榭脂からなる充填シートを配して真空加熱して各層を接合して予備成形シートを 形成してから、当該予備成形シートを曲面ガラス上に設置して真空加熱して接合す る、太陽電池モジュールの製造方法が記載されている。当該公報の実施例において は、真空加熱するに際して、当該予備成形シートと曲面ガラスとをゴム袋内に挿入し 、それを加熱室内にセットし、真空ポンプでゴム袋内を真空引きしながら加熱する方 法が記載されている。このような方法を採用することによって、曲面ガラスへの接合も 可能であるとされている。し力しながら、二度にわたる接合操作は煩雑であるし、両面 を曲面ガラスで覆う構成に対して適用できるものではな力つた。 [0012] Japanese Patent Application Laid-Open No. 9-92867 (Patent Document 7) discloses a method in which a filling sheet made of EVA resin is placed on both sides of a solar battery cell, and the layers are joined by heating under vacuum and preliminarily. It describes a method for manufacturing a solar cell module, in which a formed sheet is formed, and then the preformed sheet is placed on a curved glass and heated and joined by vacuum. In the embodiment of this publication, when performing vacuum heating, the preformed sheet and the curved glass are inserted into a rubber bag, set in a heating chamber, and heated while vacuuming the rubber bag with a vacuum pump. The method is described. By adopting such a method, bonding to curved glass is also possible. The joining operation twice is complicated, Is not applicable to a configuration in which is covered with curved glass.
[0013] したがって、湾曲した基板の間に太陽電池セルを封入する場合や、金具を有する 太陽電池モジュールであっても封止することができ、多様な形状や寸法の太陽電池 モジュールを作製することのできる封止方法が望まれている。同時に、セルの破損が 生じにくぐ簡便な操作でしかも低コストで封止することができ、太陽電池セルを規則 正しく配置することができ、接着性や耐久性にも優れた太陽電池モジュールを得るこ とのできる封止方法も望まれて 、る。  [0013] Therefore, it is possible to seal a solar cell between curved substrates, or to seal a solar cell module having metal fittings, and to manufacture solar cell modules of various shapes and dimensions. There is a demand for a sealing method that can be performed. At the same time, it is possible to seal the solar cell at a low cost with a simple operation that does not easily damage the cell, to arrange the solar cells in a regular manner, and to obtain a solar cell module with excellent adhesion and durability. A sealing method that can be used is also desired.
[0014] 特許文献 1 :特開昭 61— 69179号公報 Patent Document 1: JP-A-61-69179
特許文献 2:特開昭 59 - 22978号公報  Patent Document 2: JP-A-59-22978
特許文献 3:特開平 9 - 36405号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 9-36405
特許文献 4:実用新案登録第 2500974号公報  Patent Document 4: Utility Model Registration No. 2500974
特許文献 5:特開 2003 - 110127号公報  Patent Document 5: JP-A-2003-110127
特許文献 6:特開 2001— 7376号公報  Patent Document 6: Japanese Patent Application Laid-Open No. 2001-7376
特許文献 7:特開平 9— 92867号公報  Patent Document 7: Japanese Patent Application Laid-Open No. 9-92867
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0015] 本発明は、このような課題を解決するためになされたものであり、太陽電池セルが 榭脂で封止されてなる太陽電池モジュールの製造方法にぉ 、て、多様な形状ゃ寸 法の太陽電池モジュールを、簡便な操作でし力も低コストで封止することのできる太 陽電池モジュールの製造方法を提供することを目的とするものである。また、モジュ ール固定用の金具を備えた太陽電池モジュールを提供することを目的とするもので ある。 [0015] The present invention has been made to solve such a problem, and relates to a method for manufacturing a solar cell module in which solar cells are sealed with resin, in various shapes and sizes. It is an object of the present invention to provide a method for manufacturing a solar cell module which can seal a solar cell module by a simple operation and at a low cost with a simple operation. It is another object of the present invention to provide a solar cell module having a module fixing bracket.
課題を解決するための手段  Means for solving the problem
[0016] 上記課題は、受光面側透明板と裏面板との間に太陽電池セルが榭脂で封止され てなる太陽電池モジュールの製造方法にぉ 、て; [0016] The object is to provide a method for manufacturing a solar cell module in which a solar cell is sealed with resin between a light-receiving-surface-side transparent plate and a back plate.
受光面側透明板と太陽電池セルの間に受光面側透明板の実質的に全面を覆う第 1 封止榭脂シートを配置し、裏面板と太陽電池セルの間に裏面板の実質的に全面を 覆う第 2封止榭脂シートを配置して積層体を作製し、 前記積層体を気体不透過性の柔軟なシートからなる封止処理容器に入れ、 前記積層体の入った複数の封止処理容器をオーブン内に導入して相互に間隔をあ けて平行に配置し、 A first sealing resin sheet covering substantially the entire surface of the transparent plate on the light-receiving surface is disposed between the transparent plate on the light-receiving surface and the solar cell, and the rear plate is substantially disposed between the rear plate and the solar cell. A second sealing resin sheet covering the entire surface is arranged to produce a laminate, The laminate is placed in a sealing treatment container made of a gas-impermeable flexible sheet, and a plurality of sealing treatment containers containing the laminate are introduced into an oven and arranged in parallel at intervals. And
前記封止処理容器内を減圧して受光面側透明板と裏面板との間の空気を排出し、 前記オーブン内において前記積層体と平行の向きに熱風を流すことによって前記積 層体を加熱して封止榭脂を溶融させ、  The inside of the sealing processing container is decompressed to discharge air between the light-receiving surface side transparent plate and the back plate, and the laminate is heated by flowing hot air in the oven in a direction parallel to the laminate. To melt the sealing resin,
引き続き冷却することによって封止榭脂を固化させることを特徴とする太陽電池モジ ユールの製造方法を提供することによって解決される。  The problem is solved by providing a method for manufacturing a solar cell module, which solidifies the sealing resin by successively cooling.
[0017] 気体不透過性の柔軟なシートからなる複数の封止処理容器を使用することによって 、さまざまな形状の積層体をその中に収容することができる。また、オーブン内で複数 の封止処理容器を同時に加熱することによって、簡便な操作でし力も低コストで封止 操作を行うことが可能である。このとき、オーブン内において、封止処理容器を相互 に間隔をあけて平行に配置し、前記積層体と平行の向きに熱風を流すことによって、 効率良くしかも均一に熱を伝達することが可能である。  [0017] By using a plurality of sealing treatment containers made of a gas-impermeable flexible sheet, laminated bodies of various shapes can be accommodated therein. Further, by simultaneously heating a plurality of sealing processing containers in an oven, it is possible to perform the sealing operation with simple operation and low cost. At this time, heat can be efficiently and uniformly transmitted by arranging the sealing treatment containers in parallel in the oven at an interval from each other and flowing hot air in a direction parallel to the laminate. is there.
[0018] このとき、前記封止処理容器が気体不透過性の柔軟なシートからなる袋であること が好適である。前記積層体の外縁を通気性を有する布帛で覆ってから封止処理容 器に入れることも好適である。前記オーブン内を実質的に大気圧に維持しながら積 層体を加熱することが好適な実施態様である。複数の太陽電池セルを間隔をあけて 配列して相互に導線で接続することが好適であり、このとき、複数の太陽電池セルが 直列方向に相互に導線で接続された複数のセットを間隔をあけて平行に配列して前 記積層体を作製し、かつ前記オーブン内の気流が前記直列方向と平行の向きにな るようにして加熱することも好適な実施態様である。前記オーブンが熱風導入口と、 その反対側に設けられた熱風導出口とを有することも好適である。前記封止処理容 器が配管を介して真空ポンプに接続され、複数の前記配管のそれぞれに圧力計と 弁とのセットが備えられ、圧力計によって漏れが検出された封止処理容器に接続され た弁が閉じられることも好適である。前記封止処理容器のそれぞれが配管を介して真 空ポンプに接続され、封止処理容器と真空ポンプとの間にタンクを備えることも好適 である。このとき、前記タンク内の圧力を測定する圧力計と、タンクに外気を導入する 弁とを有し、タンク内の圧力を微調整することが好適である。また、前記オーブンに隣 接する温度調節室を少なくとも 1つ設け、該温度調節室において予熱操作又は冷却 操作を行うことも好適である。 At this time, it is preferable that the sealing treatment container is a bag made of a gas-impermeable flexible sheet. It is also preferable to cover the outer edge of the laminate with a breathable cloth and then put the laminate in a sealed container. It is a preferred embodiment to heat the laminate while maintaining the inside of the oven at substantially atmospheric pressure. It is preferable that a plurality of solar cells are arranged at intervals and connected to each other by a conductor, and at this time, a plurality of sets in which a plurality of solar cells are connected to each other in a serial direction by a conductor are arranged at intervals. It is also a preferred embodiment to form the laminate by arranging the laminate in parallel with each other and to heat the oven so that the air flow in the oven is parallel to the serial direction. It is also preferable that the oven has a hot air inlet and a hot air outlet provided on the opposite side. The sealing container is connected to a vacuum pump via a pipe, and a set of a pressure gauge and a valve is provided for each of the plurality of pipes, and the set is connected to a sealing processing container in which a leak is detected by the pressure gauge. It is also preferred that the closed valve is closed. It is also preferable that each of the sealing processing containers is connected to a vacuum pump via a pipe, and a tank is provided between the sealing processing container and the vacuum pump. At this time, a pressure gauge for measuring the pressure in the tank and outside air are introduced into the tank. It is preferable to have a valve and to finely adjust the pressure in the tank. It is also preferable to provide at least one temperature control chamber adjacent to the oven and perform a preheating operation or a cooling operation in the temperature control chamber.
[0019] 上記方法において、前記積層体において、太陽電池セル間の間隙部又は太陽電 池セルの外側の余白部に、太陽電池セルの厚みよりも厚い封止榭脂シート片を配置 することが好適である。受光面側透明板と裏面板のいずれもがガラス板であることが 好適な実施態様である。受光面側透明板と裏面板の少なくとも 、ずれかが湾曲して いることも好適な実施態様である。また、前記積層体が、受光面側透明板又は裏面 板力 外側へ突出した部材を有することも好適な実施態様である。このとき、前記外 側へ突出した部材がモジュール固定用の金具であることが好適である。前記封止榭 脂が、エチレン 酢酸ビニル共重合体、ポリビニルブチラール及びポリウレタンから なる群力 選択される一種の榭脂からなることも好適である。  [0019] In the above method, in the laminate, a sealing resin sheet piece thicker than the thickness of the solar cell may be disposed in a gap between the solar cells or in a margin outside the solar cell. It is suitable. In a preferred embodiment, both the light receiving surface side transparent plate and the back plate are glass plates. It is also a preferred embodiment that at least one of the light-receiving-surface-side transparent plate and the back plate is curved. It is also a preferred embodiment that the laminate has a light-receiving-surface-side transparent plate or a member protruding outward on the back surface. At this time, it is preferable that the member protruding outward is a metal fitting for fixing the module. It is also preferable that the sealing resin is made of a resin selected from the group consisting of ethylene-vinyl acetate copolymer, polyvinyl butyral and polyurethane.
[0020] 好適な実施態様では、封止処理容器内で封止するに際して、封止処理容器内の 圧力を 0. 05MPa以上に保って封止榭脂を加熱する工程 (工程 1)、封止榭脂の融 点未満の温度において封止処理容器内を 0. OlMPa以下の圧力まで減圧する工程 (工程 2)、減圧したままで封止榭脂の融点以上の温度まで昇温する工程 (工程 3)、 前記封止処理容器内の圧力を上昇させる工程 (工程 4)及び冷却する工程 (工程 6) の各工程カゝらなる封止操作を行う。また、別の好適な実施態様では、前記封止榭脂 シートが架橋可能な熱可塑性榭脂からなり、封止処理容器内で封止するに際して、 封止榭脂の融点未満の温度において封止処理容器内を 0. OlMPa以下の圧力ま で減圧する工程 (工程 2)、減圧したままで封止榭脂の融点以上の温度まで昇温する 工程 (工程 3)、前記封止処理容器内の圧力を上昇させる工程 (工程 4)、架橋反応が 進行する温度範囲まで昇温して架橋反応を進行させる工程 (工程 5)及び冷却する 工程 (工程 6)の各工程力もなる封止操作を行う。  [0020] In a preferred embodiment, a step of heating the sealing resin while maintaining the pressure in the sealing processing container at 0.05 MPa or more (step 1), when sealing in the sealing processing container, Step of depressurizing the inside of the sealing container at a temperature lower than the melting point of the resin to 0. OlMPa or less (Step 2), and step of raising the temperature to a temperature equal to or higher than the melting point of the sealing resin while maintaining the reduced pressure 3) A sealing operation including a step of increasing the pressure in the sealing container (Step 4) and a step of cooling (Step 6) is performed. In another preferred embodiment, the sealing resin sheet is made of a crosslinkable thermoplastic resin, and is sealed at a temperature lower than the melting point of the sealing resin when sealing in a sealing treatment container. Depressurizing the inside of the processing vessel to a pressure of not more than 0.1 OlMPa (step 2), raising the temperature to a temperature equal to or higher than the melting point of the sealing resin while maintaining the reduced pressure (step 3), Perform a sealing operation that increases the pressure of each step (step 4), the step of raising the temperature to the temperature range where the crosslinking reaction proceeds (step 5), and the step of cooling (step 6). .
[0021] 上記課題は、受光面側透明板と裏面板との間に封止榭脂層を有し、該封止榭脂層 内に太陽電池セルが封止されてなる太陽電池モジュールであって、モジュール固定 用の金具を備え、該金具が受光面側透明板と裏面板のいずれかに形成された貫通 孔に挿入され、該金具の頭部側の端部が封止榭脂層側に配置され、該金具の反対 側の端部が外側に突出していることを特徴とする太陽電池モジュールを提供すること によって解決される。このとき、前記封止榭脂層の周縁にスぺーサーを有さないこと が好適である。また、前記貫通孔が皿孔であり、該皿孔に前記金具の頭部が嵌め込 まれて 、ることも好適である。 [0021] The object described above is a solar cell module having a sealing resin layer between a light-receiving-surface-side transparent plate and a back plate, and a solar cell sealed in the sealing resin layer. A metal fitting for fixing the module, the metal fitting is inserted into a through hole formed in one of the transparent plate on the light-receiving surface side and the back plate, and the end on the head side of the metal fitting is formed on the sealing resin layer side. Located on the opposite side of the bracket The problem is solved by providing a solar cell module characterized in that the side end protrudes outward. At this time, it is preferable that a spacer is not provided on the peripheral edge of the sealing resin layer. It is also preferable that the through hole is a countersink, and the head of the metal fitting is fitted into the countersink.
発明の効果  The invention's effect
[0022] 本発明の太陽電池モジュールの製造方法によれば、太陽電池セルが榭脂で封止 されてなる太陽電池モジュールの製造方法にお!、て、多様な形状や寸法の太陽電 池モジュールを、簡便な操作でし力も低コストで封止することができる。  According to the method for manufacturing a solar cell module of the present invention, a method for manufacturing a solar cell module in which solar cells are sealed with resin is provided. Can be sealed with simple operation and low cost.
図面の簡単な説明  Brief Description of Drawings
[0023] [図 1]封止操作後の太陽電池モジュールの一例の断面模式図である。 FIG. 1 is a schematic cross-sectional view of an example of a solar cell module after a sealing operation.
[図 2]封止操作前の積層体の一例の断面模式図である。  FIG. 2 is a schematic cross-sectional view of an example of a laminate before a sealing operation.
[図 3]封止操作前の積層体の他の一例の断面模式図である。  FIG. 3 is a schematic cross-sectional view of another example of a laminate before a sealing operation.
[図 4]封止操作前の積層体の他の一例の断面模式図である。  FIG. 4 is a schematic cross-sectional view of another example of a laminate before a sealing operation.
[図 5]図 2の例における封止操作開始前の積層体の拡大断面模式図である。  FIG. 5 is an enlarged schematic cross-sectional view of a laminate before a sealing operation in the example of FIG. 2 is started.
[図 6]図 2の例における加熱昇温途中の積層体の拡大断面模式図である。  FIG. 6 is an enlarged schematic cross-sectional view of a laminate during heating and heating in the example of FIG. 2.
[図 7]図 2の例における封止操作後の積層体の拡大断面模式図である。  FIG. 7 is an enlarged schematic cross-sectional view of a laminate after a sealing operation in the example of FIG. 2.
[図 8]封止処理装置の一例の模式図である。  FIG. 8 is a schematic view of an example of a sealing apparatus.
[図 9]オーブン内の気流が太陽電池セルの直列方向と平行の向きになるように加熱 する場合を示した模式図である。  FIG. 9 is a schematic diagram showing a case where heating is performed so that an air flow in an oven is in a direction parallel to a series direction of solar cells.
[図 10]オーブン内の気流が太陽電池セルの直列方向と垂直の向きになるように加熱 する場合を示した模式図である。  FIG. 10 is a schematic diagram showing a case where heating is performed so that an airflow in an oven is in a direction perpendicular to a series direction of solar cells.
[図 11]実施例 1及び 2における積層工程の手順を示した図(その 1)である。  FIG. 11 is a view (No. 1) showing a procedure of a laminating step in Examples 1 and 2.
[図 12]実施例 1及び 2における積層工程の手順を示した図(その 2)である。  FIG. 12 is a view (No. 2) showing a procedure of a laminating step in Examples 1 and 2.
[図 13]実施例 1及び 2における積層工程の手順を示した図(その 3)である。  FIG. 13 is a view (No. 3) showing a procedure of a laminating step in Examples 1 and 2.
[図 14]実施例 1及び 2における封止処理時の温度と圧力を示した図である。  FIG. 14 is a diagram showing temperature and pressure during a sealing process in Examples 1 and 2.
符号の説明  Explanation of symbols
[0024] 1 太陽電池モジュール [0024] 1 Solar cell module
2 受光面側透明板 3 裏面板 2 Transparent plate on light-receiving side 3 Back plate
4 太陽電池セル  4 Solar cells
5 榭脂  5 Fat
8 導線  8 conductor
9 間隙部  9 Clearance
10 余白部  10 Margin
20 第 1封止榭脂シート  20 1st sealing resin sheet
30 第 2封止榭脂シート  30 2nd sealing resin sheet
40-48 封止榭脂シート片  40-48 Sealing resin sheet piece
53 モジュール取付け金具  53 Module mounting bracket
60 積層体  60 laminate
61 封止処理容器  61 Sealed container
63 オーブン  63 oven
66 タンク  66 tank
67 真空ポンプ  67 vacuum pump
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 以下、図面を用いて本発明を詳細に説明する。図 1は封止操作後の太陽電池モジ ユールの一例の断面模式図である。図 2〜4は封止操作前の積層体の一例の断面 模式図である。図 5は図 2の例における封止操作開始前の積層体の拡大断面模式 図である。図 6は図 2の例における加熱昇温途中の積層体の拡大断面模式図である 。図 7は図 2の例における封止操作後の積層体の拡大断面模式図である。図 8は封 止処理装置の一例の模式図である。図 9は、オーブン内の気流が太陽電池セルの直 列方向と平行の向きになるように加熱する場合を示した模式図である。図 10は、ォー ブン内の気流が太陽電池セルの直列方向と垂直の向きになるように加熱する場合を 示した模式図である。 Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic cross-sectional view of an example of a solar cell module after a sealing operation. 2 to 4 are schematic cross-sectional views of an example of the laminate before the sealing operation. FIG. 5 is an enlarged schematic cross-sectional view of the laminated body before the start of the sealing operation in the example of FIG. FIG. 6 is an enlarged schematic cross-sectional view of the laminate during heating and heating in the example of FIG. FIG. 7 is an enlarged schematic cross-sectional view of the laminate after the sealing operation in the example of FIG. FIG. 8 is a schematic diagram of an example of the sealing apparatus. FIG. 9 is a schematic diagram showing a case where heating is performed so that the airflow in the oven is in a direction parallel to the direction in which the solar cells are arranged in parallel. FIG. 10 is a schematic diagram showing a case where heating is performed so that the airflow in the oven is in a direction perpendicular to the series direction of the solar cells.
[0026] 本発明の製造方法によって得られる太陽電池モジュール 1は、受光面側透明板 2と 裏面板 3との間に太陽電池セル 4が榭脂 5で封止されてなるものである。太陽電池モ ジュール 1中に封止される太陽電池セル 4の数は、一つであっても良いが、通常、複 数の太陽電池セル 4が封止されたものである。通常、隣接する太陽電池セル 4の受 光面 6と裏面 7とが、導線 8を介して接続される。その場合の断面模式図を図 1に示す The solar cell module 1 obtained by the manufacturing method of the present invention is one in which a solar cell 4 is sealed with a resin 5 between a light-receiving-side transparent plate 2 and a back plate 3. The number of the solar cells 4 sealed in the solar cell module 1 may be one, but usually, The number of solar cells 4 is sealed. Usually, the light receiving surface 6 and the back surface 7 of the adjacent solar cell 4 are connected via the conducting wire 8. Figure 1 shows a schematic cross-sectional view of that case.
[0027] 本発明で使用される太陽電池セル 4は、単結晶シリコン太陽電池、多結晶シリコン 太陽電池、アモルファスシリコン太陽電池、化合物半導体太陽電池など、各種の太 陽電池のセルが使用可能である。これらの太陽電池セルは一般的には lmm以下、 より一般的には 0. 5mm以下の厚さの薄板であり、 1辺が 5cm以上の四角形であるこ とが多い。その基板の材質は、シリコンやゲルマニウム等の半導体基板、ガラス基板 、金属基板などを使用できるが、シリコン基板が、実用的には最も重要である。シリコ ン基板の場合、コスト面の要請力も薄板ィ匕が望まれている一方で、硬くて脆い材質で あることから、封止時に特に割れ易ぐ注意して封止することが必要である。 As the solar cell 4 used in the present invention, various solar cells such as a single-crystal silicon solar cell, a polycrystalline silicon solar cell, an amorphous silicon solar cell, and a compound semiconductor solar cell can be used. . These solar cells are generally thin plates having a thickness of 1 mm or less, more generally 0.5 mm or less, and are often rectangular with a side of 5 cm or more. As a material of the substrate, a semiconductor substrate such as silicon or germanium, a glass substrate, a metal substrate, or the like can be used, but a silicon substrate is most important practically. In the case of a silicon substrate, a thin plate is desired in terms of cost requirements, but since it is a hard and brittle material, it is necessary to take care to seal the substrate particularly easily at the time of sealing.
[0028] 1つの太陽電池モジュール 1に封入される太陽電池セル 4の個数は、特に限定され ず、 1枚だけであっても良い。その場合には太陽電池セル 4力 外部への配線が接 続されるだけになる。 1つの太陽電池モジュール 1に封入される太陽電池セル 4の個 数が多いほど、太陽電池モジュール 1全体の寸法が大きくなる。大型の太陽電池モ ジュール 1は、さまざまな形状あるいは寸法のものが注文生産されることが多いので、 本発明の製造方法を採用する実益が大きい。したがって、 10個以上、好適には 30 個以上の太陽電池セル 4がーつの太陽電池モジュール 1内に配置されることが好ま しい。また、多数の太陽電池セル 4が封入される場合には、気泡が発生しやすくなる し、封止操作中に太陽電池セル 4が移動した場合に、外観上問題になりやすい。ま た、 1つの太陽電池モジュール 1に封入される太陽電池セル 4の個数が多いほど、太 陽電池セル 4の破損に由来する不良品率が上昇するので、注意して封止することが 必要である。  [0028] The number of solar cells 4 sealed in one solar cell module 1 is not particularly limited, and may be only one. In that case, only the wiring to the outside of the solar cell is connected. As the number of solar cells 4 sealed in one solar cell module 1 increases, the overall dimensions of solar cell module 1 increase. Since large-sized solar cell modules 1 are often custom-made in various shapes or dimensions, there is a great benefit in adopting the manufacturing method of the present invention. Therefore, it is preferable that 10 or more, preferably 30 or more solar cells 4 are arranged in one solar cell module 1. In addition, when a large number of solar cells 4 are sealed, air bubbles are likely to be generated, and when the solar cells 4 move during the sealing operation, a problem in appearance tends to occur. Also, as the number of solar cells 4 sealed in one solar cell module 1 increases, the defective product rate due to damage to the solar cells 4 increases, so it is necessary to carefully seal It is.
[0029] 隣接する太陽電池セル 4間の間隙部 9の幅は特に限定されないが、通常 0. 5mm 以上であり、これ以下の場合には隣接する太陽電池セル 4同士が接触して封止する 際にセルが破損するおそれがある。採光性を優先するのであれば間隙部 9を広くす ることが好ましぐ光の利用効率を優先するのであれば間隙部 9を狭くすることが好ま しい。用途やデザイン面の要請などによって適当に調整される。 [0030] 複数の太陽電池セル 4は、所定の幅を介して配列して相互に導線 8で接続される。 このとき、隣接する太陽電池セル 4同士は、受光面 6及び裏面 7との間で導線 8によつ て接続され、直列方式で多数の太陽電池セル 4が接続される。受光面 6あるいは裏 面 7と導線 8との接続は、ハンダ等の導電性接着剤を用いて行われる。また、発生し た電流を効率良く集めるために、受光面 6上に導電ペーストなどで集電パターンを形 成し、それを導線 8と導通させるようにすることも好ましい。さらにまた、隣接しないセ ル同士や離れた位置にある導線 8同士を接続する場合や、裏面板 3に孔を開けて導 線 8を外部に引き出す場合もある。 [0029] The width of the gap 9 between the adjacent solar cells 4 is not particularly limited, but is usually 0.5 mm or more, and when it is less than 0.5 mm, the adjacent solar cells 4 come into contact with each other to be sealed. In such a case, the cell may be damaged. If priority is given to daylighting, it is preferable to make the gap 9 wide. If priority is given to light use efficiency, it is preferable to make the gap 9 narrow. It is adjusted appropriately according to the requirements of the application and design. [0030] The plurality of solar cells 4 are arranged via a predetermined width, and are connected to each other by a conductive wire 8. At this time, the adjacent solar cells 4 are connected to each other by the conducting wire 8 between the light receiving surface 6 and the back surface 7, and a large number of solar cells 4 are connected in series. The connection between the light receiving surface 6 or the back surface 7 and the conductive wire 8 is performed using a conductive adhesive such as solder. Further, in order to efficiently collect the generated current, it is preferable to form a current collecting pattern on the light receiving surface 6 with a conductive paste or the like so as to conduct the current collecting pattern with the conductor 8. Furthermore, there are also cases where non-adjacent cells or conductors 8 located at distant positions are connected to each other, or a hole is made in the back plate 3 to lead the conductor 8 out.
[0031] 導線 8は、インターコネクタとも呼ばれるものである力 その材質は特に限定されず、 銅線などが使用される。受光面側透明板 2と裏面板 3との間に挟み込んで配置する ため、薄いリボン状の導線 8を使用することが好ましぐその厚みは通常 0. 5mm以下 であり、好適には 0. 3mm以下である。また普通 0. 05mm以上である。導線 8に予め ハンダ等の導電性接着剤が塗布されて ヽることが、接続作業が容易になって好まし い。導線 8が接続された状態では、太陽電池セル 4の表面力 導線 8の一番高い部 分までの高さは、場所によってバラツキがある力 接続操作によっては、導線 8の厚 みよりも 0. 5mm程度厚くなるところもある。  [0031] The conducting wire 8 is also called an interconnector. The material is not particularly limited, and a copper wire or the like is used. It is preferable to use a thin ribbon-shaped conductor 8 because it is sandwiched between the light receiving surface side transparent plate 2 and the back plate 3, and the thickness thereof is usually 0.5 mm or less, and preferably 0.5 mm or less. 3 mm or less. It is usually 0.05 mm or more. It is preferable that the conductive wire 8 be coated with a conductive adhesive such as solder in advance, since the connection work becomes easy. In the state where the conductor 8 is connected, the surface force of the photovoltaic cell 4 The height of the conductor 8 up to the highest part is a force that varies from place to place. In some cases, it is about 5mm thicker.
[0032] 受光面側透明板 2の材質は、太陽光に対して透明であれば良ぐガラス以外にもポ リカーボネート榭脂ゃアクリル榭脂などを使用することもできる。し力しながら、耐久性 、硬度、難燃性などを考慮するとガラスを使用することが好ましい。広い面積の構造 材を構成することも多いことから、表面圧縮応力が 20MPa以上のガラス板であること 力 強度の面力 好ましい。また、面積が広い場合には日照などによる温度上昇に伴 う熱割れも生じやすいので、この点からも表面圧縮応力が 20MPa以上のガラス板を 使用することが好適である。しかしながら、大きい表面圧縮応力を有するガラス板は、 通常、フロート板ガラスを加熱、急冷して製造されることから、一定の歪の発生が避け られない。そのために生じるガラスの反りによって、封止時に一部の太陽電池セル 4 に過剰な荷重が力かりやすぐセル割れに注意する必要性が大きい。  The material of the light-receiving-surface-side transparent plate 2 may be, for example, polycarbonate resin, acrylic resin, or the like, in addition to glass, as long as it is transparent to sunlight. It is preferable to use glass in consideration of durability, hardness, flame retardancy, and the like while pressing. A glass plate having a surface compressive stress of 20 MPa or more is preferable because a structural material having a large area is often formed. In addition, if the area is large, thermal cracks are likely to occur due to temperature rise due to sunshine or the like. Therefore, it is preferable to use a glass plate having a surface compressive stress of 20 MPa or more also from this point. However, since a glass sheet having a large surface compressive stress is usually manufactured by heating and rapidly cooling a float sheet glass, occurrence of a certain strain is inevitable. Due to the warpage of the glass caused by this, an excessive load is applied to some of the solar cells 4 at the time of sealing, and there is a great need to pay attention to cell breakage.
[0033] ここで、板ガラスの表面圧縮応力は、 JIS R3222に準じて測定される値である。表 面圧縮応力が 20MPa以上のガラス板としては、具体的には、倍強度ガラス、強化ガ ラス、超強化ガラスなどが挙げられる。倍強度ガラスは表面圧縮応力が通常 20〜60 MPaのものであり、強化ガラスは表面圧縮応力が通常 90〜130MPaのものであり、 超強化ガラスは表面圧縮応力が通常 180〜250MPaのものである。表面圧縮応力 を大きくするほど、強度は向上するが、反りが大きくなりやすく製造コストも大きくなり やすい。また倍強度ガラスは、比較的反りの少ないものを製造しやすぐ破損したとき に細片になって落下することがない点で好ましい。ガラス板は、用途や目的に応じて 選択される。 Here, the surface compressive stress of the sheet glass is a value measured according to JIS R3222. Specific examples of a glass sheet having a surface compression stress of 20 MPa or more include double-strength glass and tempered glass. Lath, ultra-tempered glass and the like. Double-strength glass usually has a surface compressive stress of 20 to 60 MPa, tempered glass has a surface compressive stress of usually 90 to 130 MPa, and ultra-tempered glass has a surface compressive stress of usually 180 to 250 MPa. . As the surface compressive stress increases, the strength increases, but the warpage tends to increase and the manufacturing cost tends to increase. Further, double strength glass is preferable in that a glass with relatively small warpage is manufactured or when the glass breaks immediately, the glass does not fall into small pieces. The glass plate is selected according to the application and purpose.
[0034] 裏面板 3としては、受光面側透明板 2と同様のものが好適に使用される。それに加 えて、モジュールの軽量性を重視する場合には、プラスチックフィルムなどの薄くて柔 軟なものを使用することもできる。裏面板 3は必ずしも透明でなくても良いが、採光を 考慮するのであれば裏面板 3も太陽光に対して透明である方が良い。また、受光面 側透明板 2と同じ理由でガラス、特に表面圧縮応力が 20MPa以上のガラス板を使用 することが好ましい。  As the back plate 3, a plate similar to the light-receiving surface-side transparent plate 2 is preferably used. In addition, if the weight of the module is important, a thin and flexible material such as a plastic film can be used. The back plate 3 does not necessarily have to be transparent, but it is better for the back plate 3 to be transparent to sunlight if lighting is taken into consideration. Further, for the same reason as the light-receiving-surface-side transparent plate 2, it is preferable to use glass, particularly a glass plate having a surface compressive stress of 20 MPa or more.
[0035] ガラスの材質は特に限定されず、ソーダライムガラスが好適に使用される力 なかで も、受光面側透明板 2には、高透過ガラス (いわゆる白板ガラス)が好適に使用される 。高透過ガラスは、鉄分の含有量の少ないソーダライムガラスであり、光線透過率の 高いものである。また、裏面板 3のガラスには、前記高透過ガラスや、鉄分の含有量 の比較的多いソーダライムガラス (いわゆる青板ガラス)を使用するほかに、熱線反射 ガラス、熱線吸収ガラスなどを使用することも用途によっては好ましい。また、表面に エンボス模様を形成した型板ガラスなどを使用することもできる。ガラス板の厚みは、 特に限定されないが、構造材として使用するのであれば、 3mm以上であることが好 ましぐ 5mm以上であることがより好ましい。このように厚いガラス板を使用する際に は自重の影響が大きぐ貼り合わせ前にセルの上にガラス板を重ねる際にセルが破 損するおそれがあるので注意が必要である。ガラス板の厚みは通常 20mm以下であ る。また、ガラスの面積は用途によって調整される力 lm2以上である場合に本発明 の製造方法を採用する実益が大きい。 [0035] The material of the glass is not particularly limited, and among the powers in which soda-lime glass is preferably used, a high transmission glass (so-called white plate glass) is preferably used for the light-receiving surface side transparent plate 2. High transmission glass is soda lime glass with a low iron content and high light transmittance. For the glass of the back plate 3, besides using the above-mentioned high transmission glass or soda lime glass (so-called blue plate glass) having a relatively high content of iron, heat ray reflection glass, heat ray absorption glass, etc. may be used. Is also preferable depending on the application. Further, a template glass having an embossed pattern formed on the surface may be used. The thickness of the glass plate is not particularly limited, but is preferably 3 mm or more, more preferably 5 mm or more, when used as a structural material. Care must be taken when using such a thick glass plate because the cell may be damaged when the glass plate is overlaid on the cell before bonding because the influence of its own weight is large. The thickness of the glass plate is usually 20 mm or less. Further, when the area of the glass is equal to or more than the force lm 2 adjusted according to the application, there is a great benefit to adopt the manufacturing method of the present invention.
[0036] 本発明で使用される受光面側透明板 2及び裏面板 3は、平坦なものであっても良い し、湾曲を有するものであっても構わない。受光面側透明板と裏面板の少なくともい ずれかが湾曲して 、る場合には、従来広く用いられて 、るラミネーターを使用して封 止することが困難なので本発明の製造方法を採用する利益が大きい。太陽電池セル[0036] The light-receiving-surface-side transparent plate 2 and the back plate 3 used in the present invention may be flat or curved. At least one of the light-receiving side transparent plate and the back plate In the case where the gap is curved, it is difficult to use a laminator, which has been widely used in the past, for sealing, and therefore, there is a great advantage in employing the manufacturing method of the present invention. Solar cell
4以外の部分は大きく湾曲していても構わないが、通常、太陽電池セル 4の存在する 領域では曲率半径が 500〜10000mmの湾曲を有するものが好適である。曲率半 径が 500mm未満の場合には、セル割れを防止しながら封止することが困難な場合 があり、好適には 700mm以上である。一方、曲率半径が 10000mmを超える場合に は、湾曲した受光面側透明板 2を使用して封止する困難性が小さくなるので、本発明 を採用する必要性が低下する場合がある。曲率半径は好適には 5000mm以下であ り、より好適には 2000mm以下である。ここで、受光面側透明板 2の形状は円筒の一 部であっても構わないし、球の一部であっても構わない。また、場所や向きによって 曲率が変化していてもよぐその場合には、本発明でいう曲率半径は、太陽電池セル 4が存在する領域における最小の曲率半径のことを 、う。 The portion other than 4 may be greatly curved, but usually, in a region where the solar cell 4 is present, a region having a curvature radius of 500 to 10,000 mm is preferable. If the radius of curvature is less than 500 mm, it may be difficult to seal while preventing cell cracking, and it is preferably 700 mm or more. On the other hand, when the radius of curvature exceeds 10,000 mm, the difficulty in sealing using the curved light-receiving surface-side transparent plate 2 is reduced, and the necessity of employing the present invention may be reduced. The radius of curvature is preferably 5,000 mm or less, more preferably 2,000 mm or less. Here, the shape of the light-receiving-surface-side transparent plate 2 may be a part of a cylinder or a part of a sphere. In addition, in the case where the curvature may change depending on the place or the direction, the radius of curvature in the present invention refers to the minimum radius of curvature in the region where the solar battery cell 4 exists.
[0037] また、本発明で使用される受光面側透明板 2及び裏面板 3は、孔を有していても構 わない。例えば、近年 DPG (Dot Point Glazing)工法によって建築物のガラス壁面を 構築する方法が広く採用されている力 この場合には、ガラスに設けられた孔に金具 を挿入することが必要になるので、孔を有する受光面側透明板 2及び裏面板 3を用い て封止することになる。このとき、当該穴に金具を装着した状態で封止する場合もあり 、そのような場合には柔軟なシートからなる封止処理容器 61を使用する本発明の製 造方法を採用する利益が特に大きい。  [0037] The light-receiving-surface-side transparent plate 2 and the back plate 3 used in the present invention may have holes. For example, in recent years, the method of building the glass wall of a building by the DPG (Dot Point Glazing) method has been widely adopted.In this case, it is necessary to insert a fitting into the hole provided in the glass, The light-receiving surface side transparent plate 2 having the holes and the back plate 3 are used for sealing. At this time, the sealing may be performed in a state where the metal fitting is attached to the hole.In such a case, the advantage of adopting the manufacturing method of the present invention using the sealing processing container 61 made of a flexible sheet is particularly advantageous. large.
[0038] 榭脂 5の材質は、透明であって接着性や柔軟性を有するものであればよぐ特に限 定されないが、エチレン 酢酸ビュル共重合体 (EVA)、ポリビュルブチラール及び ポリウレタン力もなる群力も選択される一種の榭脂が好適に使用される。このとき、架 橋された榭脂であることが、強度や耐久性の面力も好ましい。したがって、榭脂 5の原 料は、架橋可能な熱可塑性榭脂、特に加熱することによって架橋反応が進行する榭 脂であることが好ま 、。このような榭脂をシートの形態で受光面側透明板 2と裏面板 3との間に挟み、加熱溶融してから、必要に応じて架橋反応を進行させ、その後冷却 固化させて太陽電池セル 4を封止する。加熱によって架橋されるものを使用すること によって、耐久性や接着性に優れたものとできる。架橋可能な熱可塑性榭脂としては 、加熱した時に架橋反応が進行するものであれば特に限定されないが、エチレン 酢酸ビュル共重合体 (EVA)、ポリビニルブチラール及びポリウレタン力 なる群から 選択される一種の榭脂が好適に使用される。例えば EVAであれば架橋剤を配合し て加熱することで架橋させることができるし、ポリウレタンであればイソシァネート基と 水酸基とを反応させること〖こよって架橋させることができる。 [0038] The material of resin 5 is not particularly limited as long as it is transparent and has adhesiveness and flexibility, but ethylene-butyl acetate copolymer (EVA), polybutyral, and polyurethane are also used. A type of resin whose group strength is also selected is preferably used. At this time, the crosslinked resin is preferable in terms of strength and durability. Therefore, it is preferable that the raw material of the resin 5 is a crosslinkable thermoplastic resin, particularly a resin whose crosslinking reaction proceeds when heated. Such resin is sandwiched between the transparent plate 2 on the light-receiving surface side and the back plate 3 in the form of a sheet, heated and melted, and then a crosslinking reaction is allowed to proceed if necessary, and then cooled and solidified to form a solar cell. Seal 4 By using a material which is crosslinked by heating, it is possible to obtain a material having excellent durability and adhesiveness. As a crosslinkable thermoplastic resin The type of resin selected from the group consisting of ethylene-butyl acetate copolymer (EVA), polyvinyl butyral, and polyurethane is preferably used, as long as the crosslinking reaction proceeds when heated. For example, in the case of EVA, crosslinking can be carried out by mixing and heating a crosslinking agent, and in the case of polyurethane, crosslinking can be carried out by reacting an isocyanate group with a hydroxyl group.
[0039] ポリウレタンの場合には、比較的低温で架橋反応が進行するので、受光面側透明 板又は裏面板の少なくとも一方に耐熱性の低い榭脂板を使用する場合などに好適 である。また、ポリウレタンは柔軟性にも優れているので、ガラスとプラスチックのように 熱膨張係数の大きく異なる材料を組み合わせて、受光面側透明板及び裏面板に使 用する場合にも、剥離が生じに《好適である。さらにポリウレタンは、貫通強度にも 優れている。 In the case of polyurethane, since the crosslinking reaction proceeds at a relatively low temperature, it is suitable when, for example, a resin plate having low heat resistance is used for at least one of the transparent plate on the light-receiving surface side and the back plate. In addition, polyurethane is excellent in flexibility, so peeling will occur even when a combination of materials with significantly different coefficients of thermal expansion, such as glass and plastic, is used for the transparent plate on the light-receiving side and the back plate. << It is suitable. Furthermore, polyurethane has excellent penetration strength.
[0040] 架橋可能な熱可塑性榭脂のうちでも、架橋剤を含有する熱可塑性榭脂を使用する ことが好適である。このときの熱可塑性榭脂は、架橋剤とともに加熱した時に架橋反 応が進行するものであれば特に限定されないが、透明性、柔軟性、耐久性などに優 れたエチレン 酢酸ビニル共重合体 (EVA)が最も好適に使用される。  [0040] Among the crosslinkable thermoplastic resins, it is preferable to use a thermoplastic resin containing a crosslinking agent. The thermoplastic resin at this time is not particularly limited as long as the crosslinking reaction proceeds when heated together with the crosslinking agent, but the ethylene-vinyl acetate copolymer (excellent in transparency, flexibility, durability, etc.) EVA) is most preferably used.
[0041] 封止榭脂シートを受光面側透明板 2と裏面板 3との間に挟み、加熱溶融してから冷 却固化させて、太陽電池セル 4を封止する。封止榭脂シートが EVA榭脂に架橋剤を 含有するものであることが好ましぐこの場合には、加熱溶融してから架橋反応を進行 させ、その後冷却することで架橋された EVAで封止することができる。封止榭脂シ一 ト中の EVAは、 DSC法で測定した融点が 50〜80°Cのものであること力 透明性と形 態保持性のバランスの観点力も好まし 、。  The sealing resin sheet is sandwiched between the transparent plate 2 on the light-receiving surface side and the back plate 3, and is heated and melted and then cooled and solidified to seal the solar cell 4. In this case, it is preferable that the sealing resin sheet contains a cross-linking agent in the EVA resin, in which case the cross-linking reaction proceeds after heating and melting, followed by cooling to seal with the cross-linked EVA. Can be stopped. The EVA in the sealed resin sheet should have a melting point of 50 to 80 ° C. as measured by the DSC method. The viewpoint of the balance between transparency and shape retention is also preferable.
[0042] 封止榭脂シートは、その片面又は両面に適当なエンボスを有することがブロッキン グを防止でき、気泡残りも抑制しやすいので好ましい。好適なエンボス深さは 10〜1 00 mであり、深すぎると逆に気泡が残存するおそれがある。シート厚みは好適には 0. 2〜2mm、より好適には 0. 3〜lmmであり、これを一枚又は複数枚重ねて厚み 調節して使用することができる。  [0042] It is preferable that the sealing resin sheet has an appropriate embossing on one or both sides, because blocking can be prevented and bubbles remaining can be easily suppressed. The preferred emboss depth is 10 to 100 m, and if it is too deep, air bubbles may remain on the contrary. The thickness of the sheet is preferably 0.2 to 2 mm, more preferably 0.3 to 1 mm, and one or a plurality of the sheets may be stacked and adjusted for use.
[0043] 以下、本発明の製造方法による封止操作方法を説明する。  Hereinafter, a sealing operation method according to the production method of the present invention will be described.
[0044] まず、図 2の例について説明する。図 2の例は、平坦な受光面側透明板 2及び裏面 板 3を用い、太陽電池セル 4間の間隙部 9及び太陽電池セル 4の外側の余白部 10の 両方に、太陽電池セル 4の厚みよりも厚い封止榭脂シート片を配置する例である。図 2は、封止操作前の積層体 60の一例の断面模式図であり、複数の太陽電池セル 4が 直列に接続される方向に対して平行に切断した断面を示したものである。 First, the example of FIG. 2 will be described. The example in Fig. 2 shows the flat transparent plate 2 on the light-receiving surface side and the back surface. This is an example in which a sealing resin sheet piece thicker than the thickness of the solar cell 4 is arranged in both the gap 9 between the solar cells 4 and the margin 10 outside the solar cell 4 using the plate 3. . FIG. 2 is a schematic cross-sectional view of an example of the stacked body 60 before the sealing operation, and shows a cross section cut in parallel to a direction in which a plurality of solar cells 4 are connected in series.
[0045] 最初に、裏面板 3の上に、実質的にその全面を覆うように第 2封止榭脂シート 30を 重ねる。図 2の例では、裏面板 3を下において力も重ねる操作を行ったが、先に受光 面側透明板 2を下にお 、てから、逆の順番で重ねても構わな!/、。  First, the second sealing resin sheet 30 is overlaid on the back plate 3 so as to cover substantially the entire surface. In the example of FIG. 2, the operation of superimposing the force on the back plate 3 is performed. However, the transparent plate 2 on the light receiving surface side may be first placed on the lower surface, and then may be laminated in the reverse order.
[0046] 第 2封止榭脂シート 30の厚さは 0. 5mm以上であることが好ましぐ 1mm以上であ ることがより好ましい。また、通常 5mm以下、好適には 3mm以下である。一定以上の 厚みとすることで、太陽電池セル 4を有効に保護することができる。第 2封止榭脂シ一 ト 30を、複数の封止榭脂シートを積層することによって構成することが好ましい。用途 や要求性能に応じて第 2封止榭脂シート 30の厚みを調整することが容易になるから である。図 2の例では 3枚の封止榭脂シート 31, 32, 33を重ねて第 2封止榭脂シート 30を構成している。第 2封止榭脂シート 30は、裏面板 3の実質的に全面を覆ってい ればよぐ導線の配置などのために一部が欠落していても構わないし、サイド 'バイ' サイドに配置された複数枚の封止榭脂シートから構成されて 、ても構わな!/、。  [0046] The thickness of the second sealing resin sheet 30 is preferably 0.5 mm or more, more preferably 1 mm or more. Also, it is usually 5 mm or less, preferably 3 mm or less. By setting the thickness to a certain value or more, the solar cell 4 can be effectively protected. The second sealing resin sheet 30 is preferably configured by laminating a plurality of sealing resin sheets. This is because it becomes easy to adjust the thickness of the second sealing resin sheet 30 according to the application and required performance. In the example of FIG. 2, three sealing resin sheets 31, 32, and 33 are stacked to form a second sealing resin sheet 30. The second encapsulating resin sheet 30 may be partially omitted as long as it covers a substantially entire surface of the back plate 3, for example, to arrange conductive wires. It may be composed of a plurality of sealed resin sheets.
[0047] 第 2封止榭脂シート 30の上に、太陽電池セル 4を載置する。このとき、前述の要領 で相互に接続した複数の太陽電池セル 4を載置して、必要に応じて縦横を揃えて配 列する。この場合には、予め接続した太陽電池セル 4を載置しても良いし、第 1封止 榭脂シート 20上で接続しても良いし、一部接続したものを載置して力も残りを接続し ても良い。  [0047] The solar cell 4 is placed on the second sealing resin sheet 30. At this time, the plurality of solar cells 4 connected to each other in the above-described manner are placed, and if necessary, are arranged in the same length and width. In this case, the solar cell 4 connected in advance may be placed, the connection may be made on the first sealing resin sheet 20, or the partially connected one may be placed and the force remains. May be connected.
[0048] 続いて、太陽電池セル 4の外側の余白部 10において、第 2封止榭脂シート 30の上 に、余白部 10の全周にわたり実質的に連続して配置された封止榭脂シート片 40と、 それと重ねられて相互に間隔をあけて配置された封止榭脂シート片 41とを配置する 。また、太陽電池セル 4間の間隙部 9に封止榭脂シート片 42, 43を配置する。  Subsequently, in the margin 10 outside the solar cell 4, the sealing resin disposed substantially continuously over the entire periphery of the margin 10 on the second sealing resin sheet 30. A sheet piece 40 and a sealing resin sheet piece 41 that is overlapped with the sheet piece 40 and arranged at an interval from each other are arranged. In addition, sealing resin sheet pieces 42 and 43 are arranged in gaps 9 between solar cells 4.
[0049] 太陽電池セル 4の外側の余白部 10又は太陽電池セル 4間の間隙部 9に、合計の 厚みが太陽電池セル 4の厚みよりも厚い封止榭脂シート片 40, 41又は封止榭脂シ ート片 42, 43を配置することによって、内部を減圧した際に、表裏両面からの大気圧 による荷重が太陽電池セル 4に直接力かることがなぐ封止榭脂シート片 40, 41又は 封止榭脂シート片 42, 43がその荷重を受ける。したがって、モジュール内に配置さ れた太陽電池セル 4に対して直接受光面側透明板 2の荷重が掛カ ないようにする ことができ、減圧工程でのセル割れを防止することができる。特に、本発明の製造方 法によれば、封止操作時に積層体 60の上下力 大気圧に由来する荷重を受けるの で、このような構成とすることが好ましい。 1つの太陽電池モジュール 1に封入される 太陽電池セル 4の個数が多いほど、太陽電池セル 4の破損に由来する不良品率が 上昇することから、当該封止榭脂シート片 40, 41, 42, 43を配置する実益が大きい 。ここで、合計の厚みとは、複数枚の封止榭脂シート片を重ねて使用した場合には、 重なった部分の合計の厚みと 、うことである。 In the margin 10 outside the solar cell 4 or the gap 9 between the solar cells 4, the sealing resin sheet pieces 40, 41 or the sealing whose total thickness is larger than the thickness of the solar cell 4大 By arranging the resin sheet pieces 42 and 43, when the inside is decompressed, the atmospheric pressure from both sides The sealing resin sheet pieces 40, 41 or the sealing resin sheet pieces 42, 43, which do not directly apply a load to the solar cell 4, receive the load. Therefore, it is possible to prevent the load of the light-receiving-surface-side transparent plate 2 from being directly applied to the solar battery cells 4 arranged in the module, and to prevent cell cracking in the decompression step. In particular, according to the manufacturing method of the present invention, a vertical load of the laminated body 60 receives a load derived from the atmospheric pressure during the sealing operation, and thus such a configuration is preferable. The larger the number of solar cells 4 sealed in one solar cell module 1, the higher the percentage of defective products resulting from damage to the solar cells 4, so the sealing resin sheet pieces 40, 41, 42 The benefits of placing 43 are great. Here, the total thickness refers to the total thickness of the overlapping portions when a plurality of sealing resin sheet pieces are used in an overlapping manner.
[0050] 封止榭脂シート片の合計の厚み力 太陽電池セル 4の厚みと導線 8の厚みとの合 計値よりも厚いことが好ましぐ当該合計値よりも 0. 2mm以上厚いことがより好ましい 。また、封止榭脂シート片の合計の厚み力 太陽電池セル 4の厚みよりも 0. 3mm以 上厚いことが好ましぐ 0. 6mm以上厚いことがより好ましい。具体的には、封止榭脂 シート片の合計の厚みが 0. 5〜5mmであることが好適である。封止榭脂シート片の 合計の厚みはより好適には 0. 8mm以上であり、さらに好適には lmm以上である。 当該厚みが薄すぎる場合には、封止操作時にセル割れが発生するおそれがある。 一方、封止榭脂シート片の合計の厚みはより好適には 3mm以下であり、より好適に は 2mm以下である。当該厚みが厚すぎる場合には、太陽電池セル 4の周囲に気泡 が残りやすくなる。 [0050] The total thickness force of the sealing resin sheet pieces is preferably thicker than the total value of the thickness of the solar cell 4 and the thickness of the conductive wire 8, and preferably 0.2 mm or more than the total value. More preferred. Further, it is preferable that the total thickness of the sealing resin sheet pieces is 0.3 mm or more than the thickness of the solar cell 4, and it is more preferable that the thickness is 0.6 mm or more. Specifically, it is preferable that the total thickness of the sealing resin sheet pieces is 0.5 to 5 mm. The total thickness of the sealing resin sheet pieces is more preferably 0.8 mm or more, and even more preferably 1 mm or more. If the thickness is too thin, cell cracking may occur during the sealing operation. On the other hand, the total thickness of the sealing resin sheet pieces is more preferably 3 mm or less, and more preferably 2 mm or less. If the thickness is too large, air bubbles are likely to remain around the solar cell 4.
[0051] 封止榭脂シート片 40, 41, 42, 43を、水平方向に相互に間隔をあけて配置し、そ こから内部の空気を排出できるようにすることが好ましい。内部の空気を積極的に排 出する通路を確保することで、気泡の残存を抑制することができ、外観の良好な太陽 電池モジュール 1を製造することができる。このとき、封止榭脂シート片同士が直接重 ねられた構成である場合には、その少なくとも 1枚において榭脂シート片相互の間に 水平方向に間隔をあけて、そこから内部の空気を排出できれば良い。  [0051] It is preferable that the sealing resin sheet pieces 40, 41, 42, and 43 are arranged at intervals in the horizontal direction so that the internal air can be discharged therefrom. By securing a passage for actively discharging the internal air, the remaining air bubbles can be suppressed, and the solar cell module 1 having a good appearance can be manufactured. At this time, if the sealing resin sheet pieces are directly overlapped with each other, at least one of the sealing resin sheet pieces is horizontally spaced between the resin sheet pieces, and the internal air is discharged therefrom. It is good if it can be discharged.
[0052] 図 2の例では、太陽電池セル 4の外側の余白部 10において、第 2封止榭脂シート 3 0の上に、余白部 10の全周にわたり実質的に連続して配置された封止榭脂シート片 40と、それと重ねられて相互に間隔をあけて配置された封止榭脂シート片 41とが配 置され、その上に第 1封止榭脂シート 20が重ねられる。太陽電池セル 4と同じ高さの 位置において全周にわたって連続的に封止榭脂シート片 40を配置することで、溶融 榭脂の均一な充填が可能であり、気泡の発生を防止できる。この封止榭脂シート片 4 0は、余白部 10の幅の 50%以上の幅を有することが好ましぐ 70%以上の幅を有す ることがより好ましい。封止榭脂シート片 40は平行に配置された複数のシート片から 構成されていてもよい。封止榭脂シート片 40の上に重ねて、相互に間隔をあけて封 止榭脂シート片 41を配置することが好ましぐこれによつて内部の空気を円滑に排出 できる。 In the example of FIG. 2, in the margin 10 outside the solar cell 4, it is disposed substantially continuously over the entire periphery of the margin 10 on the second sealing resin sheet 30. Sealing resin sheet piece 40 and a sealing resin sheet piece 41 overlapped with the sealing resin sheet piece 41 are arranged, and the first sealing resin sheet 20 is stacked thereon. By arranging the sealing resin sheet piece 40 continuously over the entire circumference at a position at the same height as the solar cell 4, uniform filling of the molten resin is possible, and generation of bubbles can be prevented. The sealing resin sheet piece 40 preferably has a width of at least 50% of the width of the margin portion 10, and more preferably has a width of at least 70%. The sealing resin sheet piece 40 may be composed of a plurality of sheet pieces arranged in parallel. It is preferable to dispose the sealing resin sheet pieces 41 on the sealing resin sheet pieces 40 at a distance from each other, whereby the internal air can be discharged smoothly.
[0053] 図 2の例では、太陽電池セル 4間の間隙部 9において、第 2封止榭脂シート 30の上 に、封止榭脂シート片 42, 43を配置する。ここでは、二枚の封止榭脂シート片を重ね て配置している。太陽電池セル 4間の間隙部 9に封止榭脂シート片 42, 43を配置す ることによって、内部を減圧した際に、表裏両面からの大気圧による荷重が太陽電池 セル 4に直接力かることがなぐ封止榭脂シート片 42, 43がその荷重を受ける。そし て、温度が上昇するにしたがって榭脂は軟ィ匕して荷重の力かった封止榭脂シート片 42, 43の厚みが減少していき、太陽電池セル 4又は導線 8が、第 1封止榭脂シート 2 0及び第 2封止榭脂シート 30と接触する。そのときには榭脂シート全体が軟ィ匕してい るので局所的な荷重が力かることがなぐ太陽電池セル 4又は導線 8が軟ィ匕した封止 榭脂シートに埋まりこむように密着する。これによつて、減圧工程でのセル割れを防 止することができる。このときの状況は、図 5〜7に模式的に示されている。図 5は封止 操作開始前の積層体の拡大断面模式図であり、図 6は加熱昇温途中の積層体の拡 大断面模式図であり、図 7は封止操作後の積層体の拡大断面模式図である。この場 合、個々の太陽電池セル 4の近傍で上下からの荷重を確実に受けることが可能であ るので、セル割れを効果的に防止することができる。  In the example of FIG. 2, sealing resin sheet pieces 42 and 43 are arranged on second sealing resin sheet 30 in gap 9 between solar cells 4. Here, two sealing resin sheet pieces are arranged in an overlapping manner. By arranging the sealing resin sheet pieces 42 and 43 in the gap 9 between the solar cells 4, when the inside is depressurized, the load due to the atmospheric pressure from both the front and back surfaces directly applies to the solar cells 4. The sealing resin sheet pieces 42 and 43 that receive the load receive the load. Then, as the temperature rises, the resin is softened and the thickness of the encapsulating resin sheet pieces 42 and 43, which have a strong load, decreases, and the solar cell 4 or the conductor 8 becomes It comes into contact with the sealing resin sheet 20 and the second sealing resin sheet 30. At that time, since the entire resin sheet is softened, the solar cell 4 or the conducting wire 8 that is not subjected to a local load is tightly attached so as to be embedded in the softened sealed resin sheet. This can prevent cell cracking in the pressure reduction step. The situation at this time is schematically shown in FIGS. Fig. 5 is an enlarged cross-sectional schematic view of the laminate before the start of the sealing operation, Fig. 6 is an enlarged cross-sectional schematic view of the laminate during heating and heating, and Fig. 7 is an enlarged cross-sectional view of the laminate after the sealing operation. It is a cross section schematic diagram. In this case, it is possible to reliably receive loads from above and below in the vicinity of the individual solar battery cells 4, so that cell cracking can be effectively prevented.
[0054] 間隙部 9に配置される封止榭脂シート片 42, 43の幅は、前記間隙部 9の幅よりも狭 V、ことが好まし 、。こうすることによって太陽電池セル 4よりも厚 、封止榭脂シート片 4 2, 43が間隙部 9全体に一定の厚さで広がることが容易になるからである。広い範囲 に溶融樹脂が移動する場合には、それにつれて太陽電池セル 4も移動してしまうこと がある。幅は、太陽電池セル 4や封止榭脂シート片 42, 43の厚さや間隙部 9の面積 などを考慮して調整される力 好適には間隙部 9の幅の 0. 1〜0. 95倍である。より 好適には 0. 3倍以上であり、 0. 9倍以下である。 0. 95倍を超えると配置する操作が 困難になる上に、減圧時に太陽電池セル 4又は導線 8を破損するおそれがある。逆 に 0. 1倍以下の場合には、溶融樹脂が均一に広がるのが困難になるおそれがある。 封止榭脂シート片 42, 43の長さは特に限定されず、太陽電池セル 4の一辺よりも短 V、長さであっても構わな 、し、太陽電池モジュールの一端から他端まで延びたテー プ状のものであっても構わな 、。 The width of the sealing resin sheet pieces 42 and 43 arranged in the gap 9 is preferably smaller than the width V of the gap 9 by V. By doing so, the thickness of the sealing resin sheet pieces 42, 43, which is thicker than the solar cell 4, can be easily spread over the entire gap 9 with a constant thickness. When the molten resin moves over a wide area, the solar cell 4 also moves with it. There is. The width is adjusted in consideration of the thickness of the solar cell 4 and the sealing resin sheet pieces 42 and 43, the area of the gap 9, and the like. Preferably, the width of the gap 9 is 0.1 to 0.95. It is twice. More preferably, it is 0.3 times or more and 0.9 times or less. If it exceeds 0.95 times, the disposing operation becomes difficult, and the solar cell 4 or the conducting wire 8 may be damaged at the time of decompression. Conversely, if the ratio is less than 0.1, it may be difficult to spread the molten resin uniformly. The length of the sealing resin sheet pieces 42 and 43 is not particularly limited, and may be shorter than one side of the solar cell 4 and may be V, and may extend from one end of the solar cell module to the other end. It may be taped.
[0055] また、間隙部 9に配置される封止榭脂シート片相互の間から内部の空気を排出でき るようにすることも好ましい。内部の空気を積極的に排出する通路を確保することで、 気泡の残存を抑制することができ、外観の良好な太陽電池モジュールを製造するこ とができる。このとき、封止榭脂シート片が複数枚の封止榭脂シートを積層した構成 である場合には、その少なくとも 1枚において榭脂シート片相互の間に間隔をあけて 、そこから内部の空気を排出できれば良い。封止榭脂シート片を交差させて配置す る場合には、交差部以外の合計厚みの薄 、ところから内部の空気を排出することが できる。 It is also preferable that the internal air can be discharged from between the sealing resin sheet pieces arranged in the gap 9. By securing a passage for actively discharging the internal air, the remaining air bubbles can be suppressed, and a solar cell module with a good appearance can be manufactured. At this time, in the case where the sealing resin sheet pieces have a configuration in which a plurality of sealing resin sheets are laminated, at least one of the sealing resin sheet pieces has an interval between the resin sheet pieces, and the internal It is sufficient if air can be exhausted. When the sealing resin sheet pieces are arranged so as to cross each other, the internal air can be discharged from a thin portion other than the crossing portion.
[0056] このように、セル割れを効果的に防止するためには、太陽電池セル 4間の間隙部 9 に、封止榭脂シート片 42, 43を配置することが好ましい。通常、このような構成とする ことが適しているのは、間隙部 9の幅が、好適には 5mm以上、より好適には 10mm以 上、さらに好適には 20mm以上の場合である。間隙部 9の幅が狭い場合には、封止 榭脂シート片 42, 43を配置することが困難になるので、太陽電池セル 4の外側の余 白部 10のみに封止榭脂シート片を配置する方が良い。このような構成とすることが適 しているのは、間隙部 9の幅が、好適には 10mm以下、より好適には 5mm以下、さら に好適には 3mm以下の場合である。  As described above, in order to effectively prevent cell cracking, it is preferable to dispose the sealing resin sheet pieces 42 and 43 in the gap 9 between the solar cells 4. Usually, such a configuration is suitable when the width of the gap 9 is preferably 5 mm or more, more preferably 10 mm or more, and still more preferably 20 mm or more. If the width of the gap portion 9 is narrow, it is difficult to arrange the sealing resin sheet pieces 42 and 43, so that the sealing resin sheet pieces are only provided in the margin 10 outside the solar cell 4. It is better to arrange. Such a configuration is suitable when the width of the gap 9 is preferably 10 mm or less, more preferably 5 mm or less, and still more preferably 3 mm or less.
[0057] こうして、封止榭脂シート片 40, 41, 42, 43を載置した後、その上に第 1封止榭脂 シート 20を載置する。第 1封止榭脂シート 20の好適な構成及び好適な厚さは、第 2 封止榭脂シート 30と同様である。図 2の例では 3枚の封止榭脂シート 21, 22, 23を 重ねて第 1封止榭脂シート 20を構成している。最後に、第 1封止榭脂シート 20の上 に受光面側透明板 2が載置される。 After the sealing resin sheet pieces 40, 41, 42, 43 are placed in this manner, the first sealing resin sheet 20 is placed thereon. The preferable configuration and the preferable thickness of the first sealing resin sheet 20 are the same as those of the second sealing resin sheet 30. In the example of FIG. 2, three sealing resin sheets 21, 22, and 23 are stacked to form a first sealing resin sheet 20. Finally, on the first sealing resin sheet 20 The light-receiving-surface-side transparent plate 2 is placed on the light-receiving surface.
[0058] 次に、図 3の例について説明する。図 3の例は、受光面側透明板 2及び裏面板 3の いずれもが湾曲している例である。図 3は、封止操作前の積層体 60の一例の断面模 式図であり、複数の太陽電池セル 4が直列に接続される方向に対して平行に切断し た断面を示したものである。図 3の例では、受光面側透明板 2を下において力も重ね る操作を行ったが、先に裏面板 3を下においてから、逆の順番で重ねても構わない。 このとき、作業性の点から、凹面側が上になるように受光面側透明板 2又は裏面板 3 を配置し、その上に封止榭脂シートを重ねることが好適である。  Next, the example of FIG. 3 will be described. The example of FIG. 3 is an example in which both the light receiving surface side transparent plate 2 and the back plate 3 are curved. FIG. 3 is a schematic cross-sectional view of an example of the stacked body 60 before the sealing operation, and shows a cross section cut in parallel to a direction in which a plurality of solar cells 4 are connected in series. . In the example of FIG. 3, the operation of superimposing the force on the light-receiving-surface-side transparent plate 2 is performed. However, the reverse operation may be performed after the lower surface plate 3 is firstly disposed. At this time, from the viewpoint of workability, it is preferable to arrange the light receiving surface side transparent plate 2 or the back surface plate 3 so that the concave side faces upward, and to overlay the sealing resin sheet thereon.
[0059] 図 3の例では、受光面側透明板 2の上に、第 1封止榭脂シート 20、太陽電池セル 4 、封止榭脂シート片 40, 41, 42, 43及び第 2封止榭脂シート 30をこの順番に重ねる 力 その具体的方法は図 2の例と同様である。最後に、第 2封止榭脂シート 30の上に 裏面板 3が載置される。このとき、裏面板 3は受光面側透明板 2と実質的に同じ曲率 半径の湾曲を有することが好ましく、その凸面側が下に向けられて重ねられる。  In the example of FIG. 3, the first sealing resin sheet 20, the solar cell 4, the sealing resin sheet pieces 40, 41, 42, 43, and the second sealing resin The force for stacking the resin sheet 30 in this order The specific method is the same as in the example of FIG. Finally, the back plate 3 is placed on the second sealing resin sheet 30. At this time, the back plate 3 preferably has a curvature having substantially the same radius of curvature as the light-receiving-surface-side transparent plate 2, and is stacked with the convex surface facing downward.
[0060] 図 3の例のように、受光面側透明板 2と裏面板 3の少なくともいずれかが湾曲してい る場合には、ヒーターからの伝熱によって積層体 60を均一に加熱することが困難で あるから、本発明の製造方法を採用することが特に好適である。また、上下からの不 均一な荷重によって受光面側透明板 2あるいは裏面板 3が割れるのを防止するには 、封止処理容器 61が気体不透過性の柔軟なシートからなる袋であることが好ま 、。  When at least one of the light receiving surface side transparent plate 2 and the back surface plate 3 is curved as in the example of FIG. 3, the laminate 60 can be uniformly heated by the heat transfer from the heater. Because of the difficulty, it is particularly preferable to employ the production method of the present invention. In order to prevent the light-receiving-side transparent plate 2 or the back plate 3 from breaking due to uneven loads from above and below, the sealing treatment container 61 should be a bag made of a gas-impermeable flexible sheet. Like,.
[0061] また次に、図 4の例について説明する。図 4の例は、裏面板 3に皿孔 52が設けられ 、そこにモジュール取付け金具 53が挿入されている例である。図 4は、封止操作前の 積層体 60の一例の断面模式図であり、複数の太陽電池セル 4が直列に接続される 方向に対して平行に切断した断面を示したものである。重ねる順番は特に限定され な 、が、モジュール取付け金具 53の先端部 54が突出して 、る側が上側になるように して重ねるほうが、作業性の面力も好ましい。したがって、図 4の例では、受光面側透 明板 2を下にお 、て力も重ねる操作を行う方が好ま 、。  Next, the example of FIG. 4 will be described. The example of FIG. 4 is an example in which a countersunk hole 52 is provided in the back plate 3 and a module mounting bracket 53 is inserted therein. FIG. 4 is a schematic cross-sectional view of an example of the laminate 60 before the sealing operation, and shows a cross section cut in parallel to a direction in which a plurality of solar cells 4 are connected in series. The stacking order is not particularly limited. However, it is preferable to stack the module mounting bracket 53 so that the tip end 54 of the module mounting bracket 53 is protruded so that the side of the module mounting bracket 53 is on the upper side. Therefore, in the example of FIG. 4, it is more preferable to perform an operation in which the light receiving surface side transparent plate 2 is placed downward and the force is also superimposed.
[0062] 図 4の例では、受光面側透明板 2の上に、第 1封止榭脂シート 20、太陽電池セル 4 、封止榭脂シート片 40, 41, 42, 43及び第 2封止榭脂シート 30をこの順番に重ねる 1S その具体的方法は図 2の例と同様である。 [0063] 最後に、第 2封止榭脂シート 30の上に皿孔 52を有する裏面板 3が載置されるが、こ のとき、モジュール取付け金具 53の頭部 55が皿孔 52に嵌め込まれるようにする。封 止する前にモジュール取付け金具 53の頭部 55を太陽電池モジュール 1の内部に配 置することによって、受光面側透明板 2に孔を開けることなぐモジュール取付け金具 53をしつ力りと固定することができる。モジュール取付け金具 53の形態は特に限定さ れないが、皿孔 52に沿うことのできる形状の頭部 55を有するものであることが好まし い。また、適宜ネジ切などが施されていてもよい。 In the example of FIG. 4, the first sealing resin sheet 20, the solar cell 4, the sealing resin sheet pieces 40, 41, 42, 43 and the second sealing resin The resin sheet 30 is stacked in this order 1S The specific method is the same as that of the example of FIG. Finally, the back plate 3 having the countersink hole 52 is placed on the second sealing resin sheet 30, and at this time, the head 55 of the module mounting bracket 53 is fitted into the countersink hole 52. To be By placing the head 55 of the module mounting bracket 53 inside the solar cell module 1 before sealing, the module mounting bracket 53 can be firmly fixed without making a hole in the transparent plate 2 on the light-receiving surface. can do. Although the form of the module mounting bracket 53 is not particularly limited, it is preferable that the module mounting bracket 53 has a head 55 shaped so as to be able to follow the countersunk hole 52. Further, threading or the like may be appropriately performed.
[0064] 以上、図 2〜7を使用して、封止操作前の積層体 60の構成について説明した。引き 続き、受光面側透明板 2と裏面板 3との間の空気を排出し、加熱して榭脂を溶融させ てから冷却して封止する。このとき、加熱して榭脂を溶融させ、架橋反応を進行させ て力 冷却して封止することが好ま 、。  The configuration of the laminate 60 before the sealing operation has been described above with reference to FIGS. Subsequently, the air between the light receiving surface side transparent plate 2 and the back plate 3 is exhausted, heated to melt the resin, and then cooled and sealed. At this time, it is preferable that the resin is heated to melt the resin, the crosslinking reaction proceeds, and the resin is cooled and sealed.
[0065] 図 8は、封止処理装置の一例の模式図である。この封止処理装置は、積層体 60を 内部に収容する複数の封止処理容器 61を有し、空気の排出操作と加熱操作の可能 なものである。このとき、封止処理容器 61はその一部又は全部が気体非透過性の柔 軟な膜からなるものである。当該膜の素材は、気体非透過性の柔軟な膜であれば良 ぐ一定以上の柔軟性と強度があって、膜の内部が真空になった時に外気圧が積層 体 60全体に均一に力かるようになるものであれば特に限定されず、ゴムゃ榭脂のシ ートゃフィルムが使用できる。このとき、全体が気体非透過性の柔軟な膜からなる袋 を使用することが好ましい。この場合には、封止処理容器 61は単なる袋であるから、 様々な形状や寸法の太陽電池モジュールを製造する際に柔軟に対応することが可 能であり、建材など、多様な寸法の製品を製造することが要求される用途に対して好 適である。  FIG. 8 is a schematic view of an example of the sealing apparatus. This sealing treatment apparatus has a plurality of sealing treatment containers 61 accommodating a laminate 60 therein, and is capable of performing an air discharging operation and a heating operation. At this time, part or all of the sealing processing container 61 is made of a gas-impermeable and flexible film. The material of the membrane is a flexible membrane that is impermeable to gas and has a certain degree of flexibility and strength, and when the inside of the membrane is evacuated, the external pressure is evenly applied to the entire laminate 60. There is no particular limitation as long as it can be used, and a sheet or film of a rubber resin can be used. At this time, it is preferable to use a bag made entirely of a gas-impermeable flexible membrane. In this case, since the sealing container 61 is merely a bag, it can flexibly cope with the production of solar cell modules of various shapes and dimensions, and can be used for products of various dimensions such as building materials. It is suitable for applications that require the production of
[0066] 特に、積層体 60において、受光面側透明板 2と裏面板 3の少なくともいずれかが湾 曲している場合に、このような封止処理容器 61を使用することが好ましい。封止処理 容器 61の内部を減圧して上下力もの荷重が積層体 60にかかった時に、受光面側透 明板 2あるいは裏面板 3が割れるのを防止することができる。この場合には、封止処 理容器 61である袋を、受光面側透明板 2及び裏面板 3の表面に沿わせて力も封止 するのが好ましい。 [0067] また、積層体 60が、受光面側透明板 2又は裏面板 3から外側へ突出した部材を有 する場合にも、このような封止処理容器 61を使用することが好ましい。この場合にも、 封止処理容器 61である袋を、突出した部材の形状に沿わせてから封止するのが好 ましい。突出した部材の形状によっては、その形状に対応したポケットを有する袋を 使用しても良い。また、突出部に過剰の荷重が力かるのを防止するために、突出部を 、減圧時に変形しにくいカバーで覆ってから、封止処理容器 61の中に導入すること も好ましい。こうすることによって封止処理容器 61の破損を防止することもできる。 In particular, when at least one of the light receiving surface side transparent plate 2 and the back surface plate 3 in the laminate 60 is curved, it is preferable to use such a sealing treatment container 61. When the inside of the container 61 is decompressed and a vertical load is applied to the laminate 60, the light-receiving-side transparent plate 2 or the back plate 3 can be prevented from breaking. In this case, it is preferable that the bag, which is the sealing processing container 61, be sealed along the surfaces of the transparent plate 2 on the light-receiving surface side and the back plate 3 with a force. [0067] Also, when the laminate 60 has a member protruding outward from the light-receiving-surface-side transparent plate 2 or the back plate 3, it is preferable to use such a sealing treatment container 61. Also in this case, it is preferable to seal the bag, which is the sealing processing container 61, after conforming to the shape of the protruding member. Depending on the shape of the protruding member, a bag having a pocket corresponding to the shape may be used. In order to prevent an excessive load from being applied to the protruding portion, it is also preferable to cover the protruding portion with a cover that is not easily deformed when depressurizing, and then introduce the protruding portion into the sealing treatment container 61. By doing so, it is also possible to prevent the sealing processing container 61 from being damaged.
[0068] 積層体 60を封止処理容器 61に導入する際には、積層体 60の外縁を通気性のあ る素材からなるブリーダー 62で覆って、積層体 60内部の溶融樹脂が流出するのを 防ぐとともに、積層体 60内部力もの空気の排出ルートを確保することが好ましい。プリ ーダー 62に使用される素材としては、織布、編地、不織布などの布帛が使用可能で ある。  When the laminate 60 is introduced into the sealing treatment container 61, the outer edge of the laminate 60 is covered with a bleeder 62 made of a gas-permeable material, and the molten resin inside the laminate 60 flows out. In addition, it is preferable to secure the air discharge route for the air inside the laminate 60 as well as to prevent the air flow. As a material used for the leader 62, a woven fabric, a knitted fabric, a non-woven fabric or the like can be used.
[0069] このようにして積層体 60が入れられた複数の封止処理容器 61をオーブン 63内に 導入して相互に間隔をあけて平行に配置する。これによつて、封止処理容器 61内の 積層体 60は相互に平行に配置されることになる。複数の封止処理容器 61は、上下 方向に、間隔をあけて重ねて配置されることが好ましい。所定の間隔をあけて配置す る方法は特に限定されず、所定の間隔を有する棚をオーブン 63内に設ける方法など が例示される。  [0069] The plurality of sealing treatment containers 61 in which the laminates 60 are put in this way are introduced into the oven 63, and are arranged in parallel at intervals. Thus, the laminates 60 in the sealing container 61 are arranged in parallel with each other. It is preferable that the plurality of sealing processing containers 61 are arranged one above the other with a space therebetween in the vertical direction. The method of arranging at predetermined intervals is not particularly limited, and a method of providing shelves with predetermined intervals in the oven 63 is exemplified.
[0070] オーブン 63内において積層体 60と平行の向きに熱風を流すことによって積層体 6 0を加熱する。積層体 60と平行の向きに熱風を流すことによって、積層体 60に効率 良くかつ均一に熱を伝えることが可能である。このとき、封止処理容器 61の下面にも 熱風が接触するようにすることが好ましぐそのためには、封止処理容器 61と棚との 間にスぺーサーを配置する方法や、棚自体を網棚にする方法などが好適に採用さ れる。熱風を供給する方法は特に限定されず、オーブン 63内にヒーターを設けて、 ファンを用いて積層体 60と平行の向きに熱風を流しても良い。し力しながら、オーブ ン 63の外部にヒーターを設けて、熱風をオーブン 63内に導入する方法が、均一に加 熱しやすくて好ましい。この場合、オーブン 63が、熱風導入口と、その反対側に設け られた熱風導出口とを有し、熱風導入口から熱風導出口へと流れる通路の間に複数 の封止処理容器 61が配置されることが好ましい。また、オーブン 63内を実質的に大 気圧に維持しながら積層体を加熱することが、装置コストの面力も好ましい。 [0070] The laminate 60 is heated by flowing hot air in a direction parallel to the laminate 60 in the oven 63. By flowing hot air in a direction parallel to the laminate 60, heat can be efficiently and uniformly transmitted to the laminate 60. At this time, it is preferable that the hot air also comes into contact with the lower surface of the sealing treatment container 61. For this purpose, a method of disposing a spacer between the sealing treatment container 61 and the shelf, A method of using a net as a shelf is suitably adopted. The method for supplying the hot air is not particularly limited, and a heater may be provided in the oven 63 and the hot air may be flown in a direction parallel to the stacked body 60 using a fan. It is preferable to provide a heater outside the oven 63 while applying pressure, and to introduce hot air into the oven 63 because heating can be easily performed uniformly. In this case, the oven 63 has a hot air inlet and a hot air outlet provided on the opposite side, and a plurality of ovens are provided between passages flowing from the hot air inlet to the hot air outlet. It is preferable that the sealing processing container 61 is disposed. Further, it is preferable to heat the laminate while maintaining the inside of the oven 63 at substantially the atmospheric pressure in view of the cost of the apparatus.
[0071] 多くの太陽電池モジュールでは、複数の太陽電池セル 4が直列方向に相互に導線 8で接続された複数のセットが準備され、これら複数のセットが間隔をあけて平行に配 列されて積層体 60が作製される。そのような積層体 60の向きとオーブン 63内の気流 の向きとの関係力 太陽電池セル 4が規則正しく配列された太陽電池モジュールを 製造するためには重要である。オーブン 63内の気流が前記直列方向と平行の向き になるようにして加熱する場合を図 9に示す。また、オーブン 63内の気流が前記直列 方向と垂直の向きになるようにして加熱する場合を図 10に示す。図 9及び図 10にお ける矢印が、気流の向きである。後の実施例でも説明するように、オーブン 63内の気 流が前記直列方向と垂直の向きになるようにして加熱した場合には、直列に接続さ れた太陽電池セル 4の列が図 10中の一点鎖線のように湾曲することが明らかになつ た。これは、積層体 60内で熱の伝わる速度に分布があるためであると考えられる。し たがって、規則正しく配列された太陽電池モジュールを製造するためには、オーブン 63内の気流が前記直列方向と平行の向きになるようにして加熱することが好ましいこ とが明らかになった。 [0071] In many solar cell modules, a plurality of sets in which a plurality of solar cells 4 are connected to each other in a series direction by a conductor 8 are prepared, and these sets are arranged in parallel at intervals. The laminate 60 is manufactured. The relationship between the orientation of the laminate 60 and the direction of the airflow in the oven 63 is important for manufacturing a solar cell module in which the solar cells 4 are regularly arranged. FIG. 9 shows a case where the heating is performed so that the air flow in the oven 63 is parallel to the series direction. FIG. 10 shows a case where the heating is performed so that the air flow in the oven 63 is oriented in a direction perpendicular to the in-line direction. The arrows in FIGS. 9 and 10 indicate the direction of the airflow. As will be described in a later embodiment, when heating is performed so that the air flow in the oven 63 is oriented in a direction perpendicular to the series direction, the rows of the solar cells 4 connected in series are arranged as shown in FIG. It turned out to be curved like the dashed line inside. This is considered to be due to the distribution of the speed at which heat is transmitted in the laminate 60. Therefore, in order to manufacture a regularly arranged solar cell module, it was revealed that it is preferable to heat the oven 63 so that the air flow in the oven 63 is in a direction parallel to the serial direction.
[0072] 封止処理に際しては、前記封止処理容器 61内を減圧して受光面側透明板 2と裏 面板 3との間の空気を排出する。図 8の封止処理装置では、それぞれの封止処理容 器 61に排気するためのパイプ 64が接続されている。パイプ 64は、 3本まとめられて パイプ 65に接続されて!、る。さらにこのようにまとめられたパイプ 65が 6本(一部図示 を省略)、タンク 66に接続されている。タンク 66は真空ポンプ 67に接続されており、こ れによって封止処理容器 61内部の空気を排出することが可能である。封止処理容 器 61の数は、複数であれば特に限定されないが、生産効率を考慮すれば、 6個以上 であることが好ましく、 12個以上であることがより好まし 、。  At the time of the sealing process, the pressure between the light receiving surface side transparent plate 2 and the back surface plate 3 is exhausted by reducing the pressure in the sealing process container 61. In the sealing apparatus shown in FIG. 8, a pipe 64 for exhausting air is connected to each sealing chamber 61. The three pipes 64 are connected together and connected to the pipe 65! Furthermore, six pipes 65 (partially omitted from the drawing) assembled in this way are connected to the tank 66. The tank 66 is connected to a vacuum pump 67 so that the air inside the sealed processing container 61 can be discharged. The number of the sealing containers 61 is not particularly limited as long as it is plural, but in consideration of production efficiency, it is preferably 6 or more, and more preferably 12 or more.
[0073] 6本のパイプ 65のそれぞれには、バルブ 68を介して圧力計 69が接続され、またパ ィプ 65中の流れを遮断することの可能な電磁弁 70が設けられている。これによつて、 パイプ 65に接続された封止処理容器 61のいずれかに漏れが発生した場合に、圧力 計 69が圧力の上昇を検知し、制御回路 71が電磁弁 70に信号を送って電磁弁 70を 閉じる。これによつて、封止操作の途中で一つの封止処理容器 61に漏れが発生して も、他の封止処理容器 61にその悪影響が及ぶのを防止することができる。本発明で 使用する封止処理容器 61は、柔軟なシートからなるものであるし、太陽電池モジユー ルの形態にしたがってさまざまな形状のものを準備する必要があるので、漏れが発生 するおそれがある。しかも、太陽電池モジュールはかなり高価である。したがって、こ のような制御方法を採用することが好ましい。図 8の例では、 3つの封止処理容器 61 ごとに一つの制御を行っている力 これは設備コストと効果とのバランスに基づくもの である。圧力計 69と電磁弁 70のセットは、 2セット以上あればよいが、好適には 3セッ ト以上、より好適には 5セット以上である。制御回路 71からアラーム信号を出して、ォ ペレ一ターに知らせることもできる。 [0073] Each of the six pipes 65 is connected to a pressure gauge 69 via a valve 68, and is provided with an electromagnetic valve 70 capable of cutting off the flow in the pipe 65. As a result, when a leak occurs in any of the sealed processing containers 61 connected to the pipe 65, the pressure gauge 69 detects an increase in pressure, and the control circuit 71 sends a signal to the solenoid valve 70 to send a signal. Solenoid valve 70 close. Accordingly, even if a leak occurs in one sealing processing container 61 during the sealing operation, it is possible to prevent the other sealing processing container 61 from being adversely affected. The sealing treatment container 61 used in the present invention is made of a flexible sheet, and it is necessary to prepare various shapes according to the form of the solar cell module, so that leakage may occur. . Moreover, solar cell modules are quite expensive. Therefore, it is preferable to adopt such a control method. In the example of FIG. 8, the force that performs one control for each of the three sealed processing containers 61 is based on the balance between the equipment cost and the effect. The number of sets of the pressure gauge 69 and the solenoid valve 70 may be two or more, but is preferably three or more, and more preferably five or more. An alarm signal can be output from the control circuit 71 to notify the operator.
[0074] 6本のパイプ 65はタンク 66に接続されており、電磁弁 70が開いている状態では、 全ての封止処理容器 61がタンク 66と連通している。タンク 66の空気は真空ポンプ 6 7によって排出される。また、タンク 66にはコントロールバルブ 72を介して外気を導入 することができる。 [0074] The six pipes 65 are connected to the tank 66, and when the solenoid valve 70 is open, all the sealing treatment containers 61 are in communication with the tank 66. The air in the tank 66 is discharged by a vacuum pump 67. Further, outside air can be introduced into the tank 66 through the control valve 72.
[0075] 後に説明するように、封止処理容器 61内の圧力は、厳密に制御する必要がある。  As will be described later, the pressure in the sealing container 61 needs to be strictly controlled.
図 8の封止処理装置においては、タンク 66内の圧力を制御することによって全ての 封止処理容器 61の内部の圧力を同時に制御することができる。タンク 66内部の圧力 は、バルブ 73を介して接続された圧力計 74で計測され、この圧力データを受け取つ た制御回路 75がコントロールバルブ 72に信号を送って外気を取り入れながら所望の 圧力に微調整する。この間真空ポンプ 67は運転を継続している。比較的容量の大き なタンク 66に対して外気を取り込みながら制御することで封止処理容器 61内の圧力 の微調整が可能である。  In the sealing treatment apparatus shown in FIG. 8, the pressure inside all the sealing treatment containers 61 can be controlled simultaneously by controlling the pressure inside the tank 66. The pressure inside the tank 66 is measured by a pressure gauge 74 connected via a valve 73, and a control circuit 75 receiving the pressure data sends a signal to the control valve 72 to take in the outside air to achieve a desired pressure. adjust. During this time, the vacuum pump 67 continues to operate. By performing control while taking in outside air into the tank 66 having a relatively large capacity, fine adjustment of the pressure in the sealing processing container 61 is possible.
[0076] また、封止処理容器 61内の減圧操作を開始する前に、電磁弁 70及びコントロール バルブ 72を閉めた状態で真空ポンプ 67の運転を行うことによって、タンク 66内を予 め減圧しておくこともできる。この場合には、電磁弁 70を開くことによって迅速に封止 処理容器 61内の空気を排出することができる。これによつて、真空ポンプ 67の排気 能力が小さ 、場合であっても、封止処理容器 61内を迅速に減圧するのに役立つ。  Further, before starting the depressurizing operation in the sealing processing container 61, the vacuum pump 67 is operated with the solenoid valve 70 and the control valve 72 closed so that the pressure in the tank 66 is reduced in advance. You can keep it. In this case, the air in the sealed processing container 61 can be quickly discharged by opening the solenoid valve 70. Thus, even if the exhaust capability of the vacuum pump 67 is small, it is useful to quickly reduce the pressure in the sealing processing container 61.
[0077] タンク 66の容量は特に限定されるものではないが、 10リットル以上であることが好ま しぐ 20リットル以上であることがより好ましい。また、容量が大きすぎる場合には、コン トロールバルブ 72による圧力制御が迅速にできなくなるおそれがあるので、 500リット ル以下であることが好ましい。後に説明する実施例で使用した封止処理装置は、 50 リットルのタンク 66を備えて!/ヽた。 [0077] The capacity of the tank 66 is not particularly limited, but is preferably 10 liters or more. More preferably, it is 20 liters or more. If the capacity is too large, pressure control by the control valve 72 may not be able to be performed quickly. Therefore, the pressure is preferably 500 liter or less. The sealing apparatus used in the examples described later was equipped with a 50-liter tank 66! / ヽ.
[0078] 後に説明するように、封止処理容器 61内を減圧する前に予熱することが好ましい 場合がある。そのような場合には、オーブン 63内で予熱操作を行うことも可能である 力 オーブン 63に隣接する温度調節室(図示省略)を設け、当該温度調節室におい て予熱操作を行って力 オーブン 63内で封止処理すること力 オーブン 63の利用効 率の面からは好ましい。こうすることによって、オーブン 63内でモジュールを封止して V、る間に、他のモジュールを予熱することが可能である。  As described later, it may be preferable to preheat the inside of the sealing processing container 61 before reducing the pressure. In such a case, a preheating operation can be performed in the oven 63. A temperature control chamber (not shown) adjacent to the power oven 63 is provided, and the preheating operation is performed in the temperature control chamber. It is preferable from the viewpoint of the utilization efficiency of the oven 63 that the sealing treatment is performed in the inside. In this way, it is possible to preheat other modules while sealing the module in the oven 63.
[0079] また、封止処理容器 61内で封止榭脂を溶融させた後に、大気圧下で冷却する場 合には、オーブン 63内で冷却することも可能であるし、外部で冷却することも可能で ある。しかしながら、オーブン 63内で冷却する場合には、オーブン 63の使用時間が 長くなるので生産性が低下する。一方、外部で冷却した場合には冷却速度を調節す ることが困難になる。したがって、オーブン 63に隣接する温度調節室を設け、オーブ ン 63内で封止処理してから当該温度調節室において冷却することが好ましい場合が ある。こうすることによって、オーブン 63内でモジュールを封止している間に、他のモ ジュールを冷却することが可能である。特に、冷却速度を遅くしたい場合にその効果 が大きい。  When the sealing resin is melted in the sealing processing container 61 and then cooled under the atmospheric pressure, the cooling can be performed in the oven 63 or externally. It is also possible. However, when cooling in the oven 63, the use time of the oven 63 is prolonged, so that the productivity is reduced. On the other hand, when cooling is performed externally, it becomes difficult to adjust the cooling rate. Therefore, it may be preferable to provide a temperature control chamber adjacent to the oven 63, perform a sealing process in the oven 63, and then cool in the temperature control chamber. This makes it possible to cool other modules while sealing the modules in the oven 63. In particular, the effect is great when it is desired to reduce the cooling rate.
[0080] 温度調節室は、内部の温度調整が可能であって、オーブン 63に隣接して設けられ たものであればよぐ特に限定されない。外部力も温度調節室に封止処理容器 61を 導入するためのドアを有し、オーブン 63と温度調節室の間にドアを有することが好ま しい。例えば、多数の封止処理容器 61が載置された台車を移動させて、外部から温 度調節室を経てオーブン 63へと導くことのできるような装置を使用することができる。 1つのオーブン 63に対して、温度調節室を 1つだけ設けることもできるし、 2つ以上設 けることも可會である。  [0080] The temperature control chamber is not particularly limited as long as it can control the internal temperature and is provided adjacent to the oven 63. The external force also preferably has a door for introducing the sealing treatment container 61 into the temperature control room, and preferably has a door between the oven 63 and the temperature control room. For example, it is possible to use a device that can move a carriage on which a large number of the sealing processing containers 61 are placed, and guide the carriage from the outside to the oven 63 via the temperature control chamber. For one oven 63, only one temperature control room may be provided, or two or more temperature control rooms may be provided.
[0081] 温度調節室を 1つ設ける場合には、それを予熱操作又は冷却操作の一方に使用 することができる。例えば、封止処理容器 61を外部から温度調節室に導入し、予熱 操作を行い、オーブン 63へ導入し、封止処理してから、外部へ導出することができる 。また、封止処理容器 61を外部からオーブン 63へ導入し、封止処理してから、温度 調節室に導入し、冷却操作を行ってから、外部へ導出することもできる。この場合、通 常、封止処理容器 61は一方向に通過することになる。 When one temperature control chamber is provided, it can be used for either a preheating operation or a cooling operation. For example, the sealing treatment container 61 is introduced from outside into the temperature After performing the operation, the product is introduced into the oven 63, sealed, and then can be led out. Alternatively, the sealing treatment container 61 can be introduced into the oven 63 from the outside, subjected to the sealing treatment, then introduced into the temperature control chamber, and cooled, and then taken out. In this case, the sealing container 61 normally passes in one direction.
[0082] 温度調節室を 2つ設ける場合には、封止処理容器 61を一方向に通過させてもよい し、往復させても良い。封止処理容器 61を一方向に通過させる場合には、封止処理 容器 61を外部から温度調節室に導入し、予熱操作を行い、オーブン 63へ導入し、 封止処理してから、別の温度調節室に導入し、冷却操作を行ってから、外部へ導出 する。封止処理容器 61を往復させる場合には、封止処理容器 61を外部から温度調 節室に導入し、予熱操作を行い、オーブン 63へ導入し、封止処理してから、同じ温 度調節室に戻し、冷却操作を行ってから、外部へ導出する。この場合、 1の温度調節 室で冷却操作及び予熱操作を行って 、るときにオーブン 63内で封止処理し、他の 温度調節室で冷却操作及び予熱操作を行っているときにオーブン 63内で封止処理 することになる。このように往復させる場合には、台車を循環させるためのスペースが 不要となる利点を有する。  When two temperature control chambers are provided, the temperature control chambers 61 may pass through the sealing treatment container 61 in one direction or may reciprocate. When passing the sealing treatment container 61 in one direction, the sealing treatment container 61 is introduced into the temperature control chamber from the outside, a preheating operation is performed, and the sealing treatment container 61 is introduced into the oven 63. After being introduced into the temperature control room and performing a cooling operation, it is led out. When reciprocating the sealing container 61, the sealing container 61 is introduced from the outside into the temperature control chamber, pre-heated, introduced into the oven 63, sealed, and then subjected to the same temperature adjustment. Return to the room, perform the cooling operation, and then take it out. In this case, the cooling operation and the preheating operation are performed in the temperature control room 1 and the sealing process is performed in the oven 63 when the cooling operation and the preheating operation are performed in the other temperature control room. To perform the sealing process. In the case of reciprocating in this manner, there is an advantage that a space for circulating the cart is not required.
[0083] 以上説明したような封止処理装置を用いて受光面側透明板 2と裏面板 3との間の空 気を排出し、加熱して榭脂を溶融させて力 冷却して封止する。このときの温度条件 は特に限定されるものではなぐ榭脂が溶融することの可能な温度まで上昇させれば 良ぐ結晶性の榭脂であればその樹脂の融点以上まで加熱すれば良い。また、封止 榭脂が架橋可能な熱可塑性榭脂であれば、架橋可能な温度まで上昇させて、所定 の時間架橋可能な温度に保持する。圧力も積層体 60内の空気を排出できて気泡残 りが低減できるような圧力まで減圧できるのであればその圧力は特に限定されない。  Using the sealing device described above, the air between the light-receiving surface side transparent plate 2 and the back plate 3 is exhausted, heated to melt the resin, and cooled by force to seal. I do. The temperature condition at this time is not particularly limited, and if the temperature is raised to a temperature at which the resin can be melted, the resin may be heated to a temperature higher than the melting point of the resin if the resin is crystalline. If the sealing resin is a crosslinkable thermoplastic resin, the temperature is raised to a crosslinkable temperature and maintained at a crosslinkable temperature for a predetermined time. The pressure is not particularly limited as long as the pressure can be reduced to such a level that the air in the laminate 60 can be exhausted and the residual air bubbles can be reduced.
[0084] なかでも、封止処理容器 61内で封止するに際して、封止処理容器 61内の圧力を 0 . 05MPa以上に保って封止榭脂を加熱する工程 (工程 1)、封止榭脂の融点未満の 温度にお!ヽて封止処理容器 61内を 0. OlMPa以下の圧力まで減圧する工程(工程 2)、減圧したままで封止榭脂の融点以上の温度まで昇温する工程 (工程 3)、前記封 止処理容器 61内の圧力を上昇させる工程(工程 4)及び冷却する工程(工程 6)の各 工程カゝらなる封止操作を行うことが好適である。 [0085] 前記工程 1は、封止処理容器 61内の圧力を 0. 05MPa以上に保って封止榭脂を 加熱する工程である。封止処理容器 61内の圧力を 0. 05MPa以上に保つことによつ て、積層体 60の上下方向力もセルに大きな荷重が力かるのを防止することができる。 より好適には当該圧力は 0. 06MPa以上である。太陽電池セル 4の外側の余白部 1 0のみに封止榭脂シート片を配置し、太陽電池セル 4間の間隙部 9に封止榭脂シート 片を配置しな 、場合に、セル割れを防止するために工程 1を採用することが好ま ヽ 。また、受光面側透明板 2又は裏面板 3が非強化の曲げガラスである場合には、板の 破損を防止するために工程 1を採用することが好ましい。強化が施され、しかも太陽 電池セル 4間の間隙部 9に封止榭脂シート片を配置するような場合には、生産効率 の面からは、工程 1を省略するほうが好ましい。 [0084] Above all, when sealing in the sealing treatment container 61, a step of heating the sealing resin while maintaining the pressure in the sealing treatment container 61 at 0.05 MPa or more (Step 1), Step of reducing the pressure inside the sealing vessel 61 to a pressure of 0. OlMPa or less (Step 2) at a temperature lower than the melting point of the fat (Step 2). It is preferable to perform a sealing operation including a step (step 3), a step of increasing the pressure in the sealing container 61 (step 4), and a step of cooling (step 6). [0085] Step 1 is a step of heating the sealing resin while maintaining the pressure in the sealing processing container 61 at 0.05 MPa or more. By maintaining the pressure in the sealing treatment container 61 at 0.05 MPa or more, the vertical force of the laminate 60 can also be prevented from applying a large load to the cell. More preferably, the pressure is at least 0.06 MPa. If the sealing resin sheet piece is placed only in the margin 10 outside the solar cell 4 and the sealing resin sheet piece is not placed in the gap 9 between the solar cells 4, cell cracking may occur. It is preferred to adopt step 1 to prevent this. When the transparent plate 2 on the light-receiving surface side or the back plate 3 is made of unstrengthened bent glass, it is preferable to adopt Step 1 in order to prevent breakage of the plate. In the case where the sealing is performed and a sealing resin sheet piece is arranged in the gap 9 between the solar cells 4, it is preferable to omit the step 1 from the viewpoint of production efficiency.
[0086] 工程 1における封止処理容器 61内の圧力は大気圧 (0. IMPa)であっても構わな いが、例えば 0. 09MPa以下まで減圧することで、封止処理容器 61の漏れをチエツ クすることができる。工程 1においては、封止榭脂が未だ溶融していないので、封止 処理容器 61に漏れがあった場合には、この段階で補修することが可能である。本発 明の製造方法で使用する封止処理容器 61は柔軟なシートからなり、破損しやすいの でこのように少し減圧することが好適である。大気圧から 0. 05MPa以上の所定の圧 力まで減圧する際には、減圧操作に要する時間を 10分以上かけることが好ましい。 大きな荷重は力からないものの、急激な減圧操作はセル割れを引き起こす可能性が あるからである。  [0086] The pressure in the sealing treatment container 61 in step 1 may be atmospheric pressure (0. IMPa), but by reducing the pressure to, for example, 0.09 MPa or less, the leakage of the sealing treatment container 61 may be reduced. You can check. In step 1, since the sealing resin has not been melted yet, if there is a leak in the sealing processing container 61, it can be repaired at this stage. Since the sealing container 61 used in the manufacturing method of the present invention is formed of a flexible sheet and is easily broken, it is preferable to slightly reduce the pressure in this manner. When reducing the pressure from the atmospheric pressure to a predetermined pressure of 0.05 MPa or more, it is preferable that the time required for the pressure reducing operation is 10 minutes or more. Although a large load is not applied, sudden decompression operation may cause cell cracking.
[0087] 以上のように、封止処理容器 61内の圧力が高い状態で封止榭脂を加熱することに よって、封止榭脂を予め軟化させる。このときの加熱によって到達する温度は、封止 榭脂が溶融しない温度でありながら、弾性率が低下する温度である。ここで、封止榭 脂が溶融しない温度とは、通常、融点 (Tm)よりも低い温度ということであり、好適に は (Tm— 5) °C以下であり、より好適には (Tm— 10) °C以下である。封止榭脂が融点 を有しな ヽ場合には、ここで ヽぅ融点をガラス転移点又は軟ィ匕点と置き換えて考えれ ばよい。多くの封止榭脂において好適な温度は 65°C以下であり、より好適な温度は 6 0°C以下である。当該温度が高すぎると、工程 2において封止処理容器 61内の圧力 が 0. OlMPa以下まで下がる前に樹脂の流動が開始してしまい、積層体 60の内部 の空気を排出するための通路が塞がれて、気泡残りが発生するおそれがある。また、 前記加熱によって到達する温度は、好適には (Tm— 30) °C以上であり、より好適に は (Tm— 20) °C以上である。多くの封止榭脂にぉ 、て好適な温度は 40°C以上であ り、より好適な温度は 45°C以上である。当該温度が低すぎる場合には、封止榭脂の 弾性率の低下が不十分であり、工程 2において封止処理容器 61内の圧力を下げた 場合にセル割れが発生するおそれがある。このような温度範囲で 5分以上維持して 力も工程 2の減圧操作を開始することが好ま 、。 As described above, the sealing resin is softened in advance by heating the sealing resin in a state where the pressure in the sealing processing container 61 is high. The temperature reached by the heating at this time is a temperature at which the elastic modulus decreases while the sealing resin does not melt. Here, the temperature at which the sealing resin does not melt generally means a temperature lower than the melting point (Tm), preferably (Tm-5) ° C or less, more preferably (Tm-5) ° C. 10) It is below ° C. If the sealing resin does not have a melting point, the melting point may be replaced with a glass transition point or a softening point here. A suitable temperature for many sealing resins is 65 ° C. or less, and a more preferred temperature is 60 ° C. or less. If the temperature is too high, the flow of the resin starts before the pressure in the sealing treatment container 61 drops to 0. There is a possibility that the passage for discharging the air is blocked and air bubbles remain. The temperature reached by the heating is preferably (Tm−30) ° C. or more, more preferably (Tm−20) ° C. or more. For many sealing resins, the preferred temperature is 40 ° C. or more, and the more preferred temperature is 45 ° C. or more. If the temperature is too low, the elastic modulus of the sealing resin is not sufficiently reduced, and if the pressure in the sealing container 61 is reduced in step 2, cell cracking may occur. It is preferable to maintain the temperature in such a temperature range for 5 minutes or more and to start the depressurizing operation in step 2 with the force.
[0088] 工程 2は、封止榭脂の融点未満の温度において封止処理容器 61内を 0. OlMPa 以下の圧力まで減圧する工程であり、工程 1が採用される場合には、工程 1に引き続 V、て行われる工程である。封止榭脂の融点未満の温度で減圧することによって積層 体 60の内部の空気が排出される通路が確保されるものである。このとき、封止処理容 器 61内の圧力は、好適には 0. 005MPa以下まで減圧される。十分に減圧すること によって封止後の気泡残りを効果的に抑制することができる。工程 2において 0. 05 MPaから 0. OlMPaまで減圧する間の温度は、工程 1で説明した前記加熱によって 到達する温度と同じ温度範囲に維持されることが好ましい。また、急激な減圧操作に よるセル割れを防止するためには、 0. 05MPa力ら 0. OlMPaまで、 5分以上かけて ゆっくり減圧することが好ましい。  [0088] Step 2 is a step of reducing the pressure in the sealing treatment container 61 to a pressure of not more than 0.1 OlMPa at a temperature lower than the melting point of the sealing resin. It is a process that is performed continuously. By reducing the pressure at a temperature lower than the melting point of the sealing resin, a passage through which the air inside the laminate 60 is discharged is secured. At this time, the pressure in the sealing container 61 is preferably reduced to 0.005 MPa or less. By sufficiently reducing the pressure, the remaining air bubbles after sealing can be effectively suppressed. The temperature during the pressure reduction in step 2 from 0.05 MPa to 0.0 OlMPa is preferably maintained in the same temperature range as the temperature reached by the heating described in step 1. Also, in order to prevent cell cracking due to a rapid pressure reduction operation, it is preferable to slowly reduce the pressure from 0.05 MPa to 0.0 OlMPa over 5 minutes or more.
[0089] 工程 3は、減圧したままで封止榭脂の融点以上の温度まで昇温する工程であり、ェ 程 2に引き続いて行われる工程である。封止榭脂を昇温すると融点付近で弾性率が 大きく低下し高粘度の液体へと変化することになるが、工程 3は、そのような温度に到 達するまで減圧したままにする工程である。弾性率が高いうちに減圧度を下げて昇 圧したのでは、積層体 60の内部へ空気が流入してしまい、封止榭脂中に気泡が残 留するおそれがある。ここで、工程 3の昇温操作で到達する温度の下限値は、好適に は (Tm+ 10) °C以上であり、より好適には (Tm+ 20) °C以上である。多くの封止榭 脂において好適な下限値は 80°C以上であり、より好適には 85°C以上である。また上 限値は、通常 200°C以下である。  [0089] Step 3 is a step in which the temperature is raised to a temperature equal to or higher than the melting point of the sealing resin while the pressure is reduced, and is a step performed after step 2. When the temperature of the sealing resin is raised, the elastic modulus is greatly reduced near the melting point and changes to a highly viscous liquid.However, step 3 is a step in which the pressure is reduced until such temperature is reached. . If the pressure is reduced and the pressure is increased while the elastic modulus is high, air may flow into the inside of the laminate 60, and air bubbles may remain in the sealing resin. Here, the lower limit of the temperature reached by the temperature raising operation in step 3 is preferably (Tm + 10) ° C or more, and more preferably (Tm + 20) ° C or more. The preferred lower limit of many sealing resins is at least 80 ° C, more preferably at least 85 ° C. The upper limit is usually 200 ° C or less.
[0090] 工程 3で昇温する速度はゆっくりであることが好ましぐ室温から上記温度まで昇温 するのに力かる時間が 15分以上であることが好ましぐ 30分以上であることがより好 ましぐ 1時間以上であることがさらに好ましい。ゆっくり昇温することによって、急に荷 重が力かることがなぐセル割れを効率的に防止することができる。このとき、途中で 昇温速度を変化させてもょ 、し、昇温を停止して積層体 60の内部の温度分布を解 消させる、バランシング操作を施しても良い。生産性の観点から、昇温時間は通常 20 時間以下である。 [0090] In step 3, the rate of temperature rise is preferably slow, and the time required to raise the temperature from room temperature to the above temperature is preferably 15 minutes or more, and is preferably 30 minutes or more. Better More preferably, it is one hour or more. By slowly raising the temperature, it is possible to efficiently prevent cell cracks that occur when the load is suddenly increased. At this time, the heating rate may be changed midway, or a balancing operation may be performed to stop the heating and cancel the temperature distribution inside the stacked body 60. From the viewpoint of productivity, the heating time is usually less than 20 hours.
[0091] 工程 4は封止処理容器 61内の圧力を上昇させる工程であり、工程 6は冷却するェ 程であり、いずれも工程 3に引き続いて行われる工程である。工程 4と工程 6は、どち らを先に行っても構わないし、両工程を同時に行っても構わない。  [0091] Step 4 is a step of increasing the pressure inside the sealing container 61, and step 6 is a step of cooling, and both are steps performed after step 3. Either step 4 or step 6 may be performed first, or both steps may be performed simultaneously.
[0092] 工程 4においては、ゆっくりと昇圧することが好ましぐ昇圧にかける時間は 5分以上 であることが好ましぐ 10分以上であることがより好ましぐ 20分以上であることがさら に好ましい。生産性の観点から、昇圧時間は通常 5時間以下であり、好適には 2時間 以下である。昇圧後の圧力は、 0. 05MPa以上、より好適には 0. 07MPa以上とする ことが好ましぐ大気圧と同じ圧力(0. IMPa)まで昇圧することもできる。このとき、段 階的に昇圧しても構わない。工程 4において、圧力を上昇させる際の温度が、高すぎ る場合には、不必要に溶融樹脂が流動して、セルの移動が生じるおそれがある。通 常 120°C以下、好適には 100°C以下であることが好ましい。  [0092] In step 4, it is preferable that the pressure be increased slowly, and the time required for the pressure increase be 5 minutes or more, more preferably 10 minutes or more, and more preferably 20 minutes or more. More preferred. From the viewpoint of productivity, the pressurization time is usually 5 hours or less, preferably 2 hours or less. The pressure after the pressure can be increased to the same pressure as the atmospheric pressure (0. IMPa), which is preferably 0.05 MPa or more, more preferably 0.07 MPa or more. At this time, the pressure may be increased stepwise. If the temperature at the time of increasing the pressure in step 4 is too high, the molten resin may flow unnecessarily, and the cells may move. Usually, it is preferably 120 ° C or lower, more preferably 100 ° C or lower.
[0093] また、工程 4において、前記封止処理容器 61内の圧力を上昇させながら同時に昇 温する過程を有することが好ましい。こうすることによって、徐々に流動性を増していく 過程で、積層体 60にかかる圧力を徐々に解除することができ、残留気泡の発生を抑 制しながら、不必要に溶融樹脂が流動するのを抑制するのに効果的である。この場 合には、昇圧開始時の温度を(1¾1 10)で〜(1¾1+20)で、より好適には (Tm— 5 )°C〜(Tm+ 15)°Cとし、そこから 3〜30°C、より好適には 5〜20°C温度を上昇させ る間に昇圧させることが望ましい。昇温速度 (°CZ分)に対する昇圧速度 (MPaZ分) の itは、 0. 001〜0. l (MPa/°C)であること力 子ましく、 0. 002〜0. 05 (MPa/ °C)であることがより好まし!/、。  [0093] Further, it is preferable that the step 4 includes a step of simultaneously raising the temperature while increasing the pressure in the sealing processing container 61. By doing so, the pressure applied to the laminate 60 can be gradually released in the process of gradually increasing the fluidity, and the molten resin flows unnecessarily while suppressing the generation of residual air bubbles. It is effective in suppressing In this case, the temperature at the start of boosting is (1¾1 10) to (1¾1 + 20), more preferably (Tm-5) ° C to (Tm + 15) ° C, and 3 to 30 It is desirable to increase the pressure while increasing the temperature by 5 ° C, more preferably 5 to 20 ° C. The temperature rise rate (° CZ minute) vs. the pressure rise rate (MPaZ minute) it should be 0.001 to 0.1 (MPa / ° C), and 0.002 to 0.05 (MPa / ° C) is more preferable! / ,.
[0094] 工程 6の冷却工程では、通常室温付近まで冷却するが、冷却速度が早すぎるとガ ラスが割れるおそれがあるので、好適には 10分以上、より好適には 30分以上かけて 冷却する。なかでも、封止榭脂 (融点: Tm(°C) )を溶融させてカゝら冷却するに際し、 ( Tm+ 10) °Cから (Tm— 20) °Cまで冷却するのに要する時間が 20分以上となるよう にして冷却することが好適である。上記時間はより好適には 30分以上であり、さらに 好適には 60分以上である。融点近傍においてゆっくりと冷却することによって、残留 応力を抑制することができるとともに、セル割れの発生を抑制することができる。 [0094] In the cooling step of step 6, cooling is usually performed to around room temperature. However, if the cooling rate is too fast, the glass may be cracked. Therefore, cooling is preferably performed for 10 minutes or more, more preferably for 30 minutes or more. I do. Above all, when melting the sealing resin (melting point: Tm (° C)) and cooling it with ( It is preferable to perform cooling so that the time required for cooling from Tm + 10) ° C to (Tm−20) ° C is 20 minutes or more. The above-mentioned time is more preferably 30 minutes or more, and still more preferably 60 minutes or more. By cooling slowly around the melting point, residual stress can be suppressed and cell cracking can be suppressed.
[0095] 封止操作においてセル割れが発生する主たる原因は、受光面側透明板 2と裏面板 3との間の空気を排出して榭脂を溶融させる際に、上下方向からの荷重を受けること によるものであると考えられている。し力しながら、そのタイミングではセル割れが発生 せず、溶融榭脂内に未破損の太陽電池セルが存在していながら、その後の冷却時 にセル割れが発生する場合があることを、本発明者らは見出した。これは、封止操作 途中で、融点よりも高い温度にある積層体を観察したところセル割れが発見されず、 その後大気中で比較的早 、速度で放冷して 、る最中にセル割れが発生する現象が 認められて明らかになったものである。  [0095] The main cause of cell cracking in the sealing operation is that when air is discharged between the light-receiving surface side transparent plate 2 and the back surface plate 3 to melt the resin, a load is applied in the vertical direction. It is believed to be due to However, the present invention shows that cell cracking does not occur at that timing, and that there may be cell breakage during subsequent cooling while undamaged solar cells exist in the molten resin. Found them. This is because, during the sealing operation, when the laminate at a temperature higher than the melting point was observed, no cell cracking was found. This phenomenon has been clarified by the recognition of the phenomenon that occurs.
[0096] このような現象が発生するメカニズムは必ずしも明らかではないが、以下のようなメ 力二ズムが推定されている。溶融状態にある封止榭脂が冷却されるときには、融点以 下の温度において流動性が失われて固化するとともに収縮する。このような収縮は主 としてポリマーの結晶化に由来して発生すると考えられる。このときに、収縮にともな つて榭脂内部に発生すると想定される応力によってセル割れが発生しているものと推 定される。榭脂の固化に伴う収縮応力がセルを破壊することの可能な大きな力である ことは驚きである。これに対し、冷却速度を低下させることによって、このタイミングで のセル割れの発生を抑制できることが明らかになったものである。冷却速度を低下さ せることによってセル割れを抑制できる理由は必ずしも明らかではないが、結晶化の 速度を低下させられる可能性や、応力緩和の進行が容易である可能性などが考えら れる。ここで、封止榭脂が融点を有しない場合には、ここでいう融点をガラス転移点又 は軟ィ匕点と置き換えて考えればょ 、。封止榭脂が融点を有さな 、非晶性の榭脂であ る場合にも、ガラス転移点あるいは軟ィ匕点付近にぉ 、て収縮を伴 、ながら固化する。  [0096] The mechanism by which such a phenomenon occurs is not necessarily clear, but the following mechanism is estimated. When the sealing resin in the molten state is cooled, it loses fluidity at a temperature lower than the melting point, and solidifies and contracts. It is considered that such shrinkage occurs mainly due to crystallization of the polymer. At this time, it is estimated that cell cracking has occurred due to the stress assumed to be generated inside the resin due to the shrinkage.収縮 It is surprising that the shrinkage stress accompanying the solidification of the resin is a large force that can destroy the cell. On the other hand, it has been clarified that the occurrence of cell cracking at this timing can be suppressed by reducing the cooling rate. The reason why cell cooling can be suppressed by lowering the cooling rate is not necessarily clear, but it is possible that the rate of crystallization can be reduced or that stress relaxation can easily progress. Here, when the sealing resin does not have a melting point, the melting point mentioned here may be replaced with a glass transition point or a softening point. Even when the sealing resin is an amorphous resin having no melting point, it solidifies with shrinkage near the glass transition point or the softening point.
[0097] 特に、割れやすい太陽電池セルを使用する場合に、このようにゆっくりと冷却する 方法を用いて封止することが好適である。例えば、広い面積の太陽電池セルや、厚 みの薄い太陽電池セルや、透光性の小孔を有する太陽電池セルや、表面に凹凸を 有する太陽電池セルなどを封止する場合に好適である。 [0097] In particular, when a fragile solar cell is used, it is preferable to use a method of cooling slowly as described above to seal the cell. For example, a solar cell with a large area, a solar cell with a small thickness, a solar cell with light-transmitting small holes, or an uneven surface It is suitable for sealing a solar cell or the like having the same.
[0098] 封止榭脂として、架橋可能な熱可塑性榭脂を使用する場合には、減圧したままで 封止榭脂の融点付近以上まで昇温する工程 (工程 3)の後に、前記封止処理容器 61 内の圧力を上昇させる工程 (工程 4)を経て、架橋反応が進行する温度範囲まで昇温 して架橋反応を進行させる工程 (工程 5)及び冷却する工程 (工程 6)を有することが 好ましい。  [0098] When a crosslinkable thermoplastic resin is used as the sealing resin, after the step (step 3) of raising the temperature to near the melting point of the sealing resin while reducing the pressure, the sealing is performed. After the step of increasing the pressure in the processing vessel 61 (step 4), the process must have a step of raising the temperature to a temperature range where the crosslinking reaction proceeds (step 5) and a step of cooling (step 6). Is preferred.
[0099] この場合、工程 4で封止処理容器 61内の圧力を上昇させた後、一旦融点以下の温 度まで冷却してから、工程 5で架橋反応が進行する温度範囲まで昇温することも好ま しい。圧力を上昇させた後、そのまま架橋反応が進行する温度範囲まで昇温すること も可能であるが、一旦冷却することによって、残留する応力が緩和する時間を確保で きて、溶融樹脂のはみ出し、ヒケ (端部で樹脂の欠損した部分)、セルの移動がより効 果的に抑制できる。このとき、榭脂が十分に流動性を失うまで冷却することが好ましく 、(Tm— 10)°C以下、より好適には (Tm— 20) °C以下まで冷却することが好ましい。  [0099] In this case, after increasing the pressure in the sealing treatment container 61 in step 4, the temperature is once cooled to a temperature equal to or lower than the melting point, and then increased in step 5 to a temperature range in which the crosslinking reaction proceeds. Is also preferred. After the pressure is increased, it is possible to raise the temperature to the temperature range where the crosslinking reaction proceeds.However, once the cooling is performed, the time during which the residual stress is relaxed can be secured, and the molten resin protrudes. Sinking (the part where the resin is missing at the end) and cell movement can be more effectively suppressed. At this time, it is preferable to cool the resin until the resin loses sufficient fluidity, and it is preferable to cool the resin to (Tm-10) ° C or lower, more preferably to (Tm-20) ° C or lower.
[0100] 以上のように、封止処理容器 61内の圧力を上昇させてから、工程 5において架橋 反応が進行する温度範囲まで昇温して架橋反応を進行させる。通常 100°C以上、好 適には 120°C以上、より好適には 130°C以上、さらに好適には 140°C以上に加熱し て架橋反応を進行させる。榭脂の劣化を防止するために、通常は 200°C以下の架橋 温度が採用される。架橋反応が進行する温度範囲に保つ時間は、目指す架橋度な どにより異なるが、通常 5分〜 2時間、好適には 10分〜 1時間である。  [0100] As described above, after increasing the pressure in the sealing treatment container 61, the temperature is raised to a temperature range in which the crosslinking reaction proceeds in step 5, and the crosslinking reaction proceeds. The crosslinking reaction is usually carried out by heating to 100 ° C. or higher, preferably 120 ° C. or higher, more preferably 130 ° C. or higher, and still more preferably 140 ° C. or higher. In order to prevent deterioration of the resin, a crosslinking temperature of 200 ° C or less is usually adopted. The time for keeping the temperature range in which the crosslinking reaction proceeds varies depending on the desired degree of crosslinking and the like, but is usually 5 minutes to 2 hours, preferably 10 minutes to 1 hour.
[0101] 工程 5で架橋反応を進行させるときの封止処理容器 61内の圧力は、好適には 0. 0 5MPa以上、より好適には 0. 06MPa以上である。封止処理容器 61内の圧力を上昇 させることによって、上下からかかる圧力を低減させることができる。架橋反応は高温 で進行するため、その時の封止榭脂の溶融粘度は、融点付近に比べてかなり低い。 そのため、このときに上下力も不要な圧力をかけず、セルの移動や、榭脂のはみ出し を抑制することが重要である。し力しながら、大気圧と同じ圧力まで昇圧した場合には 、積層体 60の構成によってはヒケを生じることがあるので、そのようなときには大気圧 より低い圧力に設定することが好適である。また、大気圧と同じ圧力まで昇圧した場 合には、ブリーダー 62が積層体 60の周囲を押えることが困難になり樹脂がはみ出す こともあるので、そのようなときにも大気圧より低 、圧力に設定することが好適である。 その場合の圧力は大気圧よりも 0. OOlMPa以上低い圧力とすることが好ましぐ 0. OlMPa以上低い圧力(この場合、 0. 09MPa以下)とすることが好ましい。なお、本 発明で ヽぅ大気圧とは、積極的に加圧あるいは減圧操作を施して ヽな ヽ状態を ヽ 、例えばオーブン 63の中にファンで強制的に熱風を吹き込むために若干大気圧より も高くなつてしまうような場合であっても、それは大気圧と実質的に同一である。 [0101] The pressure in the sealing container 61 when the crosslinking reaction proceeds in step 5 is preferably 0.05 MPa or more, more preferably 0.06 MPa or more. By increasing the pressure in the sealing processing container 61, the pressure applied from above and below can be reduced. Since the crosslinking reaction proceeds at a high temperature, the melt viscosity of the sealing resin at that time is considerably lower than that near the melting point. Therefore, at this time, it is important that the vertical force does not apply unnecessary pressure and the movement of the cell and the protrusion of the resin are suppressed. If the pressure is increased to the same pressure as the atmospheric pressure while applying pressure, sink marks may occur depending on the configuration of the laminate 60. In such a case, it is preferable to set the pressure to a pressure lower than the atmospheric pressure. Also, when the pressure is increased to the same pressure as the atmospheric pressure, it becomes difficult for the bleeder 62 to press around the laminate 60, and the resin overflows. In some cases, it is preferable to set the pressure lower than the atmospheric pressure and the pressure. In this case, the pressure is preferably lower than atmospheric pressure by 0.001 MPa or more, and preferably lower than 0.0 OlMPa (in this case, 0.09 MPa or less). In the present invention, ヽ ぅ atmospheric pressure は means a state in which 加 圧 atmospheric pressure is positively applied or decompressed, for example, in order to forcibly blow hot air into the oven 63 with a fan, and Even if it is too high, it is substantially the same as atmospheric pressure.
[0102] 工程 5で架橋反応を進行させたあとで、工程 6の冷却工程に供する。冷却工程 6〖こ ついては、前述したとおりである。  [0102] After the cross-linking reaction is allowed to proceed in step 5, it is subjected to the cooling step in step 6. The cooling process 6 is as described above.
[0103] こうして得られた太陽電池モジュールは、モジュールの周縁部まで封止榭脂が充填 されており、封止榭脂層の周縁にスぺーサーを有さないものである。接着性や耐久 性に優れた封止榭脂で周縁部まで封止することができるので、信頼性の高!、太陽電 池モジュールを提供することができる。封止榭脂層の厚みは全体で 2〜6mmである ことが好ましい。より好適には 3mm以上であり、また 5mm以下である。  [0103] The solar cell module thus obtained is filled with the sealing resin up to the periphery of the module, and has no spacer at the periphery of the sealing resin layer. Since the peripheral portion can be sealed with a sealing resin having excellent adhesion and durability, a highly reliable solar cell module can be provided. The thickness of the sealing resin layer is preferably 2 to 6 mm in total. More preferably, it is 3 mm or more and 5 mm or less.
[0104] 本発明の製造方法によれば、受光面側透明板 2と裏面板 3の少なくともいずれかが 湾曲している場合であっても、封止操作が可能である。この場合、曲げガラスにはさ まれた太陽電池モジュールを提供することができるので、建築物のデザインの多様化 の要求に応えることができる。また、モジュール固定用の金具を備え、該金具が受光 面側透明板と裏面板の 、ずれかに形成された貫通孔に挿入され、該金具の頭部側 の端部が封止榭脂層側に配置され、該金具の反対側の端部が外側に突出している 太陽電池モジュールも提供することができる。これによつて、近年広く行われるように なった DPG工法に適用できる太陽電池モジュールを提供することができる。  According to the production method of the present invention, the sealing operation can be performed even when at least one of the light-receiving-surface-side transparent plate 2 and the back plate 3 is curved. In this case, since a solar cell module sandwiched between bent glass can be provided, it is possible to meet a demand for diversification of a building design. Further, a metal fitting for fixing the module is provided, and the metal fitting is inserted into a through hole formed in a gap between the transparent plate on the light receiving surface side and the rear plate, and an end on the head side of the metal fitting is sealed with a sealing resin layer. A solar cell module disposed on the side and having the opposite end of the metal fitting protruding outward can also be provided. This makes it possible to provide a solar cell module that can be applied to the DPG method that has been widely used in recent years.
[0105] また、本発明の太陽電池モジュールは、受光面側透明板 2と裏面板 3の間に複数 の太陽電池セル 4が破損されることなぐ規則正しく整列されたものである。多数の太 陽電池セル 4を破損することなく榭脂で封止することができるので、大型の太陽電池 モジュールを提供することができる。しかも、気泡残りが抑制され、端部からの榭脂の はみ出しも抑制され、正しく整列されて外観が美麗であるので、各種建築物の外壁、 屋根、窓などに好適に使用される。  Further, in the solar cell module of the present invention, the plurality of solar cells 4 are regularly arranged between the light receiving surface side transparent plate 2 and the back surface plate 3 so as not to be damaged. Since a large number of solar cells 4 can be sealed with resin without damage, a large solar cell module can be provided. In addition, since the residual air bubbles are suppressed, the resin is prevented from protruding from the ends, and they are properly aligned and have a beautiful appearance, they are suitably used for the outer walls, roofs, windows, etc. of various buildings.
実施例 [0106] 実施例 1 Example [0106] Example 1
太陽電池セル 4として、 125mm X I 25mm X O. 35mmの正方形の多結晶シリコン 太陽電池セルを 40枚使用した。四隅は数 mm程度面取りがされている。導線 8として は、 日立電線株式会社製のハンダディップ銅リボン線を使用した。当該リボン線の幅 は 1. 5mmで厚さは 0. 15mmである。太陽電池セル 4の受光面 6と裏面 7の導線 8を 接着する部分には予めハンダを印刷してある。導線 8の一端を太陽電池セル 4の受 光面 6のハンダ印刷部に重ねてハンダ付けし、他端を隣接する太陽電池セル 4の裏 面 7のハンダ印刷部に重ねてハンダ付けした。隣接するセル間は 2本の導線 8で接 続し、その間隔が 50mmになるようにした。すなわち、間隙部 9の幅は 50mmである。  As the solar cell 4, 40 square polycrystalline silicon solar cells of 125 mm X I 25 mm X O. 35 mm were used. The four corners are chamfered by several mm. As the conductor 8, a solder dip copper ribbon wire manufactured by Hitachi Cable, Ltd. was used. The width of the ribbon wire is 1.5 mm and the thickness is 0.15 mm. Solder is printed in advance on the portion of the solar cell 4 where the light-receiving surface 6 and the back surface 7 are bonded to the conductor 8. One end of the conductor 8 was overlapped and soldered on the solder printing portion of the light receiving surface 6 of the solar cell 4, and the other end was overlapped and soldered on the solder printing portion of the back surface 7 of the adjacent solar cell 4. Adjacent cells were connected by two conductors 8 so that the distance between them was 50 mm. That is, the width of the gap 9 is 50 mm.
[0107] 裏面板 3としては、 1000mm X 1500mm X 10mmのフロート板強化ガラス(青板ガ ラス)を使用した。当該強化ガラスの表面圧縮応力は lOOMPaである。封止榭脂シ ートとしては、ハイシート工業株式会社製「ソーラーエバ SC36Jの厚さ 0. 6mmのも のを使用した。当該封止榭脂シートは、エチレン 酢酸ビニル共重合体 (EVA)に架 橋剤、シランカップリング剤、安定剤などを配合したものであり、架橋前の榭脂の DS C法で測定した融点は 71°Cである。封止榭脂シートの片面には浅 、エンボス模様 ( 梨地)が形成されていて、その深さは約 45 mである。裏面板 3の上に、 1000mm X I 500mmの寸法の封止榭脂シート 31, 32を 2枚重ねた。この 2枚の封止榭脂シ ート 31, 32が厚み 1. 2mmの第 2封止榭脂シート 30を構成する。  [0107] As the back plate 3, a 1000 mm x 1500 mm x 10 mm float plate reinforced glass (blue plate glass) was used. The surface compressive stress of the tempered glass is 100MPa. As an encapsulating resin sheet, a 0.6 mm thick Solar Eva SC36J manufactured by Hi-Sheet Industry Co., Ltd. was used. The encapsulating resin sheet was made of ethylene-vinyl acetate copolymer (EVA). It contains a crosslinking agent, a silane coupling agent, a stabilizer, etc., and the melting point of the resin before crosslinking is 71 ° C as measured by the DSC method. And a depth of about 45 m with an embossed pattern (pearskin), and two sealing resin sheets 31 and 32 having dimensions of 1000 mm and 500 mm were stacked on the back plate 3. The two sealing resin sheets 31 and 32 constitute a second sealing resin sheet 30 having a thickness of 1.2 mm.
[0108] 前述の要領で相互に接続した複数の太陽電池セル 4を、第 2封止榭脂シート 30の 上に載置して、縦横を揃えて図 11に示すように配列した。隣接する太陽電池セル 4 間の間隙部 9の幅は、縦横ともに 50mmとした。また、太陽電池セル 4の外側の余白 部 10の幅は、長手方向(8枚のセルが並んでいる方向)で 75mm、幅方向(5枚のセ ルが並んでいる方向)で 87. 5mmとした。  [0108] The plurality of solar cells 4 connected to each other in the manner described above were placed on the second sealing resin sheet 30, and arranged vertically and horizontally as shown in FIG. The width of the gap 9 between the adjacent solar cells 4 was set to 50 mm both vertically and horizontally. The width of the margin 10 outside the solar cell 4 is 75 mm in the longitudinal direction (the direction in which eight cells are arranged) and 87.5 mm in the width direction (the direction in which five cells are arranged). And
[0109] 続いて、図 12に示すように、太陽電池セル 4間の間隙部 9に封止榭脂シート片 44 を配置し、余白部 10に封止榭脂シート片 45を配置した。封止榭脂シート片 44の幅 は 40mmとし、封止榭脂シート片 45の幅は 60mmとした。封止榭脂シート片 44は、 隣接する太陽電池セル 4間の中央付近の位置に、導線 8を押さえるようにして配置し た。このように中央付近の位置に配置することによって、溶融した際の榭脂の移動を 少なくできるし、太陽電池セル 4又は導線 8が破損することも防止できる。し力も、溶融 するまでの間太陽電池セル 4が移動するのを防止することもできる。 Subsequently, as shown in FIG. 12, the sealing resin sheet piece 44 was arranged in the gap 9 between the solar cells 4, and the sealing resin sheet piece 45 was arranged in the margin 10. The width of the sealing resin sheet piece 44 was 40 mm, and the width of the sealing resin sheet piece 45 was 60 mm. The sealing resin sheet piece 44 was disposed at a position near the center between the adjacent solar cells 4 so as to press the conductive wire 8. By arranging in the vicinity of the center in this way, the movement of resin when molten It can be reduced, and the solar cell 4 or the conductor 8 can be prevented from being damaged. The force can also prevent the solar cell 4 from moving until it is melted.
[0110] さらに、図 13に示すように、太陽電池セル 4間の間隙部 9において、下側の封止榭 脂シート片 44の上に交差させるようにして上側の封止榭脂シート片 46を配置した。 上側の封止榭脂シート片 46の幅は 40mmである。また、余白部 10において、下側の 封止榭脂シート片 45の上に上側の封止榭脂シート片 47を配置した。余白部 10の辺 の部分に配置される上側の封止榭脂シート片 47の寸法は 60mm X I 25mmであり、 角部にも上側の封止榭脂シート片 48を配置した。交差部における封止榭脂シート片 の合計厚みは 1. 2mmであり、この部分で上下力もの荷重を支えることができる。余 白部 10の上側の封止榭脂シート片 47, 48を間欠的に配置し、しかも交差部以外で は隙間があることから、内部の空気を排出する際の通路が確保できて、気泡残りを防 止することができる。 Further, as shown in FIG. 13, in the gap 9 between the solar cells 4, the upper sealing resin sheet piece 46 crosses over the lower sealing resin sheet piece 44. Was placed. The width of the upper sealing resin sheet piece 46 is 40 mm. In the margin 10, the upper sealing resin sheet piece 47 was disposed on the lower sealing resin sheet piece 45. The size of the upper sealing resin sheet piece 47 arranged on the side of the margin 10 is 60 mm X I 25 mm, and the upper sealing resin sheet piece 48 is also arranged at the corner. The total thickness of the sealing resin sheet piece at the intersection is 1.2 mm, and this portion can support the vertical load. The sealing resin sheet pieces 47 and 48 on the upper side of the margin 10 are intermittently arranged, and there is a gap except at the intersection, so that a passage for discharging the internal air can be secured, The rest can be prevented.
[0111] 以上のようにして封止榭脂シート片 44〜48を配置してから、その上に 1000mm X 1500mmの寸法の封止榭脂シート 21, 22を 2枚重ねた。この 2枚の封止榭脂シート 21 , 22が厚み 1. 2mmの第 1封止榭脂シート 20を構成する。その上に受光面側透 明板 2として、 1000mm X 1500mm X 10mmのフロート板強化ガラス(白板ガラス) を載置した。当該強化ガラスの表面圧縮応力は 1 OOMPaである。  [0111] After the sealing resin sheet pieces 44 to 48 were arranged as described above, two sealing resin sheets 21 and 22 having dimensions of 1000 mm x 1500 mm were stacked thereon. The two sealing resin sheets 21 and 22 constitute a first sealing resin sheet 20 having a thickness of 1.2 mm. A 1000 mm X 1500 mm X 10 mm float tempered glass (white sheet glass) was placed on the light receiving surface side transparent plate 2 thereon. The surface compressive stress of the tempered glass is 1 OOMPa.
[0112] こうして得られた積層体 60を用い、また、図 8に示す封止処理装置を用いて封止操 作を行った。まず、積層体 60の外縁の全周をブリーダー 62で覆い、封止処理容器 6 1であるゴム製の袋の中に投入し、パイプ 64と接続してオーブン 63に入れた。このと き、図 9のように、オーブン 63内の気流が相互に接続された太陽電池セル 4の直列 方向と平行になるようした。  [0112] A sealing operation was performed using the laminated body 60 thus obtained and using the sealing apparatus shown in FIG. First, the entire periphery of the outer edge of the laminated body 60 was covered with a bleeder 62, put into a rubber bag serving as a sealing container 61, connected to a pipe 64, and put into an oven 63. At this time, as shown in FIG. 9, the airflow in the oven 63 was made parallel to the series direction of the solar cells 4 connected to each other.
[0113] 以上のようにセッティングしてから、以下の工程 2〜6の封止処理操作を行った。こ のときの温度と圧力は、表 1及び図 14に示すとおりに制御した。このとき温度はォー ブン 63内の温度であり、圧力は圧力計 74で測定された圧力である。なお、「封止処 理容器内の圧力を 0. 05MPa以上に保って封止榭脂を加熱する工程」である、工程 1については、本実施例では採用していない。太陽電池セル 4間の間隙部 9に封止 榭脂シート片を配置し、かつ受光面側透明板 2と裏面板 3の ヽずれにも平坦な強化 ガラスを使用しているので、工程 1を採用しなくてもセル割れや基板割れを防止する ことができる。 [0113] After setting as described above, a sealing treatment operation of the following steps 2 to 6 was performed. The temperature and pressure at this time were controlled as shown in Table 1 and FIG. At this time, the temperature is the temperature in the oven 63 and the pressure is the pressure measured by the pressure gauge 74. It should be noted that step 1 which is a “step of heating the sealing resin while maintaining the pressure in the sealing processing vessel at 0.05 MPa or more” is not employed in this example. A sealing resin sheet piece is placed in the gap 9 between the solar cells 4, and a flat reinforcement is applied even if the light-receiving-side transparent plate 2 and the back plate 3 are misaligned. Since glass is used, cell cracking and substrate cracking can be prevented without using step 1.
[0114] 工程 2:「封止榭脂の融点未満の温度において封止処理容器内を 0. OlMPa以下の 圧力まで減圧する工程」  Step 2: “Step of depressurizing the inside of the sealing container to a pressure of 0.1 OlMPa or less at a temperature lower than the melting point of the sealing resin”
室温 (27°C)から、昇温を開始するとともに、減圧を開始した。約 1分後に圧力は 0. 005MPa未満まで低下した。  From room temperature (27 ° C), the temperature was raised and the pressure was reduced. After about one minute, the pressure dropped to less than 0.005 MPa.
[0115] 工程 3 :「減圧したままで封止榭脂の融点以上の温度まで昇温する工程」 [0115] Step 3: "Step of raising the temperature to a temperature equal to or higher than the melting point of the sealing resin while reducing the pressure"
昇温開始から 30分で 40°Cになるように加熱を継続し、 40°Cで 10分間維持 (バラン シング)し、 75分力けて 50°C〖こ昇温し、 50°Cで 10分間維持し、 105分力けて 60°Cに 昇温し、 60°Cで 10分間維持し、 120分かけて 71°C (封止榭脂の融点)まで昇温し、 1 0分間維持した。  Continue heating to 40 ° C in 30 minutes from the start of heating, maintain at 40 ° C for 10 minutes (balancing), increase the temperature by 50 ° C for 75 minutes, and raise the temperature at 50 ° C. Maintain for 10 minutes, increase the temperature to 60 ° C by applying 105 minutes, maintain at 60 ° C for 10 minutes, and raise the temperature to 71 ° C (melting point of sealing resin) over 120 minutes, 10 minutes Maintained.
[0116] 工程 4:「前記封止処理容器内の圧力を上昇させる工程」  Step 4: “Step of increasing the pressure in the sealing treatment container”
71°Cから 90°Cまで 90分かけて昇温し、それと同時に、 0. 005MPa未満であった 圧力を 0. 07MPaまで 90分かけて昇圧した。このときの昇温速度 (°CZ分)に対する 昇圧速度(MPaZ分)の比は、 0. 0037 (MPaZ°C)であった。この後、 90°Cで 30分 間維持し、 60分かけて 40°Cまで冷却し、 40°Cで 30分間維持し、その間 0. 07MPa の圧力を維持した。  The temperature was raised from 71 ° C to 90 ° C over 90 minutes, and at the same time, the pressure, which was less than 0.005 MPa, was raised to 0.07 MPa over 90 minutes. At this time, the ratio of the pressure raising rate (MPaZ component) to the temperature raising rate (° CZ component) was 0.337 (MPaZ ° C). Thereafter, the temperature was maintained at 90 ° C for 30 minutes, cooled to 40 ° C over 60 minutes, and maintained at 40 ° C for 30 minutes, while maintaining the pressure of 0.07 MPa.
[0117] 工程 5 :「架橋反応が進行する温度範囲まで昇温して架橋反応を進行させる工程」 引き続き、 90分かけて 40°Cから 155°Cまで昇温し、 155°Cで 36分間維持して架橋 反応を進行させた。この間 0. 07MPaの圧力を維持した。  [0117] Step 5: "Step of raising the temperature to a temperature range in which the crosslinking reaction proceeds to promote the crosslinking reaction" Subsequently, the temperature is raised from 40 ° C to 155 ° C over 90 minutes, and at 155 ° C for 36 minutes. The cross-linking reaction was allowed to proceed while maintaining. During this time, a pressure of 0.07 MPa was maintained.
[0118] 工程 6 :「冷却する工程」 [0118] Step 6: "Cooling step"
続いて、 60分力けて 155°C力ら 40°Cまで冷却した。 40°Cになったところで約 1分か けて 0. 07MPa力ら 0. IMPa (大気圧)まで昇圧して、熱風炉 66から取り出した。  Subsequently, it was cooled to 40 ° C from 155 ° C with 60 minutes of effort. When the temperature reached 40 ° C, the pressure was raised to 0.07MPa and to 0. IMPa (atmospheric pressure) in about 1 minute, and then removed from the hot stove 66.
[0119] [表 1] 処理時間 積算時間 1DIL/ス 圧力 [0119] [Table 1] Processing time Total time 1 DIL / s Pressure
(分) (分) (。C) (MPa)  (Min) (min) (.C) (MPa)
工程 2 1 1 0.1→< 0.005  Process 2 1 1 0.1 → <0.005
30 31  30 31
10 41 40  10 41 40
75 116 40→50  75 116 40 → 50
10 126 50  10 126 50
工程 3 ぐ 0.005  Process 3 pass 0.005
105 231 50→60  105 231 50 → 60
10 241 60  10 241 60
120 361 60→71  120 361 60 → 71
 Dimension
10 371 卜 †D LT 71  10 371 LTD LT 71
90 461 71→寸9寸0 < 0.005→0.07 90 461 71 → Dimension 9 Dimension 0 <0.005 → 0.07
30 491 90 30 491 90
工程 4  Process 4
60 551 o  60 551 o
30 581 40 ト  30 581 40 g
0.07  0.07
90 671  90 671
工程 5 o  Process 5 o
36 707 155  36 707 155
60 767  60 767
工程 6  Process 6
1 768 40  1 768 40
[0120] 得られた太陽電池モジュールは、セルの割れや欠け、導線の断線は一切なぐ気 泡残りも観察されず、周辺部での封止榭脂のはみ出しやヒケも観察されな力 た。ま た、太陽電池セルは、規則正しく配列されていて、導線 8で直列に接続された太陽電 池セル 4の湾曲は、 2mm以内に収まっていた。 [0120] In the obtained solar cell module, no cracks or chips in the cells, no breaks in the conductive wires, and no residual air bubbles were observed, and no protrusion or sink of the sealing resin in the peripheral portion was observed. In addition, the solar cells were regularly arranged, and the curvature of the solar cells 4 connected in series by the conductor 8 was within 2 mm.
[0121] 実施例 2  [0121] Example 2
実施例 1において、積層体 60の向きを実施例 1のときと比べて 90度回転させた以 外は実施例 1と同様にして封止処理を行った。すなわち、図 10のように、オーブン 63 内の気流が相互に接続された太陽電池セル 4の直列方向と垂直になるようした。  In Example 1, a sealing process was performed in the same manner as in Example 1 except that the orientation of the laminate 60 was rotated by 90 degrees as compared with that in Example 1. That is, as shown in FIG. 10, the airflow in the oven 63 was set to be perpendicular to the series direction of the solar cells 4 connected to each other.
[0122] 得られた太陽電池モジュールは、セルの割れや欠け、導線の断線は一切なぐ気 泡残りも観察されず、周辺部での封止榭脂のはみ出しやヒケも観察されな力つた。し かしながら導線 8で直列に接続された太陽電池セル 4は、図 10の 1点鎖線で示される ように 10〜20mm程度も湾曲していた。 [0122] In the obtained solar cell module, cracking or chipping of the cell and disconnection of the conductive wire are completely eliminated. No residual foam was observed, and no protrusion or sink of the sealing resin in the peripheral portion was observed. However, the solar cells 4 connected in series with the conductor 8 were curved by about 10 to 20 mm as shown by the dashed line in FIG.

Claims

請求の範囲 The scope of the claims
[1] 受光面側透明板と裏面板との間に太陽電池セルが榭脂で封止されてなる太陽電池 モジュールの製造方法にぉ 、て;  [1] A method for manufacturing a solar cell module in which solar cells are sealed with resin between a light-receiving-side transparent plate and a back plate;
受光面側透明板と太陽電池セルの間に受光面側透明板の実質的に全面を覆う第 1 封止榭脂シートを配置し、裏面板と太陽電池セルの間に裏面板の実質的に全面を 覆う第 2封止榭脂シートを配置して積層体を作製し、  A first sealing resin sheet covering substantially the entire surface of the transparent plate on the light-receiving surface is disposed between the transparent plate on the light-receiving surface and the solar cell, and the rear plate is substantially disposed between the rear plate and the solar cell. A second sealing resin sheet covering the entire surface is arranged to produce a laminate,
前記積層体を気体不透過性の柔軟なシートからなる封止処理容器に入れ、 前記積層体の入った複数の封止処理容器をオーブン内に導入して相互に間隔をあ けて平行に配置し、  The laminate is placed in a sealing treatment container made of a gas-impermeable flexible sheet, and a plurality of sealing treatment containers containing the laminate are introduced into an oven and arranged in parallel at intervals. And
前記封止処理容器内を減圧して受光面側透明板と裏面板との間の空気を排出し、 前記オーブン内において前記積層体と平行の向きに熱風を流すことによって前記積 層体を加熱して封止榭脂を溶融させ、  The inside of the sealing processing container is decompressed to discharge air between the light-receiving surface side transparent plate and the back plate, and the laminate is heated by flowing hot air in the oven in a direction parallel to the laminate. To melt the sealing resin,
引き続き冷却することによって封止榭脂を固化させることを特徴とする太陽電池モジ ユールの製造方法。  A method for manufacturing a solar cell module, wherein the sealing resin is solidified by successively cooling.
[2] 前記封止処理容器が気体不透過性の柔軟なシートからなる袋である請求項 1記載の 太陽電池モジュールの製造方法。  2. The method for manufacturing a solar cell module according to claim 1, wherein the sealing treatment container is a bag made of a flexible gas-impermeable sheet.
[3] 前記積層体の外縁を通気性を有する布帛で覆ってから封止処理容器に入れる請求 項 1又は 2記載の太陽電池モジュールの製造方法。 3. The method for manufacturing a solar cell module according to claim 1, wherein the outer edge of the laminate is covered with a breathable fabric and then placed in a sealing container.
[4] 前記オーブン内を実質的に大気圧に維持しながら積層体を加熱する請求項 1〜3の[4] The laminate according to claim 1, wherein the laminate is heated while maintaining the inside of the oven substantially at atmospheric pressure.
V、ずれか記載の太陽電池モジュールの製造方法。 V, the manufacturing method of the solar cell module described in the description.
[5] 複数の太陽電池セルを間隔をあけて配列して相互に導線で接続する請求項 1〜4の [5] The method according to any one of claims 1 to 4, wherein a plurality of solar cells are arranged at intervals and connected to each other by a conductor.
V、ずれか記載の太陽電池モジュールの製造方法。 V, the manufacturing method of the solar cell module described in the description.
[6] 複数の太陽電池セルが直列方向に相互に導線で接続された複数のセットを間隔を あけて平行に配列して前記積層体を作製し、かつ前記オーブン内の気流が前記直 列方向と平行の向きになるようにして加熱する請求項 5記載の太陽電池モジュール の製造方法。  [6] A plurality of sets in which a plurality of photovoltaic cells are connected to each other in a series direction by a conducting wire are arranged in parallel at an interval to produce the stacked body, and the airflow in the oven is changed in the direction of the straight line. 6. The method for manufacturing a solar cell module according to claim 5, wherein the heating is performed in a direction parallel to the direction of the solar cell module.
[7] 前記オーブンが熱風導入口と、その反対側に設けられた熱風導出口とを有する請求 項 1〜6のいずれか記載の太陽電池モジュールの製造方法。 7. The method for manufacturing a solar cell module according to claim 1, wherein the oven has a hot air inlet and a hot air outlet provided on the opposite side.
[8] 前記封止処理容器が配管を介して真空ポンプに接続され、複数の前記配管のそれ ぞれに圧力計と弁とのセットが備えられ、圧力計によって漏れが検出された封止処理 容器に接続された弁が閉じられる請求項 1〜7のいずれか記載の太陽電池モジユー ルの製造方法。 [8] The sealing process in which the sealing process container is connected to a vacuum pump via a pipe, and each of the plurality of pipes is provided with a set of a pressure gauge and a valve, and a leak is detected by the pressure gauge. 8. The method for manufacturing a solar cell module according to claim 1, wherein a valve connected to the container is closed.
[9] 前記封止処理容器のそれぞれが配管を介して真空ポンプに接続され、封止処理容 器と真空ポンプとの間にタンクを備える請求項 1〜8のいずれか記載の太陽電池モジ ユールの製造方法。  [9] The solar cell module according to any one of claims 1 to 8, wherein each of the sealing processing containers is connected to a vacuum pump via a pipe, and a tank is provided between the sealing processing container and the vacuum pump. Manufacturing method.
[10] 前記タンク内の圧力を測定する圧力計と、タンクに外気を導入する弁とを有し、タンク 内の圧力を微調整する請求項 9記載の太陽電池モジュールの製造方法。  10. The method for manufacturing a solar cell module according to claim 9, comprising a pressure gauge for measuring the pressure in the tank, and a valve for introducing outside air into the tank, and finely adjusting the pressure in the tank.
[11] 前記オーブンに隣接する温度調節室を少なくとも 1つ設け、該温度調節室において 予熱操作又は冷却操作を行う請求項 1〜: LOのいずれか記載の太陽電池モジュール の製造方法。  [11] The method for manufacturing a solar cell module according to any one of claims 1 to 1, wherein at least one temperature control chamber is provided adjacent to the oven, and a preheating operation or a cooling operation is performed in the temperature control chamber.
[12] 前記積層体にぉ 、て、太陽電池セル間の間隙部又は太陽電池セルの外側の余白 部に、太陽電池セルの厚みよりも厚い封止榭脂シート片を配置する請求項 1〜11の [12] The sealing resin sheet piece having a thickness larger than the thickness of the solar cell is disposed in the gap between the solar cells or in a margin outside the solar cell in the laminate. Eleven
V、ずれか記載の太陽電池モジュールの製造方法。 V, the manufacturing method of the solar cell module described in the description.
[13] 受光面側透明板と裏面板の 、ずれもがガラス板である請求項 1〜12の 、ずれか記 載の太陽電池モジュールの製造方法。 13. The method for manufacturing a solar cell module according to claim 1, wherein the difference between the light-receiving-surface-side transparent plate and the rear surface plate is a glass plate.
[14] 受光面側透明板と裏面板の少なくともいずれかが湾曲している請求項 1〜13のいず れか記載の太陽電池モジュールの製造方法。 14. The method for manufacturing a solar cell module according to any one of claims 1 to 13, wherein at least one of the light-receiving-side transparent plate and the back plate is curved.
[15] 前記積層体が、受光面側透明板又は裏面板から外側へ突出した部材を有する請求 項 1〜14のいずれか記載の太陽電池モジュールの製造方法。 15. The method for manufacturing a solar cell module according to any one of claims 1 to 14, wherein the laminate has a member protruding outward from the light-receiving-surface-side transparent plate or the back plate.
[16] 前記外側へ突出した部材がモジュール固定用の金具である請求項 15記載の太陽 電池モジュールの製造方法。 16. The method for manufacturing a solar cell module according to claim 15, wherein the member protruding outward is a metal fitting for fixing the module.
[17] 前記封止榭脂が、エチレン 酢酸ビニル共重合体、ポリビニルブチラール及びポリゥ レタン力 なる群力 選択される一種の榭脂からなる請求項 1〜16のいずれか記載 の太陽電池モジュールの製造方法。 [17] The production of the solar cell module according to any one of claims 1 to 16, wherein the sealing resin is a resin selected from the group consisting of ethylene-vinyl acetate copolymer, polyvinyl butyral, and polyurethane. Method.
[18] 封止処理容器内で封止するに際して、封止処理容器内の圧力を 0. 05MPa以上に 保って封止榭脂を加熱する工程 (工程 1)、封止榭脂の融点未満の温度において封 止処理容器内を 0. OlMPa以下の圧力まで減圧する工程(工程 2)、減圧したままで 封止榭脂の融点以上の温度まで昇温する工程 (工程 3)、前記封止処理容器内の圧 力を上昇させる工程 (工程 4)及び冷却する工程 (工程 6)の各工程カゝらなる封止操作 を行う請求項 1〜17のいずれか記載の太陽電池モジュールの製造方法。 [18] A step of heating the sealing resin while maintaining the pressure in the sealing processing container at 0.05 MPa or more when sealing in the sealing processing container (Step 1), wherein the temperature is lower than the melting point of the sealing resin. Sealed at temperature Depressurizing the inside of the sealing treatment container to a pressure of 0. OlMPa or less (step 2), raising the temperature to a temperature equal to or higher than the melting point of the sealing resin while maintaining the reduced pressure (step 3), The method for manufacturing a solar cell module according to any one of claims 1 to 17, wherein a sealing operation including a step of increasing pressure (step 4) and a step of cooling (step 6) is performed.
[19] 前記封止榭脂シートが架橋可能な熱可塑性榭脂からなり、封止処理容器内で封止 するに際して、封止榭脂の融点未満の温度において封止処理容器内を 0. OlMPa 以下の圧力まで減圧する工程 (工程 2)、減圧したままで封止榭脂の融点以上の温 度まで昇温する工程 (工程 3)、前記封止処理容器内の圧力を上昇させる工程 (工程 4)、架橋反応が進行する温度範囲まで昇温して架橋反応を進行させる工程 (工程 5 )及び冷却する工程(工程 6)の各工程力もなる封止操作を行う請求項 1〜18のいず れか記載の太陽電池モジュールの製造方法。  [19] The sealing resin sheet is made of a crosslinkable thermoplastic resin, and when sealing in the sealing container, the inside of the sealing container is heated at a temperature lower than the melting point of the sealing resin. A step of reducing the pressure to the following pressure (step 2), a step of raising the temperature to a temperature equal to or higher than the melting point of the sealing resin while maintaining the reduced pressure (step 3), and a step of increasing the pressure in the sealing treatment container (step 4) performing a sealing operation in which each step power of a step (step 5) and a step of cooling (step 6) in which the temperature is raised to a temperature range in which the crosslinking reaction proceeds (step 5) and a step of cooling (step 6). The method for manufacturing a solar cell module according to any of the above.
[20] 受光面側透明板と裏面板との間に封止榭脂層を有し、該封止榭脂層内に太陽電池 セルが封止されてなる太陽電池モジュールであって、モジュール固定用の金具を備 え、該金具が受光面側透明板と裏面板のいずれかに形成された貫通孔に挿入され 、該金具の頭部側の端部が封止榭脂層側に配置され、該金具の反対側の端部が外 側に突出していることを特徴とする太陽電池モジュール。  [20] A solar cell module having a sealing resin layer between the light-receiving surface side transparent plate and the back plate, wherein the solar cell is sealed in the sealing resin layer, wherein the module is fixed. Metal fittings are inserted into through holes formed in either the light-receiving surface-side transparent plate or the back plate, and the head-side end of the metal fitting is disposed on the sealing resin layer side. A solar cell module, wherein an opposite end of the metal fitting protrudes outward.
[21] 前記封止榭脂層の周縁にスぺーサーを有さない請求項 20記載の太陽電池モジユー ル。  21. The solar cell module according to claim 20, wherein the solar cell module does not have a spacer on the periphery of the sealing resin layer.
[22] 前記貫通孔が皿孔であり、該皿孔に前記金具の頭部が嵌め込まれている請求項 20 又は 21記載の太陽電池モジュール。  22. The solar cell module according to claim 20, wherein the through hole is a countersink, and the head of the metal fitting is fitted into the countersink.
PCT/JP2005/008009 2004-04-28 2005-04-27 Solar cell module manufacturing method and solar cell module WO2005106969A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006512808A JP4359308B2 (en) 2004-04-28 2005-04-27 Manufacturing method of solar cell module
CN2005800214758A CN1977391B (en) 2004-04-28 2005-04-27 Solar cell module manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004134481 2004-04-28
JP2004-134481 2004-04-28

Publications (1)

Publication Number Publication Date
WO2005106969A1 true WO2005106969A1 (en) 2005-11-10

Family

ID=35241942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008009 WO2005106969A1 (en) 2004-04-28 2005-04-27 Solar cell module manufacturing method and solar cell module

Country Status (3)

Country Link
JP (5) JP4359308B2 (en)
CN (2) CN101834228B (en)
WO (1) WO2005106969A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123451A (en) * 2005-10-26 2007-05-17 Nakajima Glass Co Inc Manufacturing method of solar cell module
JP2008258269A (en) * 2007-04-02 2008-10-23 Sharp Corp Solar cell module and manufacturing process of the same
JP2008282906A (en) * 2007-05-09 2008-11-20 Nakajima Glass Co Inc Manufacturing method for solar cell module
JP2011249835A (en) * 2011-08-01 2011-12-08 Nakajima Glass Co Inc Manufacturing method of solar cell module
JP2012209346A (en) * 2011-03-29 2012-10-25 Kyocera Corp Photoelectric conversion module
CN103430323A (en) * 2011-01-24 2013-12-04 Lg伊诺特有限公司 Solar cell module
CN103855241A (en) * 2012-12-04 2014-06-11 浚丰太阳能(江苏)有限公司 Photovoltaic module stacking template
JP2015520516A (en) * 2012-06-05 2015-07-16 サン−ゴバン グラス フランスSaint−Gobain Glass France Roof panel with integrated photovoltaic module
WO2018033261A1 (en) * 2016-08-16 2018-02-22 Solean Lamination system, facility including such a lamination system and lamination method implemented using such a lamination system

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2534702A1 (en) * 2010-02-10 2012-12-19 Tata Steel Nederland Technology BV Layered system for producing a solar cell on a metal substrate, method for producing said layered system
CN102456767B (en) * 2010-10-20 2013-12-04 财团法人工业技术研究院 Method for manufacturing metal-through type solar cell
US9312417B2 (en) * 2010-10-22 2016-04-12 Guardian Industries Corp. Photovoltaic modules, and/or methods of making the same
KR101116177B1 (en) * 2011-11-15 2012-02-22 쏠라퓨전 주식회사 Solar cell module using polyurethane and manufacturing method of it
KR101758197B1 (en) 2012-02-27 2017-07-14 주성엔지니어링(주) A solar cell and a manufacturing method thereof
JP2014183271A (en) * 2013-03-21 2014-09-29 Sharp Corp Solar cell
JPWO2017134784A1 (en) * 2016-02-03 2018-04-12 三菱電機株式会社 Solar cell module and manufacturing method thereof
WO2018221494A1 (en) * 2017-05-31 2018-12-06 キョーラク株式会社 Float aggregate
TWM579382U (en) * 2019-02-19 2019-06-11 位元奈米科技股份有限公司 Airtight packaging structure for solar cell
KR102075687B1 (en) * 2019-06-05 2020-02-10 주식회사 이건창호 Architectural glass panel with uniform color
KR20210004251A (en) * 2019-07-03 2021-01-13 엘지전자 주식회사 Method for manufacturing graphic cover substrate of solar cell panal, and solar cell panel and method for manufacturing the same
CN114429996B (en) * 2020-10-29 2024-03-08 苏州阿特斯阳光电力科技有限公司 Photovoltaic module and manufacturing process thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2025691A (en) * 1978-06-14 1980-01-23 Bfg Glassgroup Photovoltaic cell panel
EP0018924A2 (en) * 1979-05-08 1980-11-12 Saint Gobain Vitrage International Method of manufacturing solar-cell panels and panels obtained by this method
JPS6169179A (en) * 1984-09-12 1986-04-09 Toshiba Corp Manufacture of solar cell panel
JPH0992867A (en) * 1995-09-27 1997-04-04 Asahi Glass Co Ltd Solar cell module manufacturing method
WO1997050130A2 (en) * 1996-06-27 1997-12-31 Evergreen Solar, Inc. Solar cell modules with improved backskin and methods for forming same
US5733382A (en) * 1995-12-18 1998-03-31 Hanoka; Jack I. Solar cell modules and method of making same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2456392A1 (en) * 1979-05-08 1980-12-05 Saint Gobain Encapsulating solar battery of photocells - by coating battery in resin powder placing between sheets and sintering the resin
DE3247467A1 (en) * 1982-12-22 1984-07-12 Imchemie Kunststoff Gmbh, 5632 Wermelskirchen Translucent roofing tile
JPS63148088A (en) * 1986-07-17 1988-06-20 大亜真空株式会社 Continuous type vacuum heat treating furnace
JP2500974Y2 (en) * 1990-01-11 1996-06-12 日本板硝子株式会社 Laminated glass with built-in intermediate
JPH06510631A (en) * 1990-10-17 1994-11-24 ユナイテッド ソーラー システムズ コーポレイション Improved solar cell stacking device
JP2931456B2 (en) * 1991-09-25 1999-08-09 京セラ株式会社 Method of manufacturing solar cell module
JP3340044B2 (en) * 1996-12-27 2002-10-28 京セラ株式会社 Heating equipment
JP3373413B2 (en) * 1997-10-20 2003-02-04 エスペック株式会社 Heat treatment equipment for uniformly heating flat workpieces by changing the wind speed
JPH11227145A (en) * 1998-02-10 1999-08-24 Canon Inc Laminating device
EP0969521A1 (en) * 1998-07-03 2000-01-05 ISOVOLTAÖsterreichische IsolierstoffwerkeAktiengesellschaft Photovoltaic module and method of fabrication
JP3688941B2 (en) * 1999-07-21 2005-08-31 シャープ株式会社 Solar cell module heat treatment device and solar cell module heat treatment method
JP3805996B2 (en) * 2001-04-20 2006-08-09 シャープ株式会社 Daylighting type laminated glass structure solar cell module and daylighting type multilayer solar cell module
JP2003110127A (en) * 2001-09-28 2003-04-11 Kyocera Corp Lighting solar cell module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2025691A (en) * 1978-06-14 1980-01-23 Bfg Glassgroup Photovoltaic cell panel
EP0018924A2 (en) * 1979-05-08 1980-11-12 Saint Gobain Vitrage International Method of manufacturing solar-cell panels and panels obtained by this method
JPS6169179A (en) * 1984-09-12 1986-04-09 Toshiba Corp Manufacture of solar cell panel
JPH0992867A (en) * 1995-09-27 1997-04-04 Asahi Glass Co Ltd Solar cell module manufacturing method
US5733382A (en) * 1995-12-18 1998-03-31 Hanoka; Jack I. Solar cell modules and method of making same
WO1997050130A2 (en) * 1996-06-27 1997-12-31 Evergreen Solar, Inc. Solar cell modules with improved backskin and methods for forming same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123451A (en) * 2005-10-26 2007-05-17 Nakajima Glass Co Inc Manufacturing method of solar cell module
JP4682014B2 (en) * 2005-10-26 2011-05-11 中島硝子工業株式会社 Manufacturing method of solar cell module
JP2008258269A (en) * 2007-04-02 2008-10-23 Sharp Corp Solar cell module and manufacturing process of the same
JP2008282906A (en) * 2007-05-09 2008-11-20 Nakajima Glass Co Inc Manufacturing method for solar cell module
CN103430323A (en) * 2011-01-24 2013-12-04 Lg伊诺特有限公司 Solar cell module
EP2669956A2 (en) * 2011-01-24 2013-12-04 LG Innotek Co., Ltd. Solar cell module
EP2669956A4 (en) * 2011-01-24 2014-07-02 Lg Innotek Co Ltd Solar cell module
JP2012209346A (en) * 2011-03-29 2012-10-25 Kyocera Corp Photoelectric conversion module
JP2011249835A (en) * 2011-08-01 2011-12-08 Nakajima Glass Co Inc Manufacturing method of solar cell module
JP2015520516A (en) * 2012-06-05 2015-07-16 サン−ゴバン グラス フランスSaint−Gobain Glass France Roof panel with integrated photovoltaic module
CN103855241A (en) * 2012-12-04 2014-06-11 浚丰太阳能(江苏)有限公司 Photovoltaic module stacking template
WO2018033261A1 (en) * 2016-08-16 2018-02-22 Solean Lamination system, facility including such a lamination system and lamination method implemented using such a lamination system
FR3055167A1 (en) * 2016-08-16 2018-02-23 Claude Jacquot LAMINATION SYSTEM, INSTALLATION INCLUDING SUCH A LAMINATION SYSTEM AND LAMINATION METHOD USED BY SUCH A LAMINATING SYSTEM
US11130327B2 (en) 2016-08-16 2021-09-28 Solean System for laminating photovoltaic stacks

Also Published As

Publication number Publication date
JP2012069986A (en) 2012-04-05
JP4682238B2 (en) 2011-05-11
JP2008294487A (en) 2008-12-04
JP2010192909A (en) 2010-09-02
JP2009170943A (en) 2009-07-30
JPWO2005106969A1 (en) 2008-03-21
JP5261564B2 (en) 2013-08-14
CN1977391A (en) 2007-06-06
JP4359308B2 (en) 2009-11-04
CN101834228A (en) 2010-09-15
CN1977391B (en) 2010-06-09
CN101834228B (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP5261564B2 (en) Manufacturing method of solar cell module
JP3875708B2 (en) Manufacturing method of solar cell module
JP5209229B2 (en) Manufacturing method of solar cell module
JP4682237B2 (en) Manufacturing method of solar cell module
JP4682014B2 (en) Manufacturing method of solar cell module
JP4969830B2 (en) Manufacturing method of light emitting element module
EP2340168A1 (en) Improved non-autoclave lamination process for manufacturing solar cell modules
EP2349715A1 (en) Improved non-autoclave lamination process for manufacturing solar cell modules
JP2005317714A (en) Solar cell module and its manufacturing method
JP4086353B2 (en) LAMINATE MANUFACTURING METHOD AND SOLAR CELL MODULE MANUFACTURING METHOD
JP5470341B2 (en) Manufacturing method of solar cell module
CN100392869C (en) Solar battery module manufacturing method
JP2005317665A (en) Method of manufacturing solar cell module
JP3875715B2 (en) Manufacturing method of solar cell module

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512808

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 200580021475.8

Country of ref document: CN

122 Ep: pct application non-entry in european phase