JPH0558677B2 - - Google Patents

Info

Publication number
JPH0558677B2
JPH0558677B2 JP61294222A JP29422286A JPH0558677B2 JP H0558677 B2 JPH0558677 B2 JP H0558677B2 JP 61294222 A JP61294222 A JP 61294222A JP 29422286 A JP29422286 A JP 29422286A JP H0558677 B2 JPH0558677 B2 JP H0558677B2
Authority
JP
Japan
Prior art keywords
solar cell
support
base material
adhesive
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61294222A
Other languages
Japanese (ja)
Other versions
JPS63147375A (en
Inventor
Osamu Takamatsu
Sadao Fujii
Shinji Kuwamura
Takeji Yamawaki
Kazuhiro Suenobe
Koji Nakano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP61294222A priority Critical patent/JPS63147375A/en
Publication of JPS63147375A publication Critical patent/JPS63147375A/en
Publication of JPH0558677B2 publication Critical patent/JPH0558677B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱変形温度が低い合成樹脂製の基材
を支持体とする太陽電池モジユールのモジユール
化方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for forming a solar cell module using a synthetic resin substrate having a low heat distortion temperature as a support.

〔従来の技術〕[Conventional technology]

従来、太陽電池と合成樹脂製の基材よりなる支
持体とを真空ラミネート法を用いて接着し、モジ
ユール化する時、接着剤として一般的にエチレン
−酢酸ビニル共重合体、ポリビニルブチラール等
のシート状接着剤が用いられる。
Conventionally, when a solar cell and a support made of a synthetic resin base material are bonded together using a vacuum lamination method to form a module, sheets of ethylene-vinyl acetate copolymer, polyvinyl butyral, etc. are generally used as the adhesive. adhesive is used.

この際、接着剤の接着性を向上させる為に、
100℃〜150℃に加熱する必要があり、支持体の基
材として熱変形温度が、この時の加熱温度以下の
ものを使用すると、基材の収縮等による反りが生
じたり、支持体表面の肌荒れ、溶融による流れ等
の変形を生じる為、支持体の基材として少なくと
も100℃以上の熱変形温度を有する高価な合成樹
脂を選択する必要があつた。言い換えれば、その
熱変形温度が、シート状接着剤の熱変形温度より
も必ず高い基材による支持体を用いなければなら
なかつた。
At this time, in order to improve the adhesion of the adhesive,
It is necessary to heat the support to 100°C to 150°C, and if a material with a heat deformation temperature below the heating temperature is used as the base material, warping may occur due to shrinkage of the base material, or the surface of the support may deteriorate. Because deformations such as rough skin and flow due to melting occur, it was necessary to select an expensive synthetic resin with a heat distortion temperature of at least 100° C. as the base material for the support. In other words, it is necessary to use a support made of a base material whose heat distortion temperature is always higher than that of the sheet adhesive.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように、従来の太陽電池のモジユール化方
法では、常にその熱変形温度が、シート状接着材
の熱変形温度よりも必ず高い基材による支持体を
用いなければならず、モジユール材料、特にシー
ト状接着材や基材の選択自由度が低くなるという
問題点を有していた。
In this way, in the conventional solar cell modularization method, it is necessary to use a base material support whose heat distortion temperature is always higher than that of the sheet-like adhesive. However, there is a problem in that the degree of freedom in selecting adhesive materials and base materials is reduced.

そして本発明が達成しようとする目的は、上記
問題点に鑑み、太陽電池と合成樹脂製の基材より
なる支持体とをシート状の接着剤を用いて、真空
ラミネート法でモジユール化する時、その時の加
熱温度より低い熱変形温度を有する合成樹脂、例
えば汎用性が高く、安価なポリ塩化ビニル等の合
成樹脂を用いて、信頼性が高く、安価で軽量且つ
材料の選択自由度が高い太陽電池モジユールが製
造可能な太陽電池のモジユール化方法を実現する
ことである。
In view of the above-mentioned problems, the object of the present invention is to form a module by vacuum laminating a solar cell and a support made of a synthetic resin base material using a sheet-like adhesive. By using synthetic resins that have a heat distortion temperature lower than the heating temperature at that time, such as polyvinyl chloride, which is highly versatile and inexpensive, solar panels are highly reliable, inexpensive, lightweight, and have a high degree of freedom in material selection. The object of the present invention is to realize a solar cell modularization method that allows production of battery modules.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記目的を達成する為に、太陽電池
と、熱変形温度が低い基材を利用した支持体と
を、シート状接着剤を用いて真空ラミネート加工
する太陽電池のモジユール化方法において、前記
支持体を型枠内に装填して基材の熱変形温度以上
に加熱することによつて基材を可塑化するととも
に、一方から加圧することによつて支持体の変形
を防止してラミネート加工を行う太陽電池のモジ
ユール化方法を開示するものである。
In order to achieve the above object, the present invention provides a solar cell modularization method in which a solar cell and a support using a base material with a low heat distortion temperature are vacuum laminated using a sheet adhesive. The support is loaded into a mold and heated to a temperature higher than the heat deformation temperature of the base to plasticize the base, and pressure is applied from one side to prevent deformation of the support for lamination. The present invention discloses a method for modularizing a solar cell through processing.

〔作用〕[Effect]

本発明に係る太陽電池のモジユール化方法は上
述のようにしてなる為、太陽電池の支持体の基材
として、ポリ塩化ビニル、ポリスチレン、アクリ
ル等の熱変形温度の低い汎用の合成樹脂を用い
て、真空ラミネート法により太陽電池をモジユー
ル化して、信頼性が高く、安価で軽量且つ材料の
選択自由度が高い太陽電池モジユールを得ること
ができるものである。
Since the solar cell modularization method according to the present invention is performed as described above, a general-purpose synthetic resin with a low heat distortion temperature such as polyvinyl chloride, polystyrene, or acrylic is used as the base material of the solar cell support. By modularizing solar cells using a vacuum lamination method, it is possible to obtain solar cell modules that are highly reliable, inexpensive, lightweight, and have a high degree of freedom in selecting materials.

〔実施例〕〔Example〕

本発明の詳細を図示した実施例に基づいて説明
する。
The details of the present invention will be explained based on illustrated embodiments.

まず第1図は、本発明に係るモジユール化方法
によつて製造された太陽電池モジユールの第1の
実施例を表す断面図である。
First, FIG. 1 is a cross-sectional view showing a first embodiment of a solar cell module manufactured by the modularization method according to the present invention.

図中1は太陽電池セルであり、単結晶系、多結
晶系、アモルフアス系等いずれも採用されるもの
であり、特に限定されるものではない。
In the figure, reference numeral 1 indicates a solar cell, and any one of a single crystal type, a polycrystal type, an amorphous type, etc. can be adopted, and is not particularly limited.

3は太陽電池セル1の受光面と背設する面に接
着剤2を介して取付けられる合成樹脂製の支持体
である。
Reference numeral 3 denotes a support made of synthetic resin that is attached via adhesive 2 to the light-receiving surface of the solar cell 1 and the surface disposed behind it.

該支持体3は、当該太陽電池モジユール全体を
支える合成樹脂製のもので、材質としては種々の
ものが考えられるが、ここではポリ塩化ビニル、
ポリスチレン、アクリル等の熱可塑性樹脂のうち
熱変形温度が100℃以下の低いものを用いる。
The support body 3 is made of synthetic resin that supports the entire solar cell module, and various materials can be considered, but here, polyvinyl chloride, polyvinyl chloride,
Among thermoplastic resins such as polystyrene and acrylic, those with a low heat distortion temperature of 100°C or less are used.

また、接着剤2としては、エチレン−酢酸ビニ
ル共重合体、ポリビニルブチラール等のシート状
の接着剤が採用されるものである。
Further, as the adhesive 2, a sheet adhesive such as ethylene-vinyl acetate copolymer, polyvinyl butyral, etc. is employed.

第2図は、本発明に係るモジユール化方法によ
つて製造された太陽電池モジユールの第2の実施
例を表す断面図である。
FIG. 2 is a cross-sectional view showing a second example of a solar cell module manufactured by the modularization method according to the present invention.

この実施例では、太陽電池セル1の受光面と背
設する面に接着剤2を介して支持体3を取付けた
ことは第1実施例と同様であるが、太陽電池セル
1の受光面に、透光性の透明保護材5を接着剤4
を介して取付けたものであり、この透明保護材5
は、ガラス、フツ素系フイルム、ポリエステル系
フイルムその他の透明耐候性フイルム等からなる
透光性の保護材が採用される。
This embodiment is similar to the first embodiment in that a support 3 is attached to the light-receiving surface of the solar cell 1 via an adhesive 2 to a surface placed behind the light-receiving surface of the solar cell 1. , a translucent transparent protective material 5 is attached to an adhesive 4
This transparent protective material 5
A transparent protective material made of glass, fluorine film, polyester film, or other transparent weather-resistant film is used.

第3図は、本発明に係るモジユール化方法によ
つて製造された太陽電池モジユールの第3の実施
例を表す断面図である。
FIG. 3 is a cross-sectional view showing a third example of a solar cell module manufactured by the modularization method according to the present invention.

この実施例では、太陽電池セル1の受光面に透
明の支持体3が接着剤2を介して取付けられてお
り、この支持体3は、透光性を有する透明アクリ
ル板等からなるもので、やはり熱変形温度は100
℃以下の合成樹脂である。
In this embodiment, a transparent support 3 is attached to the light-receiving surface of a solar cell 1 via an adhesive 2, and this support 3 is made of a transparent acrylic plate or the like having translucency. As expected, the heat distortion temperature is 100
It is a synthetic resin with a temperature below ℃.

また、太陽電池セル1の受光面と背設する面に
は、接着剤4を介して保護用のアルミニウムをサ
ンドイツチ状にラミネートした耐候性フイルム6
が取付けられている。
In addition, on the light-receiving surface of the solar cell 1 and the surface placed behind it, a weather-resistant film 6 is laminated with aluminum for protection in the form of a sandwich film with an adhesive 4 interposed therebetween.
is installed.

上述の第1の実施例〜第3の実施例において、
接着剤2及び接着剤4としては、エチレン−酢酸
ビニル共重合体、ポリビニルブチラール等のシー
ト状接着剤が採用されるものであるが、このよう
な接着剤の接着性を向上させる為には、100℃〜
150℃の加熱が必要であり、上述の実施例におい
て支持体3の基材として用いた合成樹脂は、ポリ
塩化ビニル、ポリスチレン、アクリル樹脂等の熱
変形温度の低いものである為に、この加熱によつ
て変形するものである。
In the first to third embodiments described above,
As the adhesive 2 and the adhesive 4, sheet adhesives such as ethylene-vinyl acetate copolymer and polyvinyl butyral are used, but in order to improve the adhesive properties of such adhesives, 100℃〜
Heating to 150°C is necessary, and since the synthetic resin used as the base material for the support 3 in the above examples has a low heat deformation temperature, such as polyvinyl chloride, polystyrene, and acrylic resin, this heating is necessary. It is deformed by

そしてこれらのような太陽電池モジユールのモ
ジユール化方法が、以下第4図に示す真空ラミネ
ート装置の断面図によつて説明される。
A method of modularizing solar cell modules as described above will be explained below with reference to a sectional view of a vacuum laminating apparatus shown in FIG.

即ち、図示するように上室7及び下室8内に設
置された型枠9に支持体3、接着剤2、太陽電池
セル1、接着剤4、透明保護材5を順次積層し
て、装置内を真空引きして材料を型枠9内で密着
させる。
That is, as shown in the figure, a support 3, an adhesive 2, a solar cell 1, an adhesive 4, and a transparent protective material 5 are sequentially laminated on a formwork 9 installed in an upper chamber 7 and a lower chamber 8, and the device is assembled. The material is brought into close contact with the mold 9 by evacuating the inside.

そして、材料を100℃〜150℃に加熱して可塑化
させるとともに、上室7側から加圧して変形を防
止し、材料が冷却するまで、加圧し続ける。
Then, the material is heated to 100° C. to 150° C. to plasticize it, and pressure is applied from the upper chamber 7 side to prevent deformation, and the pressure is continued until the material is cooled.

加圧方法は、上室7に大気を導入することによ
つてもよく、また空気あるいは窒素等を強制的に
導入して大気圧以上に加圧してもよい。
Pressurization may be carried out by introducing atmospheric air into the upper chamber 7, or by forcibly introducing air, nitrogen, or the like to pressurize the upper chamber 7 to a pressure higher than atmospheric pressure.

尚、10は上室7と下室8とを分離する為のシ
リコンゴム系の隔膜である。
Note that 10 is a silicone rubber-based diaphragm for separating the upper chamber 7 and the lower chamber 8.

例えば、太陽電池セル1にアモルフアスシリコ
ン太陽電池、支持体3にポリ塩化ビニル、接着剤
2及び接着剤4にエチレン−酢酸ビニル共重合体
をそれぞれ用いた時に、大気圧1Kg/cm2、150℃
の温度で15分間加熱して、その後加圧し続け、冷
却するのを待つて取り出して、好適な太陽電池モ
ジユールが得られた。
For example, when solar cell 1 is an amorphous silicon solar cell, support 3 is polyvinyl chloride, and adhesives 2 and 4 are ethylene-vinyl acetate copolymer, the atmospheric pressure is 1 Kg/cm 2 and 150 ℃
A suitable solar cell module was obtained by heating for 15 minutes at a temperature of , then continuing to pressurize, wait for cooling and then take out.

この時、型枠9は、耐熱性を有し、材料との接
着を防ぐ為に、フツ素樹脂により加工されたもの
を用いる。
At this time, the formwork 9 is made of fluororesin to have heat resistance and prevent adhesion to the material.

このようにしてなる太陽電池モジユールは、真
空ラミネート加工の際に、型枠9を設けている
為、熱変形温度が接着に最適な加熱温度よりも低
い合成樹脂を支持体の基材に用いて可塑化させて
も、加熱圧縮時に合成樹脂が流れたりすることが
なく、また加熱後、冷却するまで加圧することに
より、支持体3の変形による反りや肌荒れ等が防
止でき、支持体3の収縮率を小さく、安定化する
ことができるので、ポリ塩化ビニル、ポリスチレ
ン、アクリル樹脂等を用いて安価な太陽電池モジ
ユールを構成することができる。
Since the solar cell module thus formed is provided with a formwork 9 during vacuum lamination, a synthetic resin with a heat deformation temperature lower than the optimal heating temperature for adhesion is used as the base material of the support. Even if it is plasticized, the synthetic resin will not flow during heating and compression, and by applying pressure after heating until it cools, it is possible to prevent warping or rough skin due to deformation of the support 3, and to prevent shrinkage of the support 3. Since the ratio can be made small and stable, an inexpensive solar cell module can be constructed using polyvinyl chloride, polystyrene, acrylic resin, or the like.

本発明に係る太陽電池のモジユール化方法によ
れば、合成樹脂製の支持体3の基材が、その熱変
形温度以上にされて可塑化された後、支持体3が
加圧された状態で冷却されるので、いわゆる熱ア
ニールによつて、成型歪みが緩和されて、モジユ
ール化した後の成型歪みに起因する変形を防止す
ることができ、信頼性のある太陽電池モジユール
を得ることができる。
According to the method for modularizing a solar cell according to the present invention, after the base material of the synthetic resin support 3 is plasticized by being heated to a temperature equal to or higher than its heat deformation temperature, the support 3 is pressurized. Since it is cooled, molding distortion is alleviated by so-called thermal annealing, and deformation caused by molding distortion after being made into a module can be prevented, and a reliable solar cell module can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明に係る太陽電池モジユール及びそのモジ
ユール化方法は、以上のようにしてなる為、基材
が熱変形温度の低い合成樹脂よりなる支持体を用
いて、安価で軽量、しかも信頼性の高い太陽電池
モジユールを得ることを可能とするものである。
そして材料の選択自由度も高くなるのである。さ
らには基材がその熱変形温度以上にされて可塑化
された後、支持体が加圧された状態で冷却される
ので、いわゆる熱アニールによつて、成型歪みが
緩和されて、モジユール化した後の成型歪みに起
因する変形を防止することができるという副次的
効果を得ることができるのである。
The solar cell module and the method for making it into a module according to the present invention are constructed as described above, so that the solar cell module and the method for making it into a module are inexpensive, lightweight, and highly reliable, using a support whose base material is made of a synthetic resin with a low heat deformation temperature. This makes it possible to obtain a battery module.
This also increases the degree of freedom in selecting materials. Furthermore, after the base material is heated to a temperature higher than its thermal deformation temperature and plasticized, the support is cooled under pressure, so molding distortion is alleviated through so-called thermal annealing, making it possible to create a module. A secondary effect can be obtained in that deformation caused by subsequent molding distortion can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るモジユール化方法によつ
て製造された太陽電池モジユールの第1の実施例
を表す断面図、第2図は本発明に係るモジユール
化方法によつて製造された太陽電池モジユールの
第2の実施例を表す断面図、第3図は本発明に係
るモジユール化方法によつて製造された太陽電池
の第3の実施例を表す断面図、第4図は本発明に
係る太陽電池のモジユール化方法に用いられる装
置例を表す断面図である。 1:太陽電池セル、2:接着剤、3:支持体、
4:接着剤、5:透明保護材、6:フイルム、
7:上室、8:下室、9:型枠、10:隔膜。
FIG. 1 is a sectional view showing a first embodiment of a solar cell module manufactured by the modularization method according to the present invention, and FIG. 2 is a cross-sectional view showing a solar cell manufactured by the modularization method according to the present invention. FIG. 3 is a cross-sectional view showing a third example of a solar cell manufactured by the modularization method according to the present invention, and FIG. 4 is a cross-sectional view showing a second example of the module. FIG. 2 is a cross-sectional view showing an example of a device used in a method for modularizing solar cells. 1: Solar cell, 2: Adhesive, 3: Support,
4: Adhesive, 5: Transparent protective material, 6: Film,
7: Upper chamber, 8: Lower chamber, 9: Formwork, 10: Diaphragm.

Claims (1)

【特許請求の範囲】 1 太陽電池と、熱変形温度が低い基材を利用し
た支持体とを、シート状接着剤を用いて真空ラミ
ネート加工する太陽電池のモジユール化方法にお
いて、前記支持体を型枠内に装填して基材の熱変
形温度以上に加熱することによつて基材を可塑化
するとともに、一方から加圧することによつて支
持体の変形を防止してラミネート加工を行うこと
を特徴とする太陽電池のモジユール化方法。 2 基材として、熱変形温度が100℃以下の合成
樹脂を用いる特許請求の範囲第1項記載の太陽電
池のモジユール化方法。 3 基材として、ポリ塩化ビニル、ポリスチレ
ン、アクリル樹脂のうちから選択した合成樹脂を
用いる特許請求の範囲第1項または第2項記載の
太陽電池のモジユール化方法。
[Scope of Claims] 1. A solar cell modularization method in which a solar cell and a support using a base material with a low heat distortion temperature are vacuum laminated using a sheet adhesive, in which the support is molded. The base material is plasticized by being loaded into a frame and heated to a temperature higher than the heat deformation temperature of the base material, and lamination is performed by applying pressure from one side to prevent deformation of the support. Features of solar cell modularization method. 2. The method for modularizing a solar cell according to claim 1, using a synthetic resin having a heat distortion temperature of 100° C. or lower as the base material. 3. The method for modularizing solar cells according to claim 1 or 2, wherein a synthetic resin selected from polyvinyl chloride, polystyrene, and acrylic resin is used as the base material.
JP61294222A 1986-12-10 1986-12-10 Solar cell module and modularization thereof Granted JPS63147375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61294222A JPS63147375A (en) 1986-12-10 1986-12-10 Solar cell module and modularization thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61294222A JPS63147375A (en) 1986-12-10 1986-12-10 Solar cell module and modularization thereof

Publications (2)

Publication Number Publication Date
JPS63147375A JPS63147375A (en) 1988-06-20
JPH0558677B2 true JPH0558677B2 (en) 1993-08-27

Family

ID=17804915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61294222A Granted JPS63147375A (en) 1986-12-10 1986-12-10 Solar cell module and modularization thereof

Country Status (1)

Country Link
JP (1) JPS63147375A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03124068A (en) * 1989-10-06 1991-05-27 Taiyo Yuden Co Ltd Thin-film element and its manufacture
JP2520879Y2 (en) * 1990-08-27 1996-12-18 シャープ株式会社 Solar cell package structure
JP2007242677A (en) * 2006-03-06 2007-09-20 Sekisui Jushi Co Ltd Solar battery module, method of manufacturing the same and solar battery system
US20120213882A1 (en) * 2009-12-02 2012-08-23 Toyota Jidosha Kabushiki Kaisha Solar cell module manufacturing device
JP5974580B2 (en) * 2011-03-28 2016-08-23 三菱化学株式会社 Manufacturing method of solar cell module

Also Published As

Publication number Publication date
JPS63147375A (en) 1988-06-20

Similar Documents

Publication Publication Date Title
JP4401649B2 (en) Manufacturing method of solar cell module
JP5209229B2 (en) Manufacturing method of solar cell module
EP2525976A2 (en) System and method for laminating modules
JP4682014B2 (en) Manufacturing method of solar cell module
JPS6257268B2 (en)
JPS60260164A (en) Solar battery module and manufacture thereof
JPS63276542A (en) Laminating and bonding apparatus
JPS5817685A (en) Resin material for sealing solar cell
JP2004179261A (en) Device and method for manufacturing solar battery module
JPH0558677B2 (en)
JP2002083992A (en) Solar cell panel and its manufacturing method
JP2001077387A (en) Solar battery module
JPS6169179A (en) Manufacture of solar cell panel
JP3099202B2 (en) Method for manufacturing flexible lightweight solar cell module
US20130192740A1 (en) Laminate processing method
JPH07186331A (en) Production of laminate
JP3856224B2 (en) Manufacturing method of solar cell module
JP5470341B2 (en) Manufacturing method of solar cell module
EP0103828B1 (en) Fabricating shaped laminated transparencies
JPS6246077B2 (en)
JPH04116987A (en) Manufacture of solar cell module
JPH0534120Y2 (en)
JPH0465556B2 (en)
JPH09312408A (en) Manufacture of solar battery module
JPH09172192A (en) Manufacture of solar battery module

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees