JPS5933389B2 - Polarography sensor - Google Patents

Polarography sensor

Info

Publication number
JPS5933389B2
JPS5933389B2 JP55187377A JP18737780A JPS5933389B2 JP S5933389 B2 JPS5933389 B2 JP S5933389B2 JP 55187377 A JP55187377 A JP 55187377A JP 18737780 A JP18737780 A JP 18737780A JP S5933389 B2 JPS5933389 B2 JP S5933389B2
Authority
JP
Japan
Prior art keywords
insulating layer
electrode
electrode reaction
reaction surface
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55187377A
Other languages
Japanese (ja)
Other versions
JPS57110236A (en
Inventor
文二 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP55187377A priority Critical patent/JPS5933389B2/en
Publication of JPS57110236A publication Critical patent/JPS57110236A/en
Publication of JPS5933389B2 publication Critical patent/JPS5933389B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は血管内に挿入して用いるポーラログラフイーセ
ンサーに関し、特に当該センサーを血管内に挿入した際
に起る血液凝固反応を防止する技術に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polarographic sensor used by being inserted into a blood vessel, and particularly to a technique for preventing a blood coagulation reaction that occurs when the sensor is inserted into a blood vessel.

一般に水溶液中に含まれる酸化性物質又は還元性物質の
濃度は白金又は金等の貴金属の測定電極(作用電極)を
用いるポーラログラフィ一によつて測定することができ
る。
Generally, the concentration of an oxidizing substance or a reducing substance contained in an aqueous solution can be measured by polarography using a measuring electrode (working electrode) of a noble metal such as platinum or gold.

酸化性(被還元性)分子である02を測定する場合を例
にとると、PtAu又はAg等でなる測定電極(陰極)
にはAg/AgCl対照電極(陽極)に対し0.5〜0
.7〔V〕低い電圧が印加される。この測定電極では、
02+2h20+4e→40Hなる還元反応が起り、対
照電極では 4Ag+4C1→4AgC1+4e なる酸化反応が起るので両極間に電流が流れる。
Taking the case of measuring 02, which is an oxidizable (reducible) molecule, as an example, a measurement electrode (cathode) made of PtAu or Ag, etc.
0.5 to 0 for the Ag/AgCl reference electrode (anode).
.. A low voltage of 7 [V] is applied. With this measurement electrode,
A reduction reaction of 02+2h20+4e→40H occurs, and an oxidation reaction of 4Ag+4C1→4AgC1+4e occurs at the reference electrode, so a current flows between the two electrodes.

また、還元性物質であるH2を測定する場合は、Pt又
はPt一黒を付着させたPt,Au等でなる測定電極(
陽極)にはAg/AgCl対照電極(陰極)に対し0.
1〜0.4〔V〕高い電圧が印加される。この測定電極
ではなる酸化反応が起こ9、対照電極では なる還元反応が起つて両極間に電流が流れる。
In addition, when measuring H2, which is a reducing substance, a measurement electrode made of Pt or Pt, Au, etc. with a layer of Pt attached (
(anode) to the Ag/AgCl reference electrode (cathode).
A high voltage of 1 to 0.4 [V] is applied. An oxidation reaction occurs at the measuring electrode, and a reduction reaction occurs at the reference electrode, causing a current to flow between the two electrodes.

適当な条件下に於て前述の電流は02またはH2の濃度
(分圧)に比例するので、その電流値に基づいて02ま
たはH2の濃度を測定することができる この様な測定
方法は02やH2以外の酸化性物質又は還元性物質につ
いても適用できる。但し被洞淀物質の種類に対応して両
極間に印加する電圧値及び電極の材質を適当に選択する
必要がある。ポーラログラフイ一により直接測定するこ
とが困難な物質に対しても、測定電極の反応面及びその
近傍に、測定対象物質に作用する酵素を固定し、該酵素
による反応物質または生成物質をポラログラフイ一で測
定することによジ、当該測定対象物質の濃度を測定でき
る場合が多い。酵素を固定するには電極反応面を多孔性
のブラスチツク膜、天然高分子膜、ガラスやセラミツク
の薄層などで被覆し、適当な化学反応によつてこれらの
材料層の中の孔の表面に酵素分子を結合せしめるか、あ
るいは、これらの孔に酵素分子を閉じ込めて、半透膜を
かぶせて漏出しないようにする方法がとられる。グルコ
ースを測定する場合の例では、貴金属でなる測定電極面
及びその近傍に酵素としてグルコースオキシダーゼを固
定し、測定電極測に於てグルコース+02+H2O→グ
ルコン酸+H2O27′〜V声z′内z′Jrなる反応
を行なわせ、前述の陰極還元法により02の濃度を測定
するか又は次式の如き陽極酸化法によV)H2O2を測
定してグルコースの濃度を測定することができる。
Under appropriate conditions, the aforementioned current is proportional to the concentration (partial pressure) of 02 or H2, so the concentration of 02 or H2 can be measured based on the current value. This method can also be applied to oxidizing substances or reducing substances other than H2. However, it is necessary to appropriately select the voltage value to be applied between the two electrodes and the material of the electrodes depending on the type of the substance to be excavated. Even for substances that are difficult to directly measure using polarography, it is possible to immobilize an enzyme that acts on the substance to be measured on the reaction surface of the measurement electrode or its vicinity, and then use polarography to detect the reactant or product produced by the enzyme. In many cases, the concentration of the substance to be measured can be determined by measurement. To immobilize enzymes, the reaction surface of the electrode is coated with a porous plastic membrane, a natural polymer membrane, a thin layer of glass or ceramic, etc., and an appropriate chemical reaction is applied to the surface of the pores in these material layers. Methods are used to bind enzyme molecules or to confine enzyme molecules in these pores and cover them with a semipermeable membrane to prevent leakage. In the case of measuring glucose, glucose oxidase is immobilized as an enzyme on the surface of a measuring electrode made of a noble metal and in its vicinity, and in the measurement of the measuring electrode, glucose + 02 + H2O → gluconic acid + H2O27' ~ V voice z'z' Jr. The concentration of glucose can be determined by carrying out the reaction and measuring the concentration of 02 by the cathodic reduction method described above, or by measuring V)H2O2 by the anodic oxidation method as shown in the following formula.

H2O2+20H→・2H20+e− 前述のグルコース以外の物質についても、血液中に存在
するアスコルビン酸、尿酸、ノルアドレナリンなどは夫
々アスコルビン酸オキシダーゼ、ウリガーゼ、モノアミ
ンオキシダーゼ等の酵素を測定電極に固定することによ
つて次の化学式に示す様な反応を行なわせ、02または
H2O2を測定する前述の如き方法により、直接的なポ
ーラログラフイ一よりも遥かに高い選択性(特異性)を
もつた測定が可能である。
H2O2+20H→・2H20+e- Regarding substances other than the above-mentioned glucose, ascorbic acid, uric acid, noradrenaline, etc. present in the blood can be reduced by fixing enzymes such as ascorbate oxidase, urigase, and monoamine oxidase to the measurement electrode. By carrying out the reaction shown in the chemical formula and measuring O2 or H2O2 as described above, it is possible to perform measurements with much higher selectivity (specificity) than direct polarography.

″− φ−1晶1 −[モRミ:3 上述の如き貴金属電極を用いる直接的ボーラログラフイ
一や酵素を固定した電極を用いる間接的なボーラログラ
フイ一により極めて多くの種類の物質を測定できるが、
これらの電極を細長い形に形成して血管内に挿入して用
いる血管内ポーラログラフイーセンサ一とした場合には
、血液中の各種の成分の濃度を連続的に測定し記録でき
るので臨床的にも研究的にも極めて重要な観察ができる
ことになる。
``- φ-1 crystal 1 - [MoRmi: 3 Although it is possible to measure an extremely large variety of substances using direct boularography using a noble metal electrode as described above or indirect boularography using an electrode on which an enzyme is immobilized,
If these electrodes are formed into an elongated shape and inserted into a blood vessel to form an intravascular polarographic sensor, the concentration of various components in the blood can be continuously measured and recorded, making it clinically useful. This will allow us to make extremely important observations from a research perspective.

しかし、このような血管内ポーラログラフイーセンサ一
を用いる測定に於ては、従来は次の様な二つの困難な問
題があつた。即ち(1)血液中に高濃度に存在する蛋白
質、ペブチツド、脂質、ヌクレオチツドなどの中高分子
量の物質が電極反応面へ附着して電極面を於染すること
によV)電極活性が経時的に低下する。(2)電極を形
成する物質の大部分が血液凝固をひき起こす性質をもつ
ているために電極面で血液凝固が起こ9、これが動物や
人体に対して危険を及ぼすと共に電極の反応性を悪化さ
せる。ところで前掲の(1)の問題は電極反応面を半透
膜で被覆することによつて比較的容易に解決できる。し
かし(2)の問題の解決は著しく困難であつた。本発明
は前掲の(2)の問題を解決する技術に関するものであ
り、直接的または酵素的(間接的)ボーラログラフイー
を動物や人体に適用して、02N20,H2、アスコル
ビン酸、グルコース、尿酸アドレナリン系ホルモンなど
の重要な血液成分の濃度を連続的に測定する場合に於け
る動物や人体に対する危険を防止するとともに測定稍度
を向上せしめることを目的とするものである。血液に接
触する器材に関する血液凝固防止手段としては次の様な
ものが考えられる。(a)テフロン、シリコンの様な抗
凝血性の高い物質で器材を被覆する.(b)天然の抗凝
血物質であるヘパリンを器材の表面に化学的に結合させ
る。
However, in measurements using such an intravascular polarographic sensor, there have conventionally been the following two difficult problems. In other words, (1) medium-high molecular weight substances such as proteins, peptides, lipids, and nucleotides present in high concentrations in blood adhere to the electrode reaction surface and contaminate the electrode surface, and (V) the electrode activity decreases over time. descend. (2) Most of the substances that form the electrodes have the property of causing blood coagulation, so blood coagulation occurs on the electrode surface9, which poses a danger to animals and humans and worsens the reactivity of the electrode. let By the way, the above-mentioned problem (1) can be solved relatively easily by covering the electrode reaction surface with a semipermeable membrane. However, solving problem (2) was extremely difficult. The present invention relates to a technique for solving the above-mentioned problem (2), in which direct or enzymatic (indirect) boularography is applied to animals and humans to obtain 02N20, H2, ascorbic acid, glucose, The purpose of this method is to prevent danger to animals and humans when continuously measuring the concentration of important blood components such as uric acid-adrenergic hormones, and to improve accuracy of measurement. The following can be considered as blood coagulation prevention means for equipment that comes into contact with blood. (a) Cover the equipment with a highly anticoagulant substance such as Teflon or silicone. (b) Chemically bonding heparin, a natural anticoagulant, to the surface of the device.

(c)ヘパリンを含有する物質を器材の表面に塗布し、
該ヘパリンが徐々に血液中に溶解してゆく様にする。
(c) applying a substance containing heparin to the surface of the device;
The heparin is allowed to gradually dissolve into the blood.

前掲の(a)の手段をとる場合、テフロン、シリコン等
の抗凝血性の極めて高いブラスナツクは例外なく高度の
疎水性を有し水や電解質を透過しないので、比較的大型
とならざるを得ないところの電解質非透過型複合電極(
クラーク型電極)以外ではポーラログラフイー電極には
使用できず、著しく細く形成できるところの電解質透過
型血管内ポーラログラフイーセンサーへの応用は不可能
である。
When taking the above method (a), brass nuts with extremely high anticoagulant properties such as Teflon and silicone have a high degree of hydrophobicity without exception and are impermeable to water and electrolytes, so they must be relatively large. However, electrolyte non-permeable composite electrode (
It cannot be used for polarographic electrodes other than Clark type electrodes, and cannot be applied to electrolyte-permeable intravascular polarographic sensors, which can be formed extremely thin.

また前掲の(b)の手段をとる場合、ヘパリンを器材表
面に化学的に結合させる方法は技術的には比較的容易で
あるが一般に十分な血液凝固防止効果が得られない。こ
れはヘパリン分子が浩存状態にあるときに主として血液
凝固防止作用を示す物質であるからと思われる.そこで
本発明者は前掲の(c)の手段につき検討し、後に詳述
する如く親水性ブラステイツクにヘパリンを微粒子状態
に均一分散した被膜で電極を被覆した態様のポーラログ
ラフイーセンサーを開発し、著しい血液凝固防止効果を
保持し得た。以下に図面を用いて本発明につき詳述する
。第1図A乃至第1図Dは何れも本発明の実施例を示1
ポーラログラフイーセンサーの縦断面図である。
In addition, when taking the above-mentioned method (b), the method of chemically bonding heparin to the surface of the device is technically relatively easy, but generally a sufficient blood coagulation prevention effect cannot be obtained. This is thought to be because heparin molecules are a substance that primarily exhibits anticoagulant effects when they are in a state of abundance. Therefore, the present inventor investigated the above-mentioned means (c), and developed a polarographic sensor in which the electrodes were coated with a film in which heparin was uniformly dispersed in the form of fine particles on a hydrophilic brass stick, as will be described in detail later. The anti-coagulation effect could be maintained. The present invention will be explained in detail below using the drawings. 1A to 1D each show an embodiment of the present invention.
FIG. 2 is a longitudinal cross-sectional view of a polarographic e-sensor.

伺、第1図A乃至第1図Dに示された4種類のポーラロ
グラフイーセンサーの直径は何れも0.3〜2.0mm
1長さ第1図A1第1図C,第1図Dに示されたものは
何れも100〜300mTL1第1図Bに示されたもの
は150〜1200關程度である。第1図Aに示された
ものは注射針状分離型測定電極をなすポーラログラフイ
ーセンサーである。
The diameters of the four types of polarographic sensors shown in Figures 1A to 1D are all 0.3 to 2.0 mm.
1.The length of each of the lengths shown in Figure 1A1, Figure 1C and Figure 1D is about 100 to 300 mTL, and the length of the length shown in Figure 1B is about 150 to 1200 meters. What is shown in FIG. 1A is a polarographic sensor having a needle-like separate measuring electrode.

貴金属線1の外表面は電極反応面2と外部電気回路への
接続端子3となつている末端部近傍の面とを除きガラス
又はエナメル等でなる絶縁層4で被覆されている。前記
電極反応面2及びその近傍以外の前記絶縁層4の外表面
はエポキシ樹脂等の接着剤が塗布された上注射針用のス
テンレスチユーブ等でなる金属管7で覆つてある。前記
絶縁層4の先端の約数ミリメートルの部分が金属管7外
に突出しており、この突出部に於て貴金属線1の側面の
一部が電極反応面2として絶縁層4から露出している.
本ポーラログラフイーセンサー最外側面は血液凝固防止
のためにヘパリンが均質分散した透水性φ有するブラス
チツクの被膜6でなつている。即ち、前記電極反応面2
を含み、絶縁層4外表面のうち金属管7で覆われていな
い部分と、金属管7の外表面は前記ブラスチツクの被膜
6で被覆されている。また本実施例では電極反応面2及
びその近傍の絶縁層4と前記ブラスチツクの被膜6との
間Vc電極反応面2が血液中の蛋白質等によ9汚染不活
性化するのを防止するため汚染防止被膜5が設けられて
いる。この汚染防止被膜5はアシルセルローズ類、セル
ローズエーテル類、コロジオン、セロフアン、酢酸ビニ
ル、ハイドロン等の半透性(比較的大きい分子を遮り、
比較的小さい分子を透過する性質)かつ親水性のブラス
チツクでなつている。以下に前記ヘパリンが均質分散し
たプラスチツクの被膜6について更に詳述する。即ち、
このブラスチツクとしてはハイドロンコラーゲン、各種
セルローズエステル(アセチルセルローズ、ブチリルセ
ルローズ、ニトロセルロiズ等)、各種セルローズエー
テル(メチルセルローズ、カルボキシメチルセルローズ
、エチルセルローズ、ブロピルセルロiズ等)、酢酸ビ
ニル等の様に親水性でかつ透水性の大きいもの、及び或
る種のポリアミド、ポリエステル、フエノ一ル樹脂、塩
化ビニル樹脂等の様に、一般には吸水性ブラスチツクに
は分類されていないが、ある程度は親水性と透水性を有
していて電極反応に必要な程度のイオン透過性をもつも
のの何れかの種類のブラスチツクを使用することができ
る。この様なヘバリンを分散させたブラスチツク被膜6
をポーラログラフィーセンサ一の最外側面に形成するに
は、先ず前述の親水性または微親水性のブラスチツクの
何れかを適当な溶媒に溶解して0.5〜10%程度の醇
液をつくV,これを激しく撹拌しながら1000〜10
000unit/mlのヘパリン水溶液の少量(1/1
00〜1/10容)を前記プラスナツクの溶液に滴下す
ると、ヘパリンの水溶液は該プラスチツク溶液中に分散
し、その結果ヘパリンが沈澱して微細で均質な分散状態
を呈する。普通この分散液は更に超音波で処理して分散
度を高める、次に先端部付近に前記汚染防止被膜5が形
成された本ポーラログラフイーセンサ一を前述のヘパリ
ンが均質分散したブラスチツク醇液に浸漬してから空中
に取v出し、ブラスチツクの溶媒を蒸発させて薄い被膜
を形成させる。この様な浸漬と乾燥の操作は普通2〜5
回繰9返すが、この方法はブラスチツクの種類や濃度に
応じて適当に条件を変えて実施する必要がある。前述の
ヘパリンを分散させたブラスチツクの被膜はセンサーの
先端部附近にだけ形成しても血液凝固防止の効果がある
が、本実施例の如きセンサーでは最外側面のほぼ全面に
形成しておくことが望ましい。伺本実施例では前記電極
反応面2を貴金属線1の先端付近の側面部に設けたが、
後述の第1図B乃至第1図Dに示す如く貴金属線1の先
端面を電極反応面としてもよい。周、本実施例では汚染
防止被膜5の外面に血液凝固防止被膜6を着けてあるが
、一般に後者も汚染防止効果をもつので、前者を除外し
て、絶縁層4の上に直接血液凝固防止被膜をつけてもよ
い。
The outer surface of the noble metal wire 1 is covered with an insulating layer 4 made of glass, enamel, or the like, except for the electrode reaction surface 2 and the surface near the end that serves as a connection terminal 3 to an external electric circuit. The outer surface of the insulating layer 4 other than the electrode reaction surface 2 and its vicinity is covered with a metal tube 7 made of a stainless steel tube for an upper injection needle or the like coated with an adhesive such as epoxy resin. A portion of about several millimeters at the tip of the insulating layer 4 protrudes outside the metal tube 7, and at this protruding portion, a part of the side surface of the noble metal wire 1 is exposed from the insulating layer 4 as an electrode reaction surface 2. ..
The outermost surface of the polarographic sensor is made of a plastic coating 6 with water permeability φ in which heparin is homogeneously dispersed to prevent blood coagulation. That is, the electrode reaction surface 2
The portion of the outer surface of the insulating layer 4 that is not covered with the metal tube 7 and the outer surface of the metal tube 7 are covered with the plastic coating 6. In addition, in this embodiment, in order to prevent the Vc electrode reaction surface 2 from being contaminated and inactivated by proteins in the blood, etc., the gap between the electrode reaction surface 2 and the insulating layer 4 in the vicinity thereof and the plastic coating 6 is prevented. A protective coating 5 is provided. This contamination prevention coating 5 is semipermeable (blocks relatively large molecules such as acyl celluloses, cellulose ethers, collodion, cellophane, vinyl acetate, hydron, etc.).
It is made of hydrophilic plastic and has the property of being transparent to relatively small molecules. The plastic coating 6 in which heparin is homogeneously dispersed will be described in more detail below. That is,
These plastics include hydrocollagen, various cellulose esters (acetylcellulose, butyrylcellulose, nitrocellulose, etc.), various cellulose ethers (methylcellulose, carboxymethylcellulose, ethylcellulose, propylcellulose, etc.), vinyl acetate, etc. Plastics that are hydrophilic and have high water permeability, as well as certain polyamides, polyesters, phenol resins, vinyl chloride resins, etc., are not generally classified as water-absorbing plastics, but they are hydrophilic to some extent. Any type of plastic that has water permeability and ion permeability to the extent necessary for the electrode reaction can be used. Plastic coating 6 in which such hevarin is dispersed
To form this on the outermost surface of the polarographic sensor, first dissolve either the hydrophilic or slightly hydrophilic plastic described above in a suitable solvent to form a solution with a concentration of about 0.5 to 10%. V, 1000 to 10 while stirring vigorously.
A small amount (1/1
When 00 to 1/10 volume) is added dropwise to the above-mentioned plastic snack solution, the aqueous heparin solution is dispersed in the plastic solution, and as a result, heparin precipitates to form a fine and homogeneous dispersion. Usually, this dispersion is further treated with ultrasonic waves to increase the degree of dispersion, and then the polarographic sensor 1, on which the anti-contamination film 5 is formed near the tip, is immersed in the above-mentioned plastic solution in which heparin is homogeneously dispersed. It is then taken up into the air to evaporate the solvent in the plastic and form a thin film. Such soaking and drying operations usually take 2 to 5
This method is repeated 9 times, but it is necessary to carry out this method by appropriately changing the conditions depending on the type and concentration of the plastic stick. Although the above-mentioned plastic coating in which heparin is dispersed is effective in preventing blood coagulation even if it is formed only near the tip of the sensor, it is necessary to form it on almost the entire outermost surface of the sensor as in this example. is desirable. In this example, the electrode reaction surface 2 was provided on the side surface near the tip of the noble metal wire 1.
As shown in FIGS. 1B to 1D, which will be described later, the tip end surface of the noble metal wire 1 may be used as the electrode reaction surface. In this embodiment, the anti-blood coagulation coating 6 is applied to the outer surface of the anti-contamination coating 5, but since the latter generally also has the effect of preventing contamination, the former is excluded and the anti-blood coagulation coating 6 is applied directly onto the insulating layer 4. A film may be applied.

このことは以下に説明する第1図B,C,Dの場合につ
いても同様である。伺また、本実施例では電極保護金属
管7を用いているが、金属以外の管も使用できるし、ま
た、絶縁層4に強靭な材質を選ぶときには、この管を取
v除くこともできる。
This also applies to the cases shown in FIGS. 1B, C, and D, which will be explained below. Furthermore, although the electrode protection metal tube 7 is used in this embodiment, a tube other than metal can also be used, and if a strong material is selected for the insulating layer 4, this tube can be omitted.

これは以下に説明する第1図C,Dに関しても同様であ
る。次に第1図Bに示されたものは可撓性分離型測定電
極をなすボーラログラフイーセンサ一である。
This also applies to FIGS. 1C and 1D, which will be explained below. Next, what is shown in FIG. 1B is a boularography sensor comprising a flexible separate measuring electrode.

第1図Bに於て前述の第1図Aとの対応部には同一符号
を附して詳細な説明は省略する。第1図Bでは第1図A
の金属管7の代リにテフロン、シリコン等の可撓性のチ
ユープ8が用いられ、貴金属線1の表面は先端部がガラ
ス、エナメル等の硬質絶縁層4で被覆され、該硬質絶縁
層4で被覆された部分に続く部分は可撓性樹脂でなる絶
縁層9で被覆されている。このためこのポーラログラフ
イーセンサ一の大部分が可撓性に富んでいるため血管内
に沿つて深部(例えば心臓)まで挿入することができる
。本第1図Bに於ては電極反応面2は貴金属線1の先端
面に設けられているが、第1図Aに示した如く貴金属線
1の側面に設けてもよい。本実施例の如きボーラログラ
フイーセンサ一では可撓性のブラスチツクチユーブ8と
してテフロンシリコン等の可撓性抗凝血性材料のものを
用いる場合には、先端の眠極近傍のみをヘパリンを均質
分散させたブラスチツクの被膜で被覆すれば十分な血液
凝固防止の効果が得られる。第1図Cに示されたポーラ
ログラフイーセンサ一は一体をなすセンサー内に測定電
極1と対照電極10との両者を有する注射釘状複合型電
極をなしている。
In FIG. 1B, parts corresponding to those in FIG. 1A described above are given the same reference numerals and detailed explanations will be omitted. In Figure 1B, Figure 1A
A flexible tube 8 made of Teflon, silicon, etc. is used in place of the metal tube 7 , and the tip of the surface of the noble metal wire 1 is covered with a hard insulating layer 4 made of glass, enamel, etc. The part following the part covered with is covered with an insulating layer 9 made of flexible resin. For this reason, most of this polarographic sensor is highly flexible, so it can be inserted deep into a blood vessel (for example, into the heart). Although the electrode reaction surface 2 is provided on the tip end surface of the noble metal wire 1 in FIG. 1B, it may be provided on the side surface of the noble metal wire 1 as shown in FIG. 1A. In the case of using a flexible plastic tube 8 of a flexible anticoagulant material such as Teflon silicone in the boralography sensor 1 as in this embodiment, heparin is homogeneously applied only to the vicinity of the tip. A sufficient anti-blood coagulation effect can be obtained by coating with a film of dispersed plastic. The polarographic sensor 1 shown in FIG. 1C is a syringe-shaped composite electrode having both a measuring electrode 1 and a reference electrode 10 in an integrated sensor.

測定電極は前述の第1図A及び第1図Bのポーラログラ
フイーセンサ一同様貴金属線1でな9、対照電極10は
Ag/AgClでなつている。該対照電極10はステン
レス等でなる金属管7の電極先端部に近い部分を薄く削
つてから銀を蒸着し、更に銀メツキを行い、次に塩酸ま
たは塩化カリ中で電解法によつて一部を塩化銀化するこ
とによつて形成する。前記金属管7はこのAg/AgC
l対照電極のリード線の役割をも果しているので、外部
電気回路への端子11は、この金属管7の末端に特殊ハ
ンダ付法によつてけけてある。伺、前述のように金属管
7は除外することができるが、この場合には対照電極と
して銀管または銀線を塩化銀化して用い、リード線とし
て金属管7の代りに細い被覆電線を用いる。また、本第
1図Cに於ける複合型電極の場合も半透性の汚染防止被
膜5や血液凝固防止被膜6の形成法は前掲の第1図Aに
つき説明した場合と同様である。第1図Dは酵素反応を
応用した間接的ポーラログラフイ一用の電極をなすポー
ラログラフイーセンサ一で、第1図Aにつき説明した実
施例に類した測定電極の電極反応面2の汚染防止被膜5
の上に更に酵素を均一に分散して固定した多孔性ブラス
チツク層12を形成せしめ、その上を更に血液凝固防止
被膜6で被覆したものである。この場合酵素としては、
グルコースを測定するためにはグルコースオキシダーゼ
、尿酸にはウリガーゼ、アスコルピン酸にはアスコルビ
ン酸オキシダーゼという様に各種のものが用いられ、電
極はこれらの酵素による反応生成物(主としてH2O2
.または02)をポーラログラフイ一法によつて検出測
定することにより、酵素の作用物質の濃度を選択的に測
定することは既述の通vである。第2図は第1図A乃至
Dに示した各種の血管内ポーラログラフイーセンサ一の
血管への適用方法を示す図である。
The measuring electrode is made of noble metal wire 19, as in the polarographic sensors shown in FIGS. 1A and 1B, and the reference electrode 10 is made of Ag/AgCl. The reference electrode 10 is made by thinning a portion of a metal tube 7 made of stainless steel or the like near the electrode tip, depositing silver on it, then silver plating, and then partially removing it by electrolytic method in hydrochloric acid or potassium chloride. It is formed by silver chloride. The metal tube 7 is made of this Ag/AgC
A terminal 11 to an external electrical circuit is attached to the end of this metal tube 7 by a special soldering method, since it also serves as a lead wire for the reference electrode. However, as mentioned above, the metal tube 7 can be excluded, but in this case, a silver tube or a silver chloride silver wire is used as the reference electrode, and a thin coated electric wire is used as the lead wire instead of the metal tube 7. . Also, in the case of the composite electrode shown in FIG. 1C, the method of forming the semipermeable anti-contamination coating 5 and the anti-blood coagulation coating 6 is the same as that described with reference to FIG. 1A above. FIG. 1D shows a polarographic sensor 1 which forms an electrode for indirect polarography applying an enzyme reaction, and a contamination prevention coating 5 on the electrode reaction surface 2 of the measuring electrode similar to the embodiment described with reference to FIG. 1A.
A porous plastic layer 12 in which enzymes are uniformly dispersed and fixed is further formed on top of the porous plastic layer 12, and the top thereof is further covered with a blood coagulation prevention coating 6. In this case, the enzyme is
Various types of enzymes are used to measure glucose, such as glucose oxidase, urigase to measure uric acid, and ascorbic acid oxidase to measure ascorbic acid.
.. As described above, the concentration of the active substance of the enzyme can be selectively measured by detecting and measuring 02) using a polarographic method. FIG. 2 is a diagram showing a method of applying the various intravascular polarographic sensors shown in FIGS. 1A to 1D to a blood vessel.

本第2図に於ては分離型の測定電極センサー(第1図の
A,B,D)を用いる場合を示してあるが、この測定電
極21は、十端に液漏れ防止用リング26のついたテフ
ロン製の挿入用カテーテル(バニユラ釘)25を用いて
血管27内に挿入し、電極反応面のある先端部を該カテ
ーテルから血液28のなかに突出させる。挿入用カテー
テル25はその側面で、対照電極22と電解液23を収
納した対照電極容器24と連結し対照電極22は電解液
によつて測定電極の先端反応面と電気的に連結するよう
にする。対照電極22としては普通Ag/AgCl対照
電極を用い電解液23としては生理的食塩水を用い、後
者は普通点滴法で血液中に除々に流し込む。以上の様に
構成した電極系の測定電極と対照電極の間には電源回路
31により測定物質に応じた所定の附加電圧を与え、電
極間に流れる電流を電流増巾器の2つのセンサーを、第
2図に示した方法でカテーテル25を用いてネンブター
ル麻酔下の犬の左右の股動脈に留置し、これらの測定電
極21には対照電極22に対して−0.6Vの電圧を印
加した。犬には空気呼吸をさせ、時々パルス的に10秒
または5分間の50%酸素呼吸を折vこみながら、両セ
ンサーの電解電流値を2ペンレコーダーで記録させた。
図の縦軸はこの電流値を検定値に基ずいて、酸素分圧(
酸素濃度)値で示したもので、習慣に従つてミリメート
ル水銀柱圧で示してある。なお、この実験は38℃で行
なわれているので、100mmHg(7)02分圧は0
.137μMOles/lの02濃度に換算することが
できる。横軸は時間で分の単位で示してあるが、途中で
300分(5時間)のデーターを省略してある。さて、
本第3図の記録値Aは血液凝固防止被膜を施こした本発
明のセンサーの記録値であ9、Bはこの処理を施こさな
い従来のセンサーの記録値であるが、これらは2ペンレ
コーダ一の同時記録値で、ペン交差を可能ならしめるた
めに、Bの時間はAよりも5分間に相当する距離たけ右
32により増巾して記録計33で記録させると目的物質
の血中濃度を連続的に知ることができる。なお、第1図
Cの様な複合電極の場合には測定電極と対照電極が複合
されて共に血液と接しているので第2図の場合の対照電
極22電解液23および対照電極容器24が不必要であ
る。
Fig. 2 shows a case where a separate type measurement electrode sensor (A, B, D in Fig. 1) is used. The attached Teflon insertion catheter (vanilla nail) 25 is inserted into the blood vessel 27, and the distal end with the electrode reaction surface is made to protrude from the catheter into the blood 28. The insertion catheter 25 is connected at its side to a reference electrode container 24 containing a reference electrode 22 and an electrolyte 23, so that the reference electrode 22 is electrically connected to the tip reaction surface of the measuring electrode by the electrolyte. . The reference electrode 22 is usually an Ag/AgCl reference electrode, and the electrolyte 23 is physiological saline, which is usually injected gradually into the blood by dripping. A predetermined additional voltage depending on the substance to be measured is applied between the measurement electrode and the reference electrode of the electrode system configured as described above by the power supply circuit 31, and the current flowing between the electrodes is connected to the two sensors of the current amplifier. Using the method shown in FIG. 2, a catheter 25 was placed in the left and right femoral arteries of a dog under Nembutal anesthesia, and a voltage of -0.6 V was applied to these measurement electrodes 21 with respect to the control electrode 22. The dogs were allowed to breathe air, with occasional pulses of 10 seconds or 5 minutes of 50% oxygen breathing, while the electrolytic current values of both sensors were recorded using a two-pen recorder.
The vertical axis of the figure is the oxygen partial pressure (
(Oxygen concentration) value, and according to custom, it is expressed in millimeters of mercury pressure. Note that this experiment was conducted at 38°C, so the 100mmHg(7)02 partial pressure is 0.
.. This can be converted to an 02 concentration of 137 μM Moles/l. The horizontal axis is time, which is shown in minutes, but data for 300 minutes (5 hours) is omitted. Now,
The recorded value A in this Figure 3 is the recorded value of the sensor of the present invention which has been treated with a blood coagulation prevention coating9, and the recorded value B is the recorded value of the conventional sensor which is not subjected to this treatment. In order to make pen crossing possible with the simultaneously recorded values of the recorder 1, the time of B is increased by a distance 32 corresponding to 5 minutes from that of A and recorded with the recorder 33. Concentration can be known continuously. In the case of a composite electrode as shown in FIG. 1C, the measurement electrode and the reference electrode are combined and both are in contact with blood, so the reference electrode 22, electrolyte 23, and reference electrode container 24 in the case of FIG. is necessary.

以上の第1図A乃至Dに於けるポーラログラフイーセン
サ一の構造の説明では測定電極構成体として貴金属線を
用いた場合を説明したが、貴金属性即ち非変化性をもつ
ことを要するのは電極反応面のみであるので、先端のみ
に貴金属線を接続した卑金属線でもよいし、また、先端
に貴金属を蒸着したり鍍金した卑金属線を使用してもよ
い。
In the above explanation of the structure of the polarographic sensor in FIGS. 1A to 1D, we have explained the case where a noble metal wire is used as the measuring electrode structure. Since it is only the reaction surface, a base metal wire with a noble metal wire connected only to the tip may be used, or a base metal wire whose tip is vapor-deposited or plated with a noble metal may be used.

第3図は第1図Bに基き説明した態様の本発明の血管内
ポーラログラフイーセンサ一を血中酸素測定に用いる場
合において、センサーの先端部に前述の血液凝固防止被
膜(第1図Bに於ける6)を施こした本発明のセンサー
と施こさない従来のセンサーの血液中における安定性と
応答性を比較した実験結果の1例である。この実験例で
は上述にずれている。なお、A,B共に汚染防止被膜と
しては7.5%セルローズ、ジアセテートを5回コート
したものを用い、Aの場合はこの上に更に200uni
t/mlのヘパリンを分散させた5(fl)セルロース
トリアセテートを2回コートしてある。2つの測定電極
は、最初にはその先端が第2図のカテーテル25の中途
に来る様に置いて、検定用生理的食塩水(37℃で窒素
または空気と平衡させた液でPO2値がそれぞれ0mm
Hgおよび152mmHgの値をもつ)を除々に通過さ
せ、感度を標準化させてから記録を開始した。
FIG. 3 shows a case where the intravascular polarographic sensor of the present invention in the embodiment explained based on FIG. This is an example of experimental results comparing the stability and responsiveness in blood of a sensor of the present invention subjected to 6) and a conventional sensor not subjected to 6). In this experimental example, the deviation is as described above. For both A and B, a coating coated with 7.5% cellulose and diacetate 5 times was used as a contamination prevention coating, and in the case of A, an additional 200 uni coated on top of this was used.
It was coated twice with 5 (fl) cellulose triacetate dispersed with t/ml heparin. The two measuring electrodes are initially placed so that their tips are halfway to the catheter 25 in Figure 2, and the PO2 values are measured using physiological saline for testing (a solution equilibrated with nitrogen or air at 37°C). 0mm
Hg (with a value of 152 mmHg) was passed gradually to standardize the sensitivity before recording was started.

第3図におけるaからbまでの記録値はこの空気平衡液
と接触しているときの両センサーのPO2値を示してい
る。このようにして検定を終つてから、bの点でセンサ
ーを押し込んで、先端をカテーテル25から突出させて
血液と接触させると、記録値はそれぞれ曲線A,Bのよ
うに夫々動脈血及び静脈血の値を示すようになる。次に
cの時点で犬の呼吸気を空気から10秒間だけ50(f
)02に変えるとA,B両記録値共に鋭いピークを示す
。次にdの時点で5分間の50%02呼吸を行わせると
、曲線Aの場合にはPO2値が約295詣Hgの値に達
するが、Bの場合には約285U77!Hgにしか達し
ない。また空気呼吸値についてもAとBとの間で除々に
差が目立つてきて、50分の所ではPO2値がそれぞれ
100詣Hgと96mmHgとになつている。これはB
の場合には血液凝固物が附着しはじめて電極感度が低下
し始めたことを示す。測定を更に5時間経読するとBの
感度は著しく低下して最初の半分程度の値しか示さない
が、Aの場合には依然として最初に近い感度が保持され
ている。なおfおよびgの時点で行つた10秒および5
分の50%02呼吸の影響をみると、Aの場合には初期
と殆んど変らないが、Bの場合には形が著しく崩れて電
極の応答性が悪くなつていることがわかる。hの時点で
は、再び電極先端をカテーテル25内に引き込んで検定
液(P゛02152TLT1LHg)と接触させ、実験
の最終点での電極感度を比較しているが、最初に比べて
Aでは約4%、Bでは約50%の感度の低下が認められ
るなお、実験終了時に肉眼で観察すると、血液凝固防止
被膜を施こさないBのセンサーは先端部全面に赤色の血
餅(粘質の血液凝固物)が附着していたか、血液凝固防
止被膜を施したAではこれが認められなかつた。以上の
実験結果よリ、本発明による血液凝固防止被膜が血管内
ポーラログラフイーセンサ一の感度ならびに応答性の維
持に著しい効果を示すことが明らかであジ、また、血液
凝固による危険予防にも有効であることが推定される。
The recorded values from a to b in FIG. 3 show the PO2 values of both sensors when in contact with this air-balanced liquid. After completing the assay in this way, when the sensor is pushed in at point b and its tip protrudes from the catheter 25 and comes into contact with blood, the recorded values are as shown by curves A and B for arterial blood and venous blood, respectively. It will now show the value. Next, at point c, the dog's breathing air is removed from the air at 50 (f) for 10 seconds.
)02, both recorded values A and B show sharp peaks. Next, when 5 minutes of 50% 02 breathing is performed at point d, in the case of curve A the PO2 value reaches a value of approximately 295 Hg, but in the case of curve B it reaches a value of approximately 285U77! It only reaches Hg. In addition, the difference in air breathing values gradually becomes noticeable between A and B, and at 50 minutes, the PO2 values become 100 mmHg and 96 mmHg, respectively. This is B
In the case of , this indicates that blood coagulation has begun to adhere and the electrode sensitivity has begun to decrease. When the measurement is continued for another 5 hours, the sensitivity of B decreases significantly and shows only about half of the initial value, but in the case of A, the sensitivity close to the initial value is still maintained. 10 seconds and 5 at points f and g
Looking at the effects of 50% 02 breaths, it can be seen that in case A, there is almost no change from the initial state, but in case B, the shape is significantly distorted and the responsiveness of the electrode has deteriorated. At time h, the electrode tip was pulled into the catheter 25 again and brought into contact with the test solution (P゛02152TLT1LHg), and the electrode sensitivity at the final point of the experiment was compared. , a decrease in sensitivity of approximately 50% was observed in sensor B. Furthermore, when visually observed at the end of the experiment, sensor B, which did not have an anti-blood coagulation coating, showed red blood clots (viscous blood clots) all over the tip. ) was attached, or this was not observed in A, which was coated with a blood coagulation prevention coating. From the above experimental results, it is clear that the anti-blood coagulation coating according to the present invention has a remarkable effect on maintaining the sensitivity and responsiveness of the intravascular polarographic sensor, and is also effective in preventing risks caused by blood coagulation. It is estimated that

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A乃至Dは夫々本発明のポーラログラフイーセン
サ一を示す縦断面図、第2図は本発明のポーラログラフ
イーセンサ一を適用して血管内物質を測定する方法を示
す図、第3図は本発明のポーラログラフイーセンサ一と
従来のポーラログラフイーセンサ一を夫々酸素測定電極
として犬の動脈に適用したときの両センサーの特性の経
時変化の記録を示す図である。 第1図において、1・・・貴金属線、2・・・電極反応
面、3・・・接続端子、4・・・絶縁層、5・・・汚染
防止被膜、6・・・血液凝固防止被膜、7・・・金属管
、8・・・チユーブ(可撓性)、9・・・絶縁層(可撓
性)、10・・・対照電極、11・・・端子、12・・
・ブラスチツク、第2図においてく21・・・測定電極
、22・・・対照電極、23・・・電解液、24・・・
対照電極容器、25・・・挿入用カテーテル、26・・
・液漏れ防止リング、27・・・血管、28・・・血液
、31・・・電源回路、32・・・電流増巾器、33・
・・記録計、第3図において、A・・・本発明の動脈血
用ポーラログラフイーセンサ一による02分圧の測定値
、B・・・従来の動脈血用ポーラログラフィーセンサ一
による02分圧の測定値、a・・・両センサーの先端を
検定液と接触させた時点、b・・・両センサーの先端を
血液中に突出させた時点、c・・・10秒間の酸素呼吸
期間、d・゛゜5分間の酸素呼吸期間、e・・・レコー
ダの記録値の省略期間、f・・・10秒間の酸素呼吸期
間、g・・・5分間の酸素呼吸期間、H゜・・両センサ
ーの先端をカテーテル内に引き込んで再び検定液に接触
させた時点。
1A to 1D are longitudinal cross-sectional views showing the polarographic e-sensor of the present invention, FIG. 2 is a diagram showing a method of measuring intravascular substances by applying the polarographic e-sensor of the present invention, and FIG. 1 is a diagram showing records of changes over time in the characteristics of the polarographic e-sensor 1 of the present invention and the conventional polarographic e-sensor 1 when both sensors are applied to the artery of a dog as oxygen measuring electrodes. In FIG. 1, 1... Precious metal wire, 2... Electrode reaction surface, 3... Connection terminal, 4... Insulating layer, 5... Contamination prevention coating, 6... Blood coagulation prevention coating. , 7... Metal tube, 8... Tube (flexible), 9... Insulating layer (flexible), 10... Reference electrode, 11... Terminal, 12...
・Blastic, in Figure 2 21...Measurement electrode, 22...Control electrode, 23...Electrolyte, 24...
Control electrode container, 25... Catheter for insertion, 26...
・Liquid leakage prevention ring, 27... Blood vessel, 28... Blood, 31... Power supply circuit, 32... Current amplifier, 33.
...Recorder, in Fig. 3, A...Measurement value of 02 partial pressure by the polarographic sensor for arterial blood of the present invention, B...Measurement of the partial pressure of 02 by the conventional polarographic sensor for arterial blood. Value, a... Time when the tips of both sensors are brought into contact with the test solution, b... Time when the tips of both sensors are protruded into the blood, c... Oxygen breathing period of 10 seconds, d・゛゜5 minute oxygen breathing period, e...recorder record value omission period, f...10 second oxygen breathing period, g...5 minute oxygen breathing period, H゜...the tips of both sensors. The point at which it is drawn into the catheter and brought into contact with the assay solution again.

Claims (1)

【特許請求の範囲】 1 少くとも電極反応面が貴金属である金属線、該金属
線表面のうち前記電極反応面である面と外部電気回路へ
の接続端子である面とを除いた面を被覆する絶縁層、該
絶縁層外表面及び前記電極反応面とを被覆する様に設け
られヘパリンが均質分散した透水性をもつプラスチック
でなる血液凝固防止被膜を有するポーラログラフイーセ
ンサー。 2 前記電極反応面及びその近傍の絶縁層と前記血液凝
固防止被膜との間に半透性かつ親水性の汚染防止被膜を
有する特許請求の範囲第1項記載のポーラログラフイー
センサー。 3 少くとも電極反応面が貴金属である金属線、該金属
線表面のうち前記電極反応面である面と外部電気回路へ
の接続端子である面とを除いた面のうち前記電極反応面
近傍を含む所定の部分を被覆する硬質の第1の絶縁層、
前記金属線表面のうち前記電極反応面である面と外部電
気回路への接続端子である面とを除いた面のうち前記第
1の絶縁層で被覆された面に続く面を被覆する軟資の第
2の絶縁層、前記電極反応面及びその近傍以外の前記第
1の絶縁層外表面及び第2の絶縁層外表面を覆う可撓性
プラスチックチューブ、及び少くとも前記電極反応面と
第1の絶縁層外表面とを被覆する様に設けられヘパリン
が均質分散した透水性をもつプラスチックでなる血液凝
固防止被膜を有するポーラログラフイーセンサー。 4 前記電極反応面及びその近傍の絶縁層と前記血液凝
固防止被膜との間に半透性かつ親水性の汚染防止被膜を
有する特許請求の範囲第3項記載のポーラログラフイー
センサー。 5 少くとも電極反応面が貴金属である金属線、該金属
線表面のうち前記電極反応面である面と外部電気回路へ
の接続端子である面とを除いた面を被覆する絶縁層、該
絶縁層外表面に設けられた対照電極、及び少くとも前記
電極反応面を含み前記絶縁層外表面と対象電極外表面を
被覆する様に設けられヘパリンが均質分散した透水性を
もつプラスチックでなる血液凝固防止被膜を有するポー
ラログラフイーセンサー。 6 前記電極反応面及びその近傍の絶縁層と前記血液凝
固防止被覆との間に半透性かつ親水性の汚染防止被膜を
有する特許請求の範囲第5項記載のポーラログラフイー
センサー。 7 少くとも電極反応面が貴金属である金属線、該金属
線表面のうち前記電極反応面である面と外部電気回路へ
の接続端子である面とを除いた面を被覆する絶縁層、前
記電極反応面及びその近傍の絶縁層外表面を覆う様に設
けられ被測定物質に作用する酵素を均一に分散して固定
した多孔性材料の薄層、及び少くとも該多孔性材料の薄
層の外表面を被覆するように設けられヘパリンが均質分
散した透水性をもつプラスチックでなる血液凝固防止被
膜を有するポーラログラフイーセンサー。 8 前記電極反応面及びその近傍の絶縁層と前記酵素が
固定されたプラスチック層との間に半透性かつ親水性の
汚染防止被膜を有する特許請求の範囲第7項記載のポー
ラログラフイーセンサー。
[Scope of Claims] 1. A metal wire whose electrode reaction surface is made of a noble metal, and a surface of the metal wire except for the surface that is the electrode reaction surface and the surface that is a connection terminal to an external electric circuit is coated. A polarographic e-sensor comprising an insulating layer, an anti-blood coagulation coating made of a water-permeable plastic in which heparin is homogeneously dispersed and provided to cover the outer surface of the insulating layer and the electrode reaction surface. 2. The polarographic sensor according to claim 1, further comprising a semipermeable and hydrophilic anti-contamination coating between the electrode reaction surface and the insulating layer in the vicinity thereof and the anti-blood coagulation coating. 3. A metal wire whose electrode reaction surface is made of a noble metal, with a surface near the electrode reaction surface of the surface of the metal wire excluding the surface that is the electrode reaction surface and the surface that is a connection terminal to an external electric circuit. a hard first insulating layer covering a predetermined portion including;
A soft material that covers a surface of the metal wire that continues from the surface covered with the first insulating layer, excluding the surface that is the electrode reaction surface and the surface that is the connection terminal to an external electric circuit. a second insulating layer, a flexible plastic tube covering the outer surface of the first insulating layer and the outer surface of the second insulating layer other than the electrode reaction surface and the vicinity thereof, and at least the electrode reaction surface and the first insulating layer. A polarographic sensor having an anti-blood coagulation coating made of a water-permeable plastic in which heparin is homogeneously dispersed and which is provided so as to cover the outer surface of an insulating layer. 4. The polarographic sensor according to claim 3, further comprising a semipermeable and hydrophilic anti-contamination coating between the insulating layer on and near the electrode reaction surface and the anti-blood coagulation coating. 5. A metal wire whose electrode reaction surface is made of a noble metal, an insulating layer covering the surface of the metal wire excluding the surface that is the electrode reaction surface and the surface that is a connection terminal to an external electric circuit, and the insulation. A blood coagulation device comprising a control electrode provided on the outer surface of the layer, and a water-permeable plastic in which heparin is homogeneously dispersed and provided so as to cover the outer surface of the insulating layer and the outer surface of the target electrode, including at least the reaction surface of the electrode. Polarographic sensor with a protective coating. 6. The polarographic sensor according to claim 5, further comprising a semipermeable and hydrophilic anti-contamination coating between the insulating layer on and near the electrode reaction surface and the anti-blood coagulation coating. 7. A metal wire whose electrode reaction surface is made of a noble metal, an insulating layer covering the surface of the metal wire excluding the surface that is the electrode reaction surface and the surface that is a connection terminal to an external electric circuit, and the electrode. A thin layer of a porous material provided to cover the reaction surface and the outer surface of the insulating layer in the vicinity thereof, in which an enzyme that acts on the substance to be measured is uniformly dispersed and fixed, and at least the outside of the thin layer of the porous material. A polarographic sensor that has a blood-coagulation prevention coating made of water-permeable plastic that covers the surface and has heparin homogeneously dispersed therein. 8. The polarographic e-sensor according to claim 7, further comprising a semipermeable and hydrophilic anti-contamination coating between the electrode reaction surface and the insulating layer in the vicinity thereof and the plastic layer to which the enzyme is immobilized.
JP55187377A 1980-12-26 1980-12-26 Polarography sensor Expired JPS5933389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55187377A JPS5933389B2 (en) 1980-12-26 1980-12-26 Polarography sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55187377A JPS5933389B2 (en) 1980-12-26 1980-12-26 Polarography sensor

Publications (2)

Publication Number Publication Date
JPS57110236A JPS57110236A (en) 1982-07-09
JPS5933389B2 true JPS5933389B2 (en) 1984-08-15

Family

ID=16204939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55187377A Expired JPS5933389B2 (en) 1980-12-26 1980-12-26 Polarography sensor

Country Status (1)

Country Link
JP (1) JPS5933389B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041237Y2 (en) * 1983-02-23 1985-12-14 住友電気工業株式会社 Medical equipment for inserting blood vessels
JPS6180001U (en) * 1984-10-31 1986-05-28
JPH02159255A (en) * 1988-12-12 1990-06-19 Toray Ind Inc Oxygen electrode for living body
US20200037874A1 (en) 2007-05-18 2020-02-06 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise

Also Published As

Publication number Publication date
JPS57110236A (en) 1982-07-09

Similar Documents

Publication Publication Date Title
US4197853A (en) PO2 /PCO2 sensor
JP3194434B2 (en) Implantable glucose sensor
JP5116697B2 (en) Hydrogels for intravenous amperometric biosensors
US10060877B2 (en) Electrochemical sensor for determining an analyte concentration
EP0206531A2 (en) Electrochemical cell sensor for continuous, short-term use in tissues and blood
Meruva et al. Catheter-type sensor for potentiometric monitoring of oxygen, pH and carbon dioxide
WO1993005701A1 (en) A dialysis electrode device
JPH0824244A (en) Electric catalyst glucose sensor
US20100010328A1 (en) Probes and sensors for ascertaining blood characteristics and methods and devices for use therewith
US4653499A (en) Solid phase electrode
JPH021536A (en) Film coating sensor
EP0015075B1 (en) Bilumen catheter comprising a polarographic sensor and method of manufacturing it
KR102275188B1 (en) Nonenzymatic determination of glucose at near neutral ph values based on the use of nafion and platinum black coated microneedle electrode array
AU2018295206B2 (en) Sensor initialization methods for faster body sensor response
Charlton et al. Continuous intra-arterial PO2 in normal man using a flexible microelectrode
JPS5933389B2 (en) Polarography sensor
Hagihara et al. Intravascular oxygen monitoring with a polarographic oxygen cathode
JPS5914843A (en) Portable sugar level measuring apparatus
JPS6131123A (en) Sticky disc for subcateneous blood gas concentration measuring sensor
JPS6133644A (en) Living body electrode
JPS5928357Y2 (en) Medical FET sensor
JPH0367220B2 (en)
JPH0389154A (en) Dissolved gas sensor and forming method of groove of the same sensor
JPH0117296Y2 (en)
JPH0368691B2 (en)