JPS6168532A - Spot size measurement for optical fiber - Google Patents

Spot size measurement for optical fiber

Info

Publication number
JPS6168532A
JPS6168532A JP18972384A JP18972384A JPS6168532A JP S6168532 A JPS6168532 A JP S6168532A JP 18972384 A JP18972384 A JP 18972384A JP 18972384 A JP18972384 A JP 18972384A JP S6168532 A JPS6168532 A JP S6168532A
Authority
JP
Japan
Prior art keywords
optical fiber
light
fiber
spot size
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18972384A
Other languages
Japanese (ja)
Inventor
Shintaro Izutsui
泉対 信太郎
Yukitoshi Kudo
工藤 行敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP18972384A priority Critical patent/JPS6168532A/en
Publication of JPS6168532A publication Critical patent/JPS6168532A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To measure the intensity distribution of light of a single-mode optical fiber, by moving an optical fiber probe expanding the end face of the optical fiber with a lens to measure the light intensity distribution at positions. CONSTITUTION:Output of a light source 1 is introduced with a pig-tail fiber 2 with a one end connector, which connected to a fiber 4 to be measured with a V-groove connector 3. The other end of the fiber 4 is set on a stage of an XYZ fine adjusting base 5 and monitored with a eye-piece lens 13 to focus. An optical fiber probe 9 is set at the position where an image is formed with lenses 7 and 8 and the light receiving end side thereof is moved in X and Y axes with a fine adjusting base 6 controlled with a CPU12 to pick up light at positions of an expanded image in a spot manner sequentially to detect. The other end of the probe 9 is connected to a detector 10 and light detected with this device is inputted into the CPU12 through an amplifier 11 to determine the spot size by a computation processing.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明の光ファイバのスポットサイズ測定方法は、光フ
ァイバ端面の寸法を測定するものであり、特にシングル
モード光ファイバの寸法測定に使用するのに適するもの
である。
Detailed Description of the Invention (Industrial Application Field) The optical fiber spot size measuring method of the present invention measures the dimensions of the end face of an optical fiber, and is particularly suitable for measuring the dimensions of a single mode optical fiber. It is suitable for

(従来の技術) 光ファイバのスポットサイズは、光ファイバ端面の光強
度分布(第2図)のうち光強度が最大である中心点Oか
ら光強度が最大値のl / eに減少する点Pまでの半
径である。
(Prior art) The spot size of an optical fiber is defined as the point P where the light intensity decreases from the center point O where the light intensity is maximum to the maximum value l/e in the light intensity distribution at the end face of the optical fiber (Fig. 2). The radius is up to.

このスポットサイズの測定方法にはニアフィールドパタ
ーン法(NFP法)がある。これは光ファイバの光強度
分布を顕微鏡で拡大し、それをテレビカメラを通してス
ポットサイズを測定する方法である。
There is a near field pattern method (NFP method) as a method for measuring this spot size. This is a method of magnifying the light intensity distribution of an optical fiber using a microscope and measuring the spot size using a television camera.

(発明が解決しようとする問題点) NFP法はテレビカメラを使用するため受光感度むら、
位置歪、暗電流、ブルーミング(にじみ出し)等の問題
があるため測定値が不正確であるという問題があった。
(Problems to be solved by the invention) Since the NFP method uses a television camera, there is unevenness in light reception sensitivity.
There was a problem in that the measured values were inaccurate due to problems such as positional distortion, dark current, and blooming.

また従来はスポットサイズの測定にFFP法を使用する
こともおこなわれていたが、これはモードパターンを直
接測定できないという問題がある。
Furthermore, conventionally, the FFP method has been used to measure the spot size, but this method has a problem in that the mode pattern cannot be directly measured.

(問題点を解決するための手段) 本発明はNFP法における測定誤差の要因となるテレビ
カメラを使用せずに、ファイバプローブと直線性の良い
検出器の組合せにより測定するようにしたものである。
(Means for Solving the Problems) The present invention uses a combination of a fiber probe and a detector with good linearity to perform measurements without using a television camera, which causes measurement errors in the NFP method. .

本発明の方法は、光ファイバの端面をレンズで拡大して
結像させ、この像を光ファイバプローブで検出すると共
に光ファイバプローブの位置を移動させることによって
光ファイバ端面の各位置の光分4j強度を測定するよう
にしたものである。
The method of the present invention magnifies the end face of an optical fiber with a lens to form an image, detects this image with an optical fiber probe, and moves the position of the optical fiber probe, thereby obtaining light components 4j at each position on the end face of the optical fiber. It is designed to measure strength.

その−例として第1図に示すものは次のようにしである
The example shown in FIG. 1 is as follows.

L E D又はLD等の光源lからの出力を、片端コネ
クタイζIきピッグテールファイバ2で導き、このファ
イバ2をV溝連結具3により被測定ファイバ4と接続す
る。
The output from a light source l such as LED or LD is guided through a pigtail fiber 2 with a connector at one end ζI, and this fiber 2 is connected to a fiber to be measured 4 through a V-groove connector 3.

被測定ファイバ4の多端はXYZ微調台5のステージに
セットシ、接眼レンズ13によってモニタしてピントを
合せる。
The other end of the fiber 4 to be measured is set on a stage of an XYZ fine adjustment table 5, and is monitored and focused by an eyepiece 13.

レンズ7.8により結像された位置に光ファイバプロー
ブ9を設置し、この光ファイバプローブ9の受光端側を
中央演算処理装置(CPU)12でコントロールされる
CPUコントロール微動台6によりXY軸の2軸に動か
し′て、拡大された像の各位置の光をスポット的に順次
取出して検出する。
An optical fiber probe 9 is installed at the position imaged by the lens 7.8, and the light receiving end side of the optical fiber probe 9 is moved along the XY axes by a CPU control fine movement table 6 controlled by a central processing unit (CPU) 12. By moving it along two axes, light from each position of the enlarged image is sequentially extracted and detected in spots.

ファイバプローブ9の多端はディテクタlOに接続し、
これで検出されてた光をロックインアンプ11を通して
中央演算処理装置(CPU)12に入力Sせ、光ファイ
バプローブ9で検出した各位置の光レベルをこのCPU
で演算処理して光シングルモードファイバのモードパタ
ーンをJll定する。
The other end of the fiber probe 9 is connected to the detector lO,
The detected light is now input to the central processing unit (CPU) 12 through the lock-in amplifier 11, and the light level at each position detected by the optical fiber probe 9 is input to the central processing unit (CPU) 12.
The mode pattern of the optical single mode fiber is determined by performing calculation processing.

第1図のファイバプローブ9としては開口比NAが01
55、コア径が110gm程度の高NAの光ファイバを
使用するのがよい。
The fiber probe 9 in FIG. 1 has an aperture ratio NA of 01.
55. It is preferable to use a high NA optical fiber with a core diameter of about 110 gm.

ディテクタ10としては熱雑音を下げるため液体窒素で
冷却されたゲルマニュウムデイテクタを使用するのがよ
い。
As the detector 10, it is preferable to use a germanium detector cooled with liquid nitrogen in order to reduce thermal noise.

第1図の14はハーフミラ−である。14 in FIG. 1 is a half mirror.

(発明の効果) 本発明は以−1−のようにしてなるため次のような各種
効果がある。
(Effects of the Invention) Since the present invention is constructed as described below-1-, it has the following various effects.

(1)テレビカメラを使用しないため、テレビカメラを
使用する場合の各種欠点である直線性、位置歪、n12
電流、プルーミング等が全て解消され、そのためシンプ
ルモードファイバの光強度分布を1確に測定することが
できる。
(1) Since a TV camera is not used, there are various drawbacks when using a TV camera such as linearity, position distortion, n12
Current, pluming, etc. are all eliminated, and therefore the light intensity distribution of the simple mode fiber can be accurately measured.

(2)光ファイバプローブと直線性の良いディテクタの
紹合せにより測定するものであるため高精度の1111
定ができる。
(2) Highly accurate 1111 because the measurement is performed by introducing an optical fiber probe and a detector with good linearity.
can be determined.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はシンプルモードファイバのスポットサイズ測定
装置の一例を概略図、第2図はスポットサイズの説明図
である。 4は被測定ファイバ、 6はCPUコントロール微調合、 7は対物レンズ 8は接眼レンズ、 9は光ファイバプローブ 10はディテクタ、 12は中央演算処理装置
FIG. 1 is a schematic diagram of an example of a spot size measuring device for a simple mode fiber, and FIG. 2 is an explanatory diagram of the spot size. 4 is a fiber to be measured, 6 is a CPU control fine adjustment, 7 is an objective lens 8 is an eyepiece, 9 is an optical fiber probe 10 is a detector, 12 is a central processing unit

Claims (1)

【特許請求の範囲】[Claims] 光ファイバ端面の光強度分布をレンズを用いて拡大し、
光強度を検出する光ファイバプローブを移動させて光強
度分布における各位置の光強度を検出し、この検出デー
タから中央演算処理装置でスポットサイズを求めるよう
にしたことを特徴とする光ファイバのスポットサイズ測
定方法。
The light intensity distribution on the end face of the optical fiber is expanded using a lens,
An optical fiber spot characterized in that an optical fiber probe for detecting light intensity is moved to detect the light intensity at each position in the light intensity distribution, and a central processing unit calculates the spot size from this detected data. Size measurement method.
JP18972384A 1984-09-12 1984-09-12 Spot size measurement for optical fiber Pending JPS6168532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18972384A JPS6168532A (en) 1984-09-12 1984-09-12 Spot size measurement for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18972384A JPS6168532A (en) 1984-09-12 1984-09-12 Spot size measurement for optical fiber

Publications (1)

Publication Number Publication Date
JPS6168532A true JPS6168532A (en) 1986-04-08

Family

ID=16246109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18972384A Pending JPS6168532A (en) 1984-09-12 1984-09-12 Spot size measurement for optical fiber

Country Status (1)

Country Link
JP (1) JPS6168532A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134225A (en) * 1987-11-20 1989-05-26 Nippon Telegr & Teleph Corp <Ntt> Mode field diameter measuring instrument for single mode optical fiber
JPH01295529A (en) * 1988-05-23 1989-11-29 Nec Corp Integrated circuit with switching clock
WO2002059665A3 (en) * 2001-01-24 2003-02-20 Adc Telecommunications Inc Mems optical switch including tapered fiber with hemispheric lens
CN105092218A (en) * 2015-09-10 2015-11-25 安徽华夏显示技术股份有限公司 Test device for striped glass screens

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134225A (en) * 1987-11-20 1989-05-26 Nippon Telegr & Teleph Corp <Ntt> Mode field diameter measuring instrument for single mode optical fiber
JPH01295529A (en) * 1988-05-23 1989-11-29 Nec Corp Integrated circuit with switching clock
WO2002059665A3 (en) * 2001-01-24 2003-02-20 Adc Telecommunications Inc Mems optical switch including tapered fiber with hemispheric lens
CN105092218A (en) * 2015-09-10 2015-11-25 安徽华夏显示技术股份有限公司 Test device for striped glass screens

Similar Documents

Publication Publication Date Title
Anderson et al. Spot size measurements for single-mode fibers-a comparison of four techniques
CN105784334B (en) Optical-fiber laser beam quality measurement method based on photodetector and CCD camera
CN104568389A (en) Bilateral dislocation differential confocal element parameter measuring method
CN114046740B (en) System for measuring diameter of optical waveguide mode field
JPS6168532A (en) Spot size measurement for optical fiber
WO2017200222A1 (en) Precision measurement system using interferometer and image
CN114839730B (en) Emergent mode field measuring device and method of optical chip
CN116086776A (en) Device and method for detecting divergence angle of collimated light beam
CN210005216U (en) transmitted wavefront detection devices
CN111982478A (en) Method and device for measuring optical diffraction loss of laser pore pipeline
Fatadin et al. Accurate magnified near-field measurement of optical waveguides using a calibrated CCD camera
JPH0540158A (en) Method and device for positioning probe for measuring electric field of integrated circuit
US7145646B2 (en) On-line tension measurement in an optical fiber
Rana et al. A Non-contact Method for Rod Straightness Measurement Based on Quadrant Laser Sensor
JPH05107025A (en) Coaxial-degree measuring apparatus
KR0160374B1 (en) Method of deciding optical ferrule location and apparatus of detecting optical fiber for repairing optical line
JPS6255542A (en) Optical system inspecting device
McLean et al. Practical considerations for high throughput wafer level tests of silicon-photonics integrated devices
WO2019134203A1 (en) Measuring device and measuring method for lens-to-screen distance of vr display device
CN118500267A (en) Flat plate thickness testing method and device for dual-fiber confocal sensor
Huang et al. High-precision measurement of effective focal length with single-mode fiber array
KR20050043164A (en) Oct(optical coherence tomography) system using a ccd(charge coupled device) camera
O'Sullivan et al. A Fizeau fringe interferometer for fiber outside diameter measurements
JPS5831858B2 (en) How to measure the bending angle of optical fiber connectors
JPH02226034A (en) Eccentricity measuring apparatus for lens