JPS6168030A - Minute sensor for measuring oxygen partial pressure - Google Patents

Minute sensor for measuring oxygen partial pressure

Info

Publication number
JPS6168030A
JPS6168030A JP59189697A JP18969784A JPS6168030A JP S6168030 A JPS6168030 A JP S6168030A JP 59189697 A JP59189697 A JP 59189697A JP 18969784 A JP18969784 A JP 18969784A JP S6168030 A JPS6168030 A JP S6168030A
Authority
JP
Japan
Prior art keywords
oxygen
electrode
partial pressure
oxygen partial
ability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59189697A
Other languages
Japanese (ja)
Inventor
健一 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP59189697A priority Critical patent/JPS6168030A/en
Publication of JPS6168030A publication Critical patent/JPS6168030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液体中の酸素分圧、特に生体中の酸素分圧変化
を連続的に測定するための改良された酸素電極に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improved oxygen electrode for continuously measuring oxygen partial pressure in liquids, particularly changes in oxygen partial pressure in living organisms.

〔従来の技術〕[Conventional technology]

体液の酸素分圧が生体に及ぼす影響は大きい。近年C1
ark型酸素電極の登場により、酸素の生体外測定が精
度高(できるようになり、呼吸障害をともなう患者の治
療を大きく進歩させた。
The oxygen partial pressure of body fluids has a great effect on living organisms. In recent years C1
The advent of the Ark-type oxygen electrode has made it possible to measure oxygen in vitro with high precision, and has greatly improved the treatment of patients with respiratory disorders.

また、心肺蘇生を目的とするICU(intens i
ve  care  uni t)の発展も酸素分圧測
定の進歩をもたらした。
In addition, the ICU (intense i) for the purpose of cardiopulmonary resuscitation is
The development of ve care units also led to advances in oxygen partial pressure measurements.

こうした試料採取による生体外測定は、採取に頻度上の
限界があり、しかも試料貯蔵の間に変化が生じて測定値
が不正確になることがある。したがって直接雪掻を生体
中に入れ酸素分圧を連続的に測定することが、理想的な
方法であることは論をまたない。
In vitro measurements using such sample collection are limited by the frequency of sample collection, and changes may occur during sample storage, resulting in inaccurate measurements. Therefore, it goes without saying that the ideal method is to continuously measure oxygen partial pressure by directly inserting a snow shovel into a living body.

生体中の酸素分圧を連続的に測定する方法も提案されて
いる。即ち白金、イリジウム、金等の金属製作用電極と
恨−塩化銀等による参照電極を用い、これら電極間に電
圧を印加して、作用電橋(陰極)で酸素の還元をおこな
い、拡散電流を測定する原理を応用したものである。
A method of continuously measuring the oxygen partial pressure in a living body has also been proposed. That is, using electrodes for manufacturing metals such as platinum, iridium, and gold and reference electrodes such as silver chloride, a voltage is applied between these electrodes, oxygen is reduced at the working bridge (cathode), and a diffusion current is generated. This is an application of the principle of measurement.

この際、生体中における心筋、の動きや血液の脈動など
によって、電極表層の酸素の濃度勾配が変化すると、測
定する拡散電液が大きな変化を受け、酸素分圧を正確に
測定できない。この問題を改良するため種々の検討がお
こなわれている。即ち、両極を酸素透過性の膜で隔離し
、電解液を内臓したいわゆる「クラーク電極」を小型化
したもの(萩原文二編“電極法による酸素測定”講談社
すイエンティフィク、1977年、を参照)、あるいは
、微細金属線電極表面を多層構造からなる多孔質膜で被
覆して、陰極表面と溶液との間に安定接触状態を作り出
さしめる方法(公開特許公報昭57−117838)等
が提案されている。
At this time, if the oxygen concentration gradient on the surface of the electrode changes due to the movement of the cardiac muscle or the pulsation of blood in the living body, the diffused electrolyte to be measured undergoes a large change, making it impossible to accurately measure the oxygen partial pressure. Various studies have been made to improve this problem. In other words, it is a miniaturized version of the so-called "Clark electrode," which separates both poles with an oxygen-permeable membrane and contains an electrolyte (see Bunji Hagiwara, "Oxygen Measurement by Electrode Method," Kodansha Scientific, 1977). ), or a method of creating a stable contact state between the cathode surface and the solution by coating the surface of a fine metal wire electrode with a porous membrane consisting of a multilayer structure (Japanese Patent Publication No. 117838/1983) has been proposed. has been done.

しかしながら、これらの方法は、電極形態が大きく、特
定の部位、例えば太い血管中にしか挿入出来ないとか、
多孔質膜がはがれて医源病になる可能性がある等の欠点
があった。
However, these methods require large electrodes and can only be inserted into specific areas, such as large blood vessels.
There were drawbacks such as the possibility of the porous membrane peeling off and causing iatrogenic diseases.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、これらの欠点を除き、連続的にしかも安定し
て正確に生体中の酸素分圧を測定できる、生体用微小セ
ンサーを提供することを目的とする。
An object of the present invention is to provide a biological microsensor that can continuously, stably, and accurately measure the oxygen partial pressure in a living body, while eliminating these drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明は、表面が酸素還元能を持たない部分と複
数の酸素還元能を有する電極部分とからなる酸素分圧測
定用微小センサーに関する。
That is, the present invention relates to a microsensor for measuring oxygen partial pressure, the surface of which is composed of a portion without oxygen reducing ability and a plurality of electrode portions having oxygen reducing ability.

従来の電気化学的方法は、何れも、溶液と陰極界面との
間に生ずる酸素濃度勾配に基づく拡散電流を測定するも
のである。
All conventional electrochemical methods measure the diffusion current based on the oxygen concentration gradient that occurs between the solution and the cathode interface.

この場合電極と溶液との界面(拡散層)は流れの影響を
受は安定に保ちにくいので、測定値は不安定となる。
In this case, the interface between the electrode and the solution (diffusion layer) is difficult to keep stable due to the influence of the flow, so the measured value becomes unstable.

本発明者はか\る問題を克服する方法につき鋭意検討し
本発明に到達した。
The inventors of the present invention have conducted extensive research into ways to overcome these problems and have arrived at the present invention.

即ち、陰極界面と溶液の間に酸素濃度勾配が生じること
によって拡散層が形成されるが、この拡散層を出来る限
り小さくして、実質的に溶液中の酸素濃度と電極界面で
の酸素濃度を等しくする方法である。
That is, a diffusion layer is formed due to an oxygen concentration gradient between the cathode interface and the solution, and this diffusion layer is made as small as possible to substantially reduce the oxygen concentration in the solution and the oxygen concentration at the electrode interface. This is a method to make them equal.

即ち、電極の表面積が微小であり従って拡散層が微小で
あって、酸素還元物質が分子運動により速やかに電極表
面から除かれれば、電極表面の酸素濃度は常に溶液中の
酸素濃度と等しくなるはずである。
In other words, if the surface area of the electrode is minute, the diffusion layer is minute, and the oxygen-reducing substance is quickly removed from the electrode surface by molecular motion, the oxygen concentration on the electrode surface will always be equal to the oxygen concentration in the solution. It should be.

本発明者は、かかる考察から酸素還元能を有する電極部
分が微小であり、且つ複数個の電極部分を有するものを
用いれば、流れの影響を実質的に受けないことを見出し
本発明に到達した。
Based on these considerations, the present inventors discovered that if an electrode portion having an oxygen reducing ability is minute and has a plurality of electrode portions, it would be substantially unaffected by the flow, and arrived at the present invention. .

本発明に用いる電極部分は、酸素の還元能力を有するも
のであれば、その種類を問わない。
The electrode portion used in the present invention may be of any type as long as it has the ability to reduce oxygen.

即ち、炭素、白金、イリジウム、金などの先端を微細加
工して用いることができる。
That is, the tip of carbon, platinum, iridium, gold, or the like can be microfabricated and used.

炭素繊維を電極に用いるのは好ましい方法の一つである
。従って炭素繊維の場合について更に詳しく説明するが
、本発明は特にこれに限定されない。炭素繊維は通常そ
の直径が30μm以下であり、それ自身が酸素の還元能
力を持っているとともに容易に酸素還元能力を向上させ
ることが可能である。
One of the preferred methods is to use carbon fibers for the electrodes. Therefore, the case of carbon fiber will be explained in more detail, but the present invention is not particularly limited thereto. Carbon fibers usually have a diameter of 30 μm or less, and have the ability to reduce oxygen by themselves, and can easily improve the ability to reduce oxygen.

炭素繊維の酸素還元能力を向上させる方法としては、各
種金属(白金、イリジウム、金、亜鉛など)を表面また
は表層に付着させる方法がある。付着方法は真空蒸着法
、スパック法、メッキ法、イオン注入法など、通常よく
用いられる方法を適用することができる。
As a method of improving the oxygen reduction ability of carbon fibers, there is a method of attaching various metals (platinum, iridium, gold, zinc, etc.) to the surface or surface layer. As the attachment method, commonly used methods such as a vacuum evaporation method, a spackle method, a plating method, an ion implantation method, etc. can be applied.

用いられる炭素繊維の種類は特に制限がなく、ポリアク
リロニトリル、ピッチ、レーヨン、フェノール樹脂など
を原料とする炭素繊維や気相成長法で作製した炭素繊維
が好ましい。炭素繊維の直径は30μm以下であればよ
いが、20μm以下であるのが好ましい。
The type of carbon fiber used is not particularly limited, and carbon fibers made from polyacrylonitrile, pitch, rayon, phenol resin, etc. or carbon fibers produced by vapor phase growth are preferred. The diameter of the carbon fibers may be 30 μm or less, but preferably 20 μm or less.

直径が、30μm以上になると流れの影響を受けやすく
なる。炭素繊維の場合は、複数でなくても1本で使用す
ることも可能である。
When the diameter is 30 μm or more, it becomes susceptible to the influence of flow. In the case of carbon fiber, it is also possible to use one fiber instead of a plurality.

また、あまり多数の炭素繊維を用いるとセンサーの形態
が大きくなり好ましくない。通常酸素還元能を持つ電極
部分の面積の総計が30〜10.000平方ミクロンの
範囲であり、特に100〜s、ooo平方ミクロンであ
ることが好ましい。
Furthermore, if too many carbon fibers are used, the shape of the sensor becomes large, which is not preferable. Usually, the total area of the electrode portions having oxygen reducing ability is in the range of 30 to 10,000 square microns, particularly preferably 100 to 10,000 square microns.

酸素還元能を有する電極部分の形状は円形、だ円形、長
方形、不定形等何でも構わないが、その最大径(最長距
離)が30μm以下であることが好ましい。
The shape of the electrode portion having oxygen reducing ability may be circular, oval, rectangular, irregular, etc., but it is preferable that its maximum diameter (longest distance) is 30 μm or less.

酸素還元能を有する部分間の間隔は最短距離6μm以上
が好ましい。 これより短いと流れの影響を受けやすく
なる。間隔が広いのは差支えないが、酸素還元能を持つ
部分の面積の総計が10.000平方ミクロン以上にな
るのはセンサーの形態が大きくなりすぎるため好ましく
ないので、その面積以内になるような間隔が好ましい。
The minimum distance between the parts having oxygen reducing ability is preferably 6 μm or more. If it is shorter than this, it will be more susceptible to the influence of the flow. There is no problem with the spacing being wide, but it is not preferable for the total area of the parts with oxygen reduction ability to exceed 10,000 square microns because the sensor will become too large, so the spacing should be within that area. is preferred.

炭素繊維は酸素還元能力のない物質(マトリックスと呼
ぶ)で周囲をおおって本発明のセンサーとして用いるこ
ともできる。
Carbon fibers can also be used as the sensor of the present invention by surrounding them with a substance (referred to as a matrix) that does not have oxygen reducing ability.

マトリックスの物質としては、特に制限はないが弗素樹
脂(“ケルF”など)、ポリエステル樹脂、エポキシ樹
脂、ポリフェニレンオキシド樹脂、ポリフェニレンスル
フィド樹脂、ウレタン樹脂、などの高分子材料が用いら
れ、抗血栓性の優れた樹脂を用いるのが好ましい。また
セラミックスや金属材料をマトリックスとして使うこと
も可能である。
The matrix material is not particularly limited, but polymeric materials such as fluororesins (such as "Kel-F"), polyester resins, epoxy resins, polyphenylene oxide resins, polyphenylene sulfide resins, and urethane resins are used, and they have antithrombotic properties. It is preferable to use a resin with excellent properties. It is also possible to use ceramics or metal materials as a matrix.

炭素繊維どうしの間隔が6μm以上である微小センサー
を作製する場合、炭素繊維と、酸素還元能力のない材料
から作られた繊維とを混ぜて複合材料とし、微小センサ
ーを構成するのも好ましい方法の一つである。
When producing a microsensor in which the spacing between carbon fibers is 6 μm or more, a preferable method is to mix carbon fibers with fibers made from a material that does not have oxygen reduction ability to form a composite material and construct the microsensor. There is one.

酸素還元能力のない繊維としては、ガラス繊維、アラミ
ド繊維(“ケブラー”など)、ミリコンカーバイド繊維
、ボロン繊維、アルミナ繊維、などがあるが、特に限定
はしない。
Examples of fibers without oxygen reducing ability include glass fibers, aramid fibers (such as "Kevlar"), milicon carbide fibers, boron fibers, and alumina fibers, but are not particularly limited.

複合材料のつくりかたは公知の方法に従う。The composite material is manufactured according to a known method.

また炭素繊維コンポジットを作製し、局部的に電流を流
すことも好ましい方法の−っである。
Another preferred method is to prepare a carbon fiber composite and locally apply an electric current.

酸素還元能を有する電極部分として炭素繊維をそのま\
用いても差支えないが、測定すべき還元電流を大きくし
て測定しやすいようにする目的で、炭素繊維の反応面を
修飾することにより改質するのも好ましい方法の一つで
ある。修飾材料として白金、イリジウム、金、亜鉛など
の酸素還元触媒活性のある金属材料を用いる場合は、常
法に従い、真空蒸着、スパッタリング、メッキ、イオン
注入などの方法が用いられる。
Using carbon fiber as it is as an electrode part with oxygen reduction ability
Although it may be used, one preferable method is to modify the reactive surface of carbon fiber for the purpose of increasing the reduction current to be measured and making it easier to measure. When a metal material with oxygen reduction catalytic activity such as platinum, iridium, gold, or zinc is used as a modification material, conventional methods such as vacuum evaporation, sputtering, plating, and ion implantation are used.

この際、これらの金属で炭素繊維の表面を完全に覆って
もよいが、部分的に耐着させるか、注入させても差支え
ない。
At this time, the surface of the carbon fiber may be completely covered with these metals, but it may also be partially made to resist adhesion or injected.

表面修飾法としてフタロシアニン類やプルシアンブルー
を用いることも可能である。
It is also possible to use phthalocyanines or Prussian blue as a surface modification method.

カテコールアミン等の非還元物質が存続する溶液中(生
体)の酸素分圧を連続的に測定する場合には、これらの
物質を排除し酸素のみを透過する薄膜を常法により電極
表面にはることが好ましい。
When continuously measuring the oxygen partial pressure in a solution (living body) in which non-reducing substances such as catecholamines remain, a thin film that excludes these substances and allows only oxygen to pass through is applied to the electrode surface using a conventional method. is preferred.

本発明の微小センサーは、直接生体中に挿入するため、
直径1mm以下が好ましい。
Since the microsensor of the present invention is inserted directly into a living body,
The diameter is preferably 1 mm or less.

また本発明のセンサーは、酵素または微生物と組合せて
バイオセンサーとして用いることもできる。
The sensor of the present invention can also be used as a biosensor in combination with enzymes or microorganisms.

〔発明の効果〕〔Effect of the invention〕

本発明の微小センサーは、流れの影響を実質的に受けず
、安定かつ正確に生体中の酸素濃度を測定することがで
きる。
The microsensor of the present invention is substantially unaffected by flow and can stably and accurately measure the oxygen concentration in a living body.

犬施例1 炭素繊維(“トレカM−40”、直径5.1μm)60
本(酸素還元能を有する電極部分の総面積は1178μ
m)を10本ずつ6等分し、10本ずつを出来るだけ等
間隔になるように並べ、ガラス繊維スクリムクロス(厚
さ22.5μm)を間に置いて6層に重ねた。
Dog Example 1 Carbon fiber (“Trading Card M-40”, diameter 5.1 μm) 60
(The total area of the electrode part with oxygen reduction ability is 1178μ
m) was divided into 6 equal parts of 10 pieces each, the 10 pieces were arranged at equal intervals as possible, and stacked in 6 layers with glass fiber scrim cloth (thickness 22.5 μm) placed between them.

この上から硬化剤を含んだエポキシ樹脂を流し、圧をか
けて加熱硬化した。得られた微小センサーの先端を切断
し炭素繊維の断面が出るようにし、断面が平滑になるま
で研摩した。
An epoxy resin containing a curing agent was poured over this, and the resin was heated and cured under pressure. The tip of the resulting microsensor was cut to expose the carbon fiber cross section, and the cross section was polished until it was smooth.

このようにして、60本の炭素繊維の1本、1本の間隔
の異なる2種類の微小センサー(サンプルAおよびB)
を作製した。
In this way, two types of microsensors (samples A and B) of 60 carbon fibers with different spacing between each fiber were created.
was created.

作用電極(陰極)として、上記の炭素繊維電極を、対極
に銀電極を、また参照電極として銀/塩化銀電極を用い
、酸素を飽和した生理食塩水(塩化ナトリウム0.85
重量%含有する蒸留水)中で作用電極に−0,75ボル
トの電圧を印加して酸素還元電流を測定し表1の結果を
得た。流れの影響は小さかった。炭素繊維として6トレ
カT−300” (直径7μm)を用いても同様の結果
が得られた。
The above carbon fiber electrode was used as a working electrode (cathode), a silver electrode was used as a counter electrode, and a silver/silver chloride electrode was used as a reference electrode.
The oxygen reduction current was measured by applying a voltage of -0.75 volts to the working electrode in (distilled water containing % by weight), and the results shown in Table 1 were obtained. The effect of the current was small. Similar results were obtained when 6 Torayca T-300'' (diameter 7 μm) was used as the carbon fiber.

表1 炭素繊維の配列と流れの酸素還元電流に及ぼす影
響 実施例2 炭素繊維(“トレカM−40”、直径5.1μm)19
本およびアラミド繊維(“ケブラー49”。
Table 1 Effect of carbon fiber arrangement and flow on oxygen reduction current Example 2 Carbon fiber (“Torayca M-40”, diameter 5.1 μm) 19
Books and aramid fibers (“Kevlar 49”).

直径12μ)38本を均一に混繊した束に硬化剤を含ん
だエポキシ樹脂を充分よく含浸した(酸素還元能を有す
る電極部分の総面積は372μrd)。つぎにこの含浸
した繊維束に張力を与えたまま加熱し硬化させた。
A bundle of 38 fibers (diameter: 12 μrd) uniformly mixed together was thoroughly impregnated with an epoxy resin containing a curing agent (the total area of the electrode portion having oxygen reducing ability was 372 μrd). Next, the impregnated fiber bundle was heated and cured while applying tension.

直径約100μmの針金状のコンポジットが得られた。A wire-like composite with a diameter of about 100 μm was obtained.

炭素繊維の間隔は6〜15μmであった。The spacing between carbon fibers was 6-15 μm.

側面をポリウレタン薄膜で絶縁した。片方の先端を鋭利
な刃物で切断し、その断面をサンドペーパ、ついでアル
ミ微粉末を用いて研摩した。もう一方の端のポリマ被服
をはがし、酸素ガス分圧測定装置の作用電極端子に接続
した。また、参照電極端子に銀−塩化銀電極を接続した
The sides were insulated with a polyurethane thin film. One tip was cut with a sharp knife, and the cross section was polished with sandpaper and then with fine aluminum powder. The polymer coating on the other end was peeled off and connected to the working electrode terminal of an oxygen gas partial pressure measuring device. Further, a silver-silver chloride electrode was connected to the reference electrode terminal.

ガス交換部、加熱部を有する循環装置を用いて、生理食
塩水を37℃、100m6/minで循環させ、該循環
系に上記両電極の先端を挿入した。次いで、空気をガス
交換部に流入し、生理食塩水が常時空気で飽和される状
態にした後、測定を開始した。電流測定値は液流による
影響がなく、一定値を示した。空気の代りに窒素ガスを
該循環系のガス交換部に流入すると、電流値は低下した
。常法により検量線を求め流体中の酸素分圧を求めるこ
とができた。
Physiological saline was circulated at 37° C. and 100 m 6 /min using a circulation device having a gas exchange section and a heating section, and the tips of the two electrodes were inserted into the circulation system. Next, air was introduced into the gas exchange section so that the physiological saline was constantly saturated with air, and then measurement was started. The measured current value was not affected by the liquid flow and showed a constant value. When nitrogen gas was introduced into the gas exchange section of the circulation system instead of air, the current value decreased. A calibration curve was obtained using a conventional method, and the oxygen partial pressure in the fluid could be determined.

実施例3 実施例2で得られた、断面を研摩したコンポジットの断
面をメッキ液(塩化白金塩4部、リン酸アンモ720部
、リン酸ナトリウム100部の混合液)につけ、3〜4
ポルト、電流量約IA/drrf、温度70〜90℃で
白金メ・ツキをおこなった。
Example 3 A cross-section of the composite obtained in Example 2 with a polished cross-section was immersed in a plating solution (a mixed solution of 4 parts of platinum chloride, 720 parts of ammonium phosphate, and 100 parts of sodium phosphate).
Platinum plating was carried out at a current of about IA/drrf and a temperature of 70 to 90°C.

この電極を犬の心筋に直接挿入し、酸素分圧の測定をお
こなった。心筋の激しい動きによる影響を受けず安定し
た値が得られた。
This electrode was inserted directly into the dog's heart muscle to measure oxygen partial pressure. Stable values were obtained without being affected by the intense movement of the myocardium.

Claims (4)

【特許請求の範囲】[Claims] (1)表面が、酸素還元能を持たない部分と複数の酸素
還元能を有する電極部分とからなる酸素分圧測定用微小
センサー。
(1) A microsensor for measuring oxygen partial pressure whose surface consists of a portion without oxygen reduction ability and a plurality of electrode portions with oxygen reduction ability.
(2)酸素還元能を有する電極部分の最大経が30μm
以下である特許請求の範囲第(1)項記載の微小センサ
ー。
(2) The maximum diameter of the electrode part with oxygen reduction ability is 30 μm
A microsensor according to claim (1) below.
(3)酸素還元能を有する電極部分が、炭素繊維あるい
は酸素還元触媒で修飾された炭素繊維である特許請求の
範囲第(1)項記載の微小センサー。
(3) The microsensor according to claim (1), wherein the electrode portion having oxygen reduction ability is carbon fiber or carbon fiber modified with an oxygen reduction catalyst.
(4)酸素還元能を有する電極部分の間隔の最短距離が
6μm以上である特許請求の範囲第(1)項記載の微小
センサー。
(4) The microsensor according to claim (1), wherein the shortest distance between the electrode portions having oxygen reducing ability is 6 μm or more.
JP59189697A 1984-09-12 1984-09-12 Minute sensor for measuring oxygen partial pressure Pending JPS6168030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59189697A JPS6168030A (en) 1984-09-12 1984-09-12 Minute sensor for measuring oxygen partial pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59189697A JPS6168030A (en) 1984-09-12 1984-09-12 Minute sensor for measuring oxygen partial pressure

Publications (1)

Publication Number Publication Date
JPS6168030A true JPS6168030A (en) 1986-04-08

Family

ID=16245671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59189697A Pending JPS6168030A (en) 1984-09-12 1984-09-12 Minute sensor for measuring oxygen partial pressure

Country Status (1)

Country Link
JP (1) JPS6168030A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159255A (en) * 1988-12-12 1990-06-19 Toray Ind Inc Oxygen electrode for living body
JP2002506209A (en) * 1998-03-04 2002-02-26 セラセンス、インク. Electrochemical analyte sensor
JP2006234561A (en) * 2005-02-24 2006-09-07 Riken Keiki Co Ltd Diaphragm for working electrode of electrochemical gas sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044859A (en) * 1983-08-22 1985-03-11 Terumo Corp Oxygen concentration measuring sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044859A (en) * 1983-08-22 1985-03-11 Terumo Corp Oxygen concentration measuring sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159255A (en) * 1988-12-12 1990-06-19 Toray Ind Inc Oxygen electrode for living body
JP2002506209A (en) * 1998-03-04 2002-02-26 セラセンス、インク. Electrochemical analyte sensor
JP2012011208A (en) * 1998-03-04 2012-01-19 Abbott Diabetes Care Inc Electrochemical analyte sensor
JP5021115B2 (en) * 1998-03-04 2012-09-05 アボット ダイアベティス ケア インコーポレイテッド Electrochemical analyte sensor
JP2006234561A (en) * 2005-02-24 2006-09-07 Riken Keiki Co Ltd Diaphragm for working electrode of electrochemical gas sensor
JP4562131B2 (en) * 2005-02-24 2010-10-13 理研計器株式会社 Separator for working electrode of electrochemical gas sensor for detecting nitrogen dioxide (NO2), nitric oxide (NO), sulfur dioxide (SO2)

Similar Documents

Publication Publication Date Title
JP2740587B2 (en) Micro composite electrode and method of manufacturing the same
JP5116697B2 (en) Hydrogels for intravenous amperometric biosensors
US5954685A (en) Electrochemical sensor with dual purpose electrode
US4672970A (en) Electrode for living body
JPS6017344A (en) Sensor device for selectively detecting, measuring or monitoring predetermined molten substrate
Bicher et al. Brain tissue reoxygenation time, demonstrated with a new ultramicro oxygen electrode
CN113171090B (en) Diabetes monitoring and treatment device and system based on mesoporous microneedle
US20120116195A1 (en) Method and device for detection of bioavailable drug concentration in a fluid sample
JP2000510373A (en) Electrodes with improved signal to noise ratio
JP2001511384A (en) Test equipment for analyte concentration in liquid
DE68921881T2 (en) SENSOR COATED WITH A FILM.
O'Hare et al. Electrochemical method for direct measurement of oxygen concentration and diffusivity in the intervertebral disc: electrochemical characterization and tissue-sensor interactions
JPS6168030A (en) Minute sensor for measuring oxygen partial pressure
US20200029869A1 (en) Nonenzymatic determination of glucose at near neutral ph values based on the use of nafion and platinum black coated microneedle electrode array
Silver Microelectrodes in medicine
Ballerstadt et al. Sensor methods for use with microdialysis and ultrafiltration
JPS62123349A (en) Microelectrode for electrochemical analysis
JPS61238231A (en) Production of minute sensor for measuring oxygen partial pressure
JPS61115538A (en) Subcataneous sensor
CN114557694B (en) Noninvasive subcutaneous tissue fluid extraction-detection device and extraction-detection method
JPS5933389B2 (en) Polarography sensor
JPH02140656A (en) Enzyme electrode
CN213482120U (en) Non-invasive blood glucose sensor integrating pixel points and wearable equipment
CN213482121U (en) Noninvasive blood glucose sensor based on micro-fluidic chip and wearable equipment
JPS6227926A (en) Electrode for living body