JPS63147375A - Solar cell module and modularization thereof - Google Patents

Solar cell module and modularization thereof

Info

Publication number
JPS63147375A
JPS63147375A JP61294222A JP29422286A JPS63147375A JP S63147375 A JPS63147375 A JP S63147375A JP 61294222 A JP61294222 A JP 61294222A JP 29422286 A JP29422286 A JP 29422286A JP S63147375 A JPS63147375 A JP S63147375A
Authority
JP
Japan
Prior art keywords
solar cell
base material
support
supporting body
bonding agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61294222A
Other languages
Japanese (ja)
Other versions
JPH0558677B2 (en
Inventor
Osamu Takamatsu
修 高松
Sadao Fujii
貞男 藤井
Shinji Kuwamura
桑村 進次
Takeji Yamawaki
竹治 山脇
Kazuhiro Suenobe
末延 一弘
Koji Nakano
中野 弘司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP61294222A priority Critical patent/JPS63147375A/en
Publication of JPS63147375A publication Critical patent/JPS63147375A/en
Publication of JPH0558677B2 publication Critical patent/JPH0558677B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain a highly reliable, low-cost and lightweight module using such a synthetic resin as a low-cost polyvinyl chloride by a method wherein a solar cell and a supporting body made utilizing a base material having a low heat deforming temperature are bonding together with a sheetlike bonding agent. CONSTITUTION:A solar cell 1 and a supporting body 3 made utilizing a base material having a low heat deforming temperature are bonded together with a sheetlike bonding agent 2. Moreover, the solar cell 1 and the supporting body 3 made utilizing a base material having a low heat deforming temperature are subjected to a vacuum lamination processing at the heat deforming temperature or more of the above base material using the sheetlike bonding agent 2 and the solar cell 1 is modularized. For example, an amorphous Si solar cell, a polyvinyl chloride and an ethylene-vinyl acetate copolymer are respectively used for the solar battery cell 1, the supporting body 3 and the bonding agent 2. They are laminated in a frame 9 installed in an upper chamber 7 and a slower chamber 8, the interior of a device is evacuated to a vacuum state bring the materials into close contact with each other in the frame 9 and the materials are heated at 100 deg.C-150 deg.C, and at the same time, pressed and the pressing is continued until the materials are cooled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱変形温度が低い合成樹脂製の基材を支持体
とする太陽電池モジュール及びそのモジュール化方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solar cell module whose support is a synthetic resin base material having a low heat distortion temperature, and a method for modularizing the solar cell module.

〔従来の技術〕[Conventional technology]

従来、太陽電池と合成樹脂製の基材よりなる支持体とを
真空ラミネート法を用いて接着し、モジュール化する時
、接着剤として一般的にエチレン−酢酸ビニル共重合体
、ポリビニルブチラール等のシート状接着剤が用いられ
る。
Conventionally, when a solar cell and a support made of a synthetic resin base material are bonded together using a vacuum lamination method to form a module, sheets of ethylene-vinyl acetate copolymer, polyvinyl butyral, etc. are generally used as the adhesive. adhesive is used.

この際、接着剤の接着性を向上させる為に、100℃〜
150℃に加熱する必要があり、支持体の基材として熱
変形温度が、この時の加熱温度以下のものを使用すると
、基材の収縮等による反りが生じたり、支持体表面の肌
荒れ、溶融による流れ等の変形を生じる為、支持体の基
材として少なくとも100℃以上の熱変形温度を有する
高価な合成+Δ(脂を選択する必要があった。
At this time, in order to improve the adhesive properties of the adhesive,
It is necessary to heat the support to 150°C, and if a material with a heat deformation temperature below the heating temperature is used as the base material, warping may occur due to shrinkage of the base material, roughening of the surface of the support, or melting. Therefore, it was necessary to select an expensive synthetic +Δ(fat) having a heat distortion temperature of at least 100° C. as the base material for the support.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明が達成しようとする目的は、上記問題点に鑑み、
太陽電池と合成樹脂製の基材よりなる支持体とをシート
状の接着剤を用いて、真空ラミネート法でモジュール化
する時、その時の加熱温度より低い熱変形温度を有する
合成樹脂、例えば汎用性が高く、安価なポリ塩化ビニル
等の合成樹脂を用いて、信頼性が高く、安価で軽量の太
陽電池モジュール及びそのモジュール化方法を実現する
ことである。
In view of the above problems, the purpose of the present invention is to
When modularizing a solar cell and a support made of a synthetic resin base material using a sheet adhesive using a vacuum lamination method, a synthetic resin that has a heat distortion temperature lower than the heating temperature at that time, such as a general-purpose resin, is used. The object of the present invention is to realize a highly reliable, inexpensive, and lightweight solar cell module and a method for modularizing the same by using a synthetic resin such as polyvinyl chloride, which is highly reliable and inexpensive.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記目的を達成する為に、太陽電池と、熱変
形温度が低い基材を利用した支持体とを、シート状接着
剤で接着してなる太陽電池モジュール及び太陽電池と、
熱変形温度が低い基材を利用した支持体とを、シート状
接着剤を用いて、前記基材の熱変形温度以上で真空ラミ
ネート加工する太陽電池のモジュール化方法を開示する
ものである。
In order to achieve the above object, the present invention provides a solar cell module and a solar cell in which a solar cell and a support using a base material with a low heat distortion temperature are adhered with a sheet adhesive;
This invention discloses a method for modularizing a solar cell, in which a support using a base material with a low heat distortion temperature is vacuum laminated using a sheet adhesive at a temperature higher than the heat distortion temperature of the base material.

〔作用〕[Effect]

本発明に係る太陽電池モジュール及びそのモジュール化
方法は上述のようにしてなる為、太陽電池の支持体の基
材として、ポリ塩化ビニル、ポリスチレン、アクリル等
の熱変形温度の低い汎用の合成樹脂を用いて、真空ラミ
ネート法により太陽電池をモジュール化して、信頼性が
高く、安価で軽量の太陽電池を得るものである。
Since the solar cell module and its modularization method according to the present invention are constructed as described above, a general-purpose synthetic resin with a low heat distortion temperature such as polyvinyl chloride, polystyrene, or acrylic is used as the base material of the solar cell support. Using this technology, solar cells can be modularized by vacuum lamination to obtain highly reliable, inexpensive, and lightweight solar cells.

〔実施例〕〔Example〕

本発明の詳細を図示した実施例に基づいて説明する。 The details of the present invention will be explained based on illustrated embodiments.

第1図は、本発明に係る太陽電池モジュールの第1実施
例の断面図である。
FIG. 1 is a sectional view of a first embodiment of a solar cell module according to the present invention.

図中1は太陽電池セルであり、単結晶系、多結晶系、ア
モルファス系等いずれも採用されるものであり、特に限
定されるものではない。
In the figure, reference numeral 1 indicates a solar cell, and any one of a single crystal type, a polycrystal type, an amorphous type, etc. is adopted, and is not particularly limited.

3は太陽電池セル1の受光面と背設する面に接着剤2を
介して取付けられる合成樹脂製の支持体である。
Reference numeral 3 denotes a support made of synthetic resin that is attached via adhesive 2 to the light-receiving surface of the solar cell 1 and the surface disposed behind it.

該支持体3は、当該太陽電池モジュール全体を支える合
成樹脂製のもので、材質としては種々のものが考えられ
るが、ここではポリ塩化ビニル、ポリスチレン、アクリ
ル等の熱可塑性樹脂のうち熱変形温度が100℃以下の
低いものを用いる。
The support body 3 is made of synthetic resin that supports the entire solar cell module, and various materials can be considered, but here, among thermoplastic resins such as polyvinyl chloride, polystyrene, and acrylic, thermoplastic resins with heat deformation temperature are used. Use one with a low temperature of 100°C or less.

また、接着剤2としては、エチレン−酢酸ビニル共重合
体、ポリビニルブチラール等のシート状の接着剤が採用
されるものである。
Further, as the adhesive 2, a sheet adhesive such as ethylene-vinyl acetate copolymer, polyvinyl butyral, etc. is employed.

第2図は、本発明に係る太陽電池モジュールの第2実施
例の断面図である。
FIG. 2 is a sectional view of a second embodiment of the solar cell module according to the present invention.

この実施例では、太陽電池セル1の受光面と背設する面
に接着剤2を介して支持体3を取付けたことは第1実施
例と同様であるが、太陽電池セルlの受光面に、透光性
の透明保護材5を接着剤4を介して取付けたものであり
、この透明保護林5は、ガラス、フッ素系フィルム、ポ
リエステル系フィルムその他の透明耐候性フィルム等か
らなる透光性のシートが採用される。
This embodiment is similar to the first embodiment in that a support 3 is attached to the light-receiving surface of the solar cell 1 and the surface placed behind it via an adhesive 2, but the support 3 is attached to the light-receiving surface of the solar cell , a light-transmitting transparent protective material 5 is attached via an adhesive 4. seats will be adopted.

第3図は、本発明に係る太陽電池モジュールの第3実施
例の断面図である。
FIG. 3 is a sectional view of a third embodiment of the solar cell module according to the present invention.

この実施例では、太陽電池セル1の受光面に透明の支持
体3が接着剤2を介して取付けられており、この支持体
3は、透光性を有する透明アクリル板等からなるもので
、やはり熱変形温度は100℃以下の合成樹脂である。
In this embodiment, a transparent support 3 is attached to the light-receiving surface of a solar cell 1 via an adhesive 2, and this support 3 is made of a transparent acrylic plate or the like having translucency. After all, it is a synthetic resin with a heat deformation temperature of 100°C or less.

また、太陽電池セル1の受光面と背設する面には、接着
剤4を介して保!用のアルミニウムをサンドイッチ状に
ラミネートした耐候性フィルム6が取付けられている。
In addition, an adhesive 4 is applied to the light-receiving surface of the solar cell 1 and the surface that is placed behind it. A weather-resistant film 6 made of a sandwich-laminated aluminum film is attached.

上述の第1実施例〜第3実施例において、接着剤2及び
接着剤4としては、エチレン−酢酸ビニル共重合体、ポ
リビニルブチラール等のシート状接着剤が採用されるも
のであるが、このような接着剤の接着性を向上させる為
に、100 ’c〜150°Cの加熱が必要であり、上
述の実施例において支持体3の基材として用いた合成樹
脂は、ポリ塩化ビニル、ポリスチレン、アクリル樹脂等
の熱変形温度の低いものである為、変形するものである
In the first to third embodiments described above, sheet adhesives such as ethylene-vinyl acetate copolymer and polyvinyl butyral are used as the adhesive 2 and the adhesive 4. In order to improve the adhesion of the adhesive, heating at 100' to 150°C is necessary, and the synthetic resins used as the base material of the support 3 in the above examples include polyvinyl chloride, polystyrene, It deforms because it has a low heat deformation temperature, such as acrylic resin.

この為に、第4図に断面図を示す真空ラミネート装置を
用いる。
For this purpose, a vacuum laminating apparatus whose sectional view is shown in FIG. 4 is used.

即ち、上室7及び王室8内に設置された型枠9に支持体
3、接着剤2、太陽電池セル1、接着剤4、透°明保護
材5を順次積層して、装置内を真空引して材料を型枠9
内で密着させる。
That is, the support 3, the adhesive 2, the solar cell 1, the adhesive 4, and the transparent protective material 5 are sequentially laminated on the formwork 9 installed in the upper chamber 7 and the royal chamber 8, and the inside of the apparatus is vacuumed. Pull the material into formwork 9
Close it inside.

そして、材料を100 ’C〜150℃に加熱するとと
もに、上室7側から加圧し、材料が冷却するまで、加圧
し続ける。
Then, the material is heated to 100'C to 150C and pressurized from the upper chamber 7 side, and the pressure is continued until the material is cooled.

加圧方法は、上室7に大気を導入することによってもよ
く、また空気あるいは窒素等を強制的に導入して大気圧
以上に加圧してもよい。
Pressurization may be carried out by introducing atmospheric air into the upper chamber 7, or by forcibly introducing air, nitrogen, or the like to increase the pressure to above atmospheric pressure.

尚、10は上室7と下室8とを分離する為のシリコンゴ
ム系の隔膜である。
Note that 10 is a silicone rubber-based diaphragm for separating the upper chamber 7 and the lower chamber 8.

例えば、太陽電池セル1にアモルファスシリコン太陽電
池、支持体3にポリ塩化ビニル、接着剤2及び接着剤4
にエチレン−酢酸ビニル共重合体をそれぞれ用いた時に
、大気圧1 kg / ci、150℃の温度で15分
間加熱して、その後加圧し続け、冷却するのを待って取
り出せば、好適な太陽電池モジュールが得られた。
For example, the solar cell 1 is an amorphous silicon solar cell, the support 3 is polyvinyl chloride, the adhesive 2 and the adhesive 4.
If ethylene-vinyl acetate copolymer is used for 15 minutes at an atmospheric pressure of 1 kg/ci and a temperature of 150°C for 15 minutes, then pressurization is continued, and the solar cell is taken out after cooling, a suitable solar cell can be obtained. module was obtained.

この時、型枠9は、耐熱性を有し、材料との接着を防ぐ
為に、フッ素樹脂により加工されたちのを用いる。
At this time, the formwork 9 used is one processed with fluororesin to have heat resistance and prevent adhesion to the material.

このようにしてなる太陽電池モジュールは、真空ラミネ
ート加工の際に、型枠9を設けている為、熱変形温度が
接着に最適な加熱温度よりも低い合成樹脂を基材に用い
ても、加熱圧縮時に合成樹脂が流れたりすることがなく
、また加熱後、冷却するまで加圧することにより、支持
体3の変形による反りや肌荒れ等が防止でき、支持体の
収縮率を小さく、安定化することができるので、ポリ塩
化ビニル、ポリスチレン、アクリル樹脂等を用いて安価
な太陽電池モジュールを構成することができる。
Since the solar cell module made in this way is provided with a formwork 9 during vacuum lamination, even if a synthetic resin whose heat deformation temperature is lower than the optimum heating temperature for bonding is used as the base material, it will not heat up. The synthetic resin does not flow during compression, and by applying pressure after heating until cooling, it is possible to prevent warping, rough skin, etc. due to deformation of the support 3, and to reduce and stabilize the shrinkage rate of the support. Therefore, an inexpensive solar cell module can be constructed using polyvinyl chloride, polystyrene, acrylic resin, etc.

また型枠を用いずに加工することも可能であるが、支持
体3が熱変形することによる寸法ずれが生じる為、切削
等の後加工が必要となる。
It is also possible to process without using a formwork, but dimensional deviations occur due to thermal deformation of the support 3, so post-processing such as cutting is required.

本発明に係る太陽電池のモジュール化方法によれば、合
成樹脂製の支持体3が、その熱変形温度以上にされた後
、加圧された状態で冷却されるので、いわゆる熱アニー
ルによって、成型歪みが緩和されて、モジュール化した
後の成型歪みに起因する変形を防止することができ、信
頼性のある太陽電池モジュールを得ることができる。
According to the method for modularizing solar cells according to the present invention, the support body 3 made of synthetic resin is heated to a temperature higher than its heat deformation temperature and then cooled under pressure, so that it is molded by so-called thermal annealing. Strain is relaxed, deformation caused by molding distortion after modularization can be prevented, and a reliable solar cell module can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明に係る太陽電池モジュール及びそのモジュール化
方法は、以上のようにしてなる為、熱変形温度の低い合
成樹脂を支持体に用いて、安価で軽量、しかも信頼性の
高い太陽電池モジュールを得ることを可能とするもので
ある。
Since the solar cell module and the method for modularizing the same according to the present invention are constructed as described above, a solar cell module that is inexpensive, lightweight, and highly reliable is obtained by using a synthetic resin with a low heat distortion temperature as a support. This is what makes it possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る太陽電池モジュールの第1実施例
の断面図、第2図は本発明に係る太陽電池モジュールの
第2実施例の断面図、第3図は本発明に係る太陽電池モ
ジュールの第3実施例の断面図、第4図は本発明に係る
太陽電池モジュールのモジュール化する装置の断面図で
ある。 1:太陽電池セル、  2:接着剤、 3:支持体、     4:接着剤、 5:]3明保;!(オ、    6:フィルム、7二上
室、       8:下室、 9:型枠、      10:隔膜。 jII  図 第 2 図 第 3 図 第4 図
FIG. 1 is a cross-sectional view of a first embodiment of a solar cell module according to the present invention, FIG. 2 is a cross-sectional view of a second embodiment of a solar cell module according to the present invention, and FIG. 3 is a solar cell according to the present invention. FIG. 4 is a cross-sectional view of a third embodiment of the module, and FIG. 4 is a cross-sectional view of an apparatus for modularizing a solar cell module according to the present invention. 1: Solar cell, 2: Adhesive, 3: Support, 4: Adhesive, 5: ] 3 Akebo;! (E, 6: Film, 7 Upper chamber, 8: Lower chamber, 9: Formwork, 10: Diaphragm. jII Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1)太陽電池と、熱変形温度が低い基材を利用した支持
体とを、シート状接着剤で接着してなる太陽電池モジュ
ール。 2)太陽電池と、熱変形温度が低い基材を利用した支持
体とを、シート状接着剤を用いて、前記基材の熱変形温
度以上で真空ラミネート加工する太陽電池のモジュール
化方法。 3)真空ラミネート加工する際に、必要に応じて型枠を
用い、一方から加圧し続けることを特徴とする特許請求
の範囲第2項記載の太陽電池のモジュール化方法。 4)基材として、熱変形温度が100℃以下の合成樹脂
を用いる特許請求の範囲第2項または第3項記載の太陽
電池のモジュール化方法。 5)基材として、ポリ塩化ビニル、ポリスチレン、アク
リル樹脂のうちから選択した合成樹脂を用いる特許請求
の範囲第2項または第3項または第4項記載の太陽電池
のモジュール化方法。
[Scope of Claims] 1) A solar cell module formed by bonding a solar cell and a support using a base material with a low heat distortion temperature with a sheet adhesive. 2) A method for modularizing a solar cell, in which a solar cell and a support using a base material with a low heat distortion temperature are vacuum laminated using a sheet adhesive at a temperature equal to or higher than the heat distortion temperature of the base material. 3) A method for modularizing solar cells according to claim 2, characterized in that during vacuum lamination, pressure is continued from one side using a formwork if necessary. 4) A method for modularizing solar cells according to claim 2 or 3, in which a synthetic resin having a heat distortion temperature of 100° C. or lower is used as the base material. 5) A method for modularizing a solar cell according to claim 2, 3, or 4, in which a synthetic resin selected from polyvinyl chloride, polystyrene, and acrylic resin is used as the base material.
JP61294222A 1986-12-10 1986-12-10 Solar cell module and modularization thereof Granted JPS63147375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61294222A JPS63147375A (en) 1986-12-10 1986-12-10 Solar cell module and modularization thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61294222A JPS63147375A (en) 1986-12-10 1986-12-10 Solar cell module and modularization thereof

Publications (2)

Publication Number Publication Date
JPS63147375A true JPS63147375A (en) 1988-06-20
JPH0558677B2 JPH0558677B2 (en) 1993-08-27

Family

ID=17804915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61294222A Granted JPS63147375A (en) 1986-12-10 1986-12-10 Solar cell module and modularization thereof

Country Status (1)

Country Link
JP (1) JPS63147375A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03124068A (en) * 1989-10-06 1991-05-27 Taiyo Yuden Co Ltd Thin-film element and its manufacture
JPH0446558U (en) * 1990-08-27 1992-04-21
JP2007242677A (en) * 2006-03-06 2007-09-20 Sekisui Jushi Co Ltd Solar battery module, method of manufacturing the same and solar battery system
WO2011067840A1 (en) * 2009-12-02 2011-06-09 トヨタ自動車株式会社 Solar cell module manufacturing device
JP2012216828A (en) * 2011-03-28 2012-11-08 Mitsubishi Chemicals Corp Manufacturing method of solar cell module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03124068A (en) * 1989-10-06 1991-05-27 Taiyo Yuden Co Ltd Thin-film element and its manufacture
JPH0446558U (en) * 1990-08-27 1992-04-21
JP2007242677A (en) * 2006-03-06 2007-09-20 Sekisui Jushi Co Ltd Solar battery module, method of manufacturing the same and solar battery system
WO2011067840A1 (en) * 2009-12-02 2011-06-09 トヨタ自動車株式会社 Solar cell module manufacturing device
JPWO2011067840A1 (en) * 2009-12-02 2013-04-18 トヨタ自動車株式会社 Solar cell module manufacturing equipment
JP2012216828A (en) * 2011-03-28 2012-11-08 Mitsubishi Chemicals Corp Manufacturing method of solar cell module

Also Published As

Publication number Publication date
JPH0558677B2 (en) 1993-08-27

Similar Documents

Publication Publication Date Title
JP4401649B2 (en) Manufacturing method of solar cell module
US4504341A (en) Fabricating shaped laminated transparencies
US20030005954A1 (en) Solar cell module and method of manufacturing the same
GB1430484A (en) Method of producing laminated sheet-like material
EP2525976A2 (en) System and method for laminating modules
JPS6257268B2 (en)
JPS60260164A (en) Solar battery module and manufacture thereof
JPS63276542A (en) Laminating and bonding apparatus
JPS63147375A (en) Solar cell module and modularization thereof
JP2004179261A (en) Device and method for manufacturing solar battery module
JP2001077387A (en) Solar battery module
JP3099202B2 (en) Method for manufacturing flexible lightweight solar cell module
JPS6169179A (en) Manufacture of solar cell panel
JPH07186331A (en) Production of laminate
JP3856224B2 (en) Manufacturing method of solar cell module
EP0103828B1 (en) Fabricating shaped laminated transparencies
JP2002111014A (en) Solar light generating plastic module
JPH0534120Y2 (en)
JPH09312408A (en) Manufacture of solar battery module
JP2001102614A (en) Method for manufacturing solar cell panel
JPH0537483Y2 (en)
JPH11254526A (en) Laminating apparatus and method
JPH0435400Y2 (en)
JP2641794B2 (en) Method of manufacturing solar cell module
JP3433161B2 (en) Method of manufacturing solar cell module

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees