JPH0389154A - Dissolved gas sensor and forming method of groove of the same sensor - Google Patents
Dissolved gas sensor and forming method of groove of the same sensorInfo
- Publication number
- JPH0389154A JPH0389154A JP22532989A JP22532989A JPH0389154A JP H0389154 A JPH0389154 A JP H0389154A JP 22532989 A JP22532989 A JP 22532989A JP 22532989 A JP22532989 A JP 22532989A JP H0389154 A JPH0389154 A JP H0389154A
- Authority
- JP
- Japan
- Prior art keywords
- groove
- electrode
- gas sensor
- dissolved gas
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 7
- 239000000758 substrate Substances 0.000 claims abstract description 28
- 229910021607 Silver chloride Inorganic materials 0.000 claims abstract description 4
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 claims abstract description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 3
- 229910052751 metal Inorganic materials 0.000 claims description 27
- 239000002184 metal Substances 0.000 claims description 27
- 239000003792 electrolyte Substances 0.000 claims description 25
- 239000012528 membrane Substances 0.000 claims description 24
- 229910044991 metal oxide Inorganic materials 0.000 claims description 20
- 150000004706 metal oxides Chemical class 0.000 claims description 20
- 239000004065 semiconductor Substances 0.000 claims description 19
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 16
- 238000005530 etching Methods 0.000 claims description 10
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 230000005669 field effect Effects 0.000 claims description 5
- 229910052738 indium Inorganic materials 0.000 claims description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 5
- 229910052741 iridium Inorganic materials 0.000 claims description 5
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 5
- 239000013078 crystal Substances 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 229910001220 stainless steel Inorganic materials 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 239000000463 material Substances 0.000 claims description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 238000010030 laminating Methods 0.000 claims 1
- 229920001721 polyimide Polymers 0.000 abstract description 4
- 239000007789 gas Substances 0.000 description 47
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 44
- 229910002092 carbon dioxide Inorganic materials 0.000 description 22
- 239000001569 carbon dioxide Substances 0.000 description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 12
- 239000001301 oxygen Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910000457 iridium oxide Inorganic materials 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、臨床検査や環境計測で用いられる溶存ガスセ
ンサに係り、特に血液や河川水等に溶けている酸素また
は炭酸ガスの分圧あるいは濃度を測定するのに好適な溶
存ガスセンサに関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a dissolved gas sensor used in clinical tests and environmental measurements, and in particular to a sensor for measuring the partial pressure or concentration of oxygen or carbon dioxide dissolved in blood, river water, etc. The present invention relates to a dissolved gas sensor suitable for measuring.
従来、半導体基板を用いた小型の溶存酸素センサについ
ては、プロシーディングズオブザサードセンサシンポジ
ウム(1983年)第21頁から第26頁(Proce
edings of The 3rd sensorS
ymposium(1983)PP 21−26 )に
おいて論じられている。この溶存酸素センサは、異方性
エツチングにより溝を形成し、その溝に電極対を配置す
るとともに、溝上部にテフロン製のガス透過膜を設け、
このガス透過膜により溝内の内部電解質ゲルを保持する
ように構成されている。Conventionally, small dissolved oxygen sensors using semiconductor substrates have been described in Proceedings of the Third Sensor Symposium (1983), pages 21 to 26 (Proceedings of the Third Sensor Symposium (1983), pages 21 to 26).
edings of The 3rd sensorS
ymposium (1983) PP 21-26). This dissolved oxygen sensor has a groove formed by anisotropic etching, an electrode pair placed in the groove, and a Teflon gas permeable membrane placed above the groove.
This gas permeable membrane is configured to retain the internal electrolyte gel within the groove.
また、溶存炭酸ガスセンサについては、「医用電子と生
体工学」第19巻特別号(1981年)第28頁におい
て論じられている。この溶存炭酸ガスセンサは、pHに
応答するイオン感応性電界効果型トランジスタ(以下、
l5FETという)にA g / A g Cn電極を
形成し、ガス透過膜としてシリコンチューブを用い、か
つl5FETの上部に電解質ゲルを包み込んだ構造とな
っている。Dissolved carbon dioxide sensors are discussed in "Medical Electronics and Bioengineering", Vol. 19, Special Issue (1981), page 28. This dissolved carbon dioxide sensor is a pH-responsive ion-sensitive field-effect transistor (hereinafter referred to as
It has a structure in which A g /A g Cn electrodes are formed on a 15FET), a silicon tube is used as a gas permeable membrane, and an electrolyte gel is wrapped in the upper part of the 15FET.
しかしながら、上記従来の溶存酸素センサでは。 However, in the conventional dissolved oxygen sensor described above.
ガス透過膜及びガス透過膜を保持するフレーム等をそれ
ぞれ別個に製造し組み合わせている。また内部電解質ゲ
ルも別個に注入するようになっている。このために、当
該溶存酸素センサの製造においては、半導体基板を用い
ているにも拘わらず、半導体プロセスと整合させること
が困難である。The gas permeable membrane and the frame for holding the gas permeable membrane are manufactured separately and assembled together. The internal electrolyte gel is also injected separately. For this reason, in manufacturing the dissolved oxygen sensor, although a semiconductor substrate is used, it is difficult to match it with a semiconductor process.
また、従来の溶存炭酸ガスセンサでは、内部電解質ゲル
をシリコンチューブで保持するため、ガス透過膜とpH
用l5FETの感応部分との距離を一定にすることが困
難であるとともに、センサ寿命を長くするために内部電
解質ゲルの容量を増加させなければ、上記の距離が長く
なり応答速度が遅くなるなどの問題がある。このため、
従来の溶存炭酸ガスセンサには、センサ間の応答特性に
大きなバラツキがあるのが一般的である。In addition, in conventional dissolved carbon dioxide sensors, the internal electrolyte gel is held in a silicon tube, so the gas permeable membrane and pH
It is difficult to maintain a constant distance from the sensitive part of the 15FET, and unless the capacity of the internal electrolyte gel is increased to extend the sensor life, the above distance will become longer and the response speed will become slower. There's a problem. For this reason,
Conventional dissolved carbon dioxide sensors generally have large variations in response characteristics between sensors.
本発明の目的は、センサ基板上で一貫して形成できるよ
う半導体プロセスとの整合性が良く、かつ応答速度が速
く、しかもセンサ特性のバラツキが小さい溶存ガスセン
サを提供することである。An object of the present invention is to provide a dissolved gas sensor that has good compatibility with semiconductor processes so that it can be consistently formed on a sensor substrate, has a fast response speed, and has small variations in sensor characteristics.
上記目的を遠戚するために、本発明は、半導体基板上に
溝を形成し、該溝の上部または中間部に電極支持体を設
け、前記電極支持体には金属電極を、前記溝の側面また
は底部にはA g / A g CQ等の参照電極をそ
れぞれ配設するとともに、前記溝内に内部電解質ゲルを
充填し、その充填した内部電解質ゲルの上をガス透過膜
で覆ったことを特徴とする。In order to achieve the above object, the present invention forms a groove on a semiconductor substrate, provides an electrode support at the top or middle part of the groove, and a metal electrode on the electrode support, and a side surface of the groove. Alternatively, a reference electrode such as A g / A g CQ is provided at the bottom, and an internal electrolyte gel is filled in the groove, and the filled internal electrolyte gel is covered with a gas permeable membrane. shall be.
また、本発明は、半導体基板上に溝を形成し、該溝の上
部または中間部に電極支持体を設け、前記電極支持体に
は金属/金属酸化膜電極を、前記溝の側面または底部に
はA g / A g CQ等の参照電極をそれぞれ配
設するとともに、前記溝内に内部電解質ゲルを充填し、
その充填した内部電解質ゲルの上をガス透過膜で覆った
ことを特徴とする。The present invention also provides a method for forming a groove on a semiconductor substrate, providing an electrode support at the top or middle of the groove, and disposing a metal/metal oxide film electrode on the electrode support at the side or bottom of the groove. In addition to disposing reference electrodes such as A g / A g CQ, respectively, and filling the groove with an internal electrolyte gel,
It is characterized by covering the filled internal electrolyte gel with a gas permeable membrane.
また、本発明は、半導体基板上に溝を形成し、該溝の上
部または中間部に電極支持体を設け、前記電極支持体に
は金属/金属酸化膜電極を、前記溝の側面または底部に
はAg/AgCl等の参照電極をそれぞれ配設するとと
もに、前記溝内に内部電解質ゲルを充填し、その充填し
た内部電解質ゲルの上をガス透過膜で覆い、かつ前記金
属/金属酸化膜電極の一端を前記半導体基板上に設けら
れた金属ゲート電界効果トランジスタに接続したことを
特徴とする。The present invention also provides a method for forming a groove on a semiconductor substrate, providing an electrode support at the top or middle of the groove, and disposing a metal/metal oxide film electrode on the electrode support at the side or bottom of the groove. In addition to disposing reference electrodes such as Ag/AgCl, the grooves are filled with an internal electrolyte gel, and the filled internal electrolyte gel is covered with a gas permeable membrane, and the metal/metal oxide membrane electrode is It is characterized in that one end is connected to a metal gate field effect transistor provided on the semiconductor substrate.
さらに、本発明は、上記溶存ガスセンサをカテーテルチ
ューブの一側に収納するとともに、前記溶存ガスセンサ
のガス感応部が被測定溶液に接触するための孔を前記カ
テーテルチューブの一側に設け、かつ前記溶存ガスセン
サが外部と電気的接続するためのコネクタを前記カテー
テルチューブの他側に設けたことを特徴とする。Further, in the present invention, the dissolved gas sensor is housed on one side of the catheter tube, and a hole is provided on one side of the catheter tube for the gas sensitive part of the dissolved gas sensor to come into contact with the solution to be measured, and the dissolved gas sensor The present invention is characterized in that a connector for electrically connecting the gas sensor to the outside is provided on the other side of the catheter tube.
また、本発明は、結晶軸<100>の珪素を半導体基板
とし、該半導体基板の表面に酸化膜または窒化珪素膜等
の珪素と異なる材質の膜体を積層させ、積層した膜体に
電極支持体のパターンを残して溝部分のエツチングをし
たのち、異方性エツチングにより前記電極支持体の下部
を含めて前記半導体基板に溝を形成するようにしたこと
を特徴とする。Further, the present invention uses silicon with a crystal axis <100> as a semiconductor substrate, and a film body made of a material different from silicon, such as an oxide film or a silicon nitride film, is laminated on the surface of the semiconductor substrate, and an electrode is supported on the laminated film body. The method is characterized in that after the groove portion is etched leaving the body pattern, the groove is formed in the semiconductor substrate including the lower part of the electrode support by anisotropic etching.
上記構成によれば、溝に形状した電極支持体により、金
属電極または金属/金属酸化膜電極をガス透過膜に近接
させることができるので、ガス透過膜からのガス拡散距
離を短くすることができ、溶存ガスセンサの応答速度を
向上させることができる。According to the above configuration, the groove-shaped electrode support allows the metal electrode or the metal/metal oxide film electrode to be brought close to the gas permeable membrane, thereby shortening the gas diffusion distance from the gas permeable membrane. , the response speed of the dissolved gas sensor can be improved.
また、金属/金属酸化膜電極の一端を同一センサ基板内
にある金属ゲート電界効果トランジスタ(以下、MOS
FETという)に接続することにより、金属/金属酸化
膜電極単体ではpH応答の出力インピーダンスが高く外
乱による雑音が発生し易いのを1M08FETのインピ
ーダンス変換により低出力インピーダンスとすることが
できる。In addition, one end of the metal/metal oxide film electrode is connected to a metal gate field effect transistor (hereinafter referred to as MOS) on the same sensor substrate.
By connecting to a metal/metal oxide film electrode, the output impedance of a single metal/metal oxide film electrode is high in pH response and easily generates noise due to disturbance, but by impedance conversion of the 1M08 FET, the output impedance can be reduced to a low value.
これにより、溶存ガスセンサを小型化しても、雑音が入
り難く且つ高S/N比の信号を得るようにすることが可
能となる。As a result, even if the dissolved gas sensor is miniaturized, it is possible to obtain a signal that is less susceptible to noise and has a high S/N ratio.
さらに、上記した溶存ガスセンサをカテーテルチューブ
に収納してプローブ状溶存ガスセンサとすれば、血管等
に挿入し易くなり、血液中の炭酸ガス等を容易に検出す
ることができる。Furthermore, if the above-described dissolved gas sensor is housed in a catheter tube to form a probe-like dissolved gas sensor, it can be easily inserted into a blood vessel or the like, and carbon dioxide gas or the like in the blood can be easily detected.
また、異方性エツチングにより結晶軸<100〉のSi
をエツチングすると<111>面が残されるので、エツ
チング用設計パターンに対し横方向へはエツチングされ
ずに深さ方向だけエツチングされるため、設計通りの溝
ができセンサ形状の再現性が良くなって、センサ間の特
性のバラツキが少なくなる。同時に異方性エツチングに
より電極支持体の下部もエツチングできるので、センサ
面積に対し溝内に充填される内部電解質ゲルの容量をふ
やすことができる。これによりセンサ寿命を長くするこ
とが可能となる。In addition, by anisotropic etching, Si with crystal axis <100>
When etched, a <111> plane is left behind, so the etching design pattern is etched only in the depth direction without being etched in the lateral direction, resulting in a groove as designed and improved reproducibility of the sensor shape. , variations in characteristics between sensors are reduced. At the same time, the lower part of the electrode support can be etched by anisotropic etching, so the capacity of the internal electrolyte gel filled in the groove can be increased relative to the sensor area. This makes it possible to extend the sensor life.
以下に本発明の一実施例を図面に従って説明する。 An embodiment of the present invention will be described below with reference to the drawings.
(第1実施例)
まず、本発明の第1実施例である溶存酸素センサの概観
を第1図に、第1図のn−n線に沿った断面構造を第2
図にそれぞれ示す。図に示すように、Siからなるセン
サ基板1には溝2が形成され、溝2内を含んでセンサ基
板1の表面は酸化膜3で覆われている。溝2の上部には
酸化膜3からなる電極支持体5が形成され、この電極支
持体5の上にpt電極6が配置されている。溝2の側面
にはA g / A g CQ電極4が配置されている
。また酸化膜3上の溝2以外の部分にはSi、N4膜1
1が形成され、被測定溶液から電極を保護するようにな
っている。さらに酸化膜3の上部にはポリイミド膜7が
積層されている。溝2内には内部電解質ゲル12が充填
され、この内部電解質ゲル12の上部にガス透過膜8が
形成されている。(First Example) First, FIG. 1 shows an overview of a dissolved oxygen sensor that is a first example of the present invention, and FIG.
Each is shown in the figure. As shown in the figure, a groove 2 is formed in a sensor substrate 1 made of Si, and the surface of the sensor substrate 1 including the inside of the groove 2 is covered with an oxide film 3. An electrode support 5 made of an oxide film 3 is formed above the groove 2, and a PT electrode 6 is placed on the electrode support 5. An A g /A g CQ electrode 4 is arranged on the side surface of the groove 2 . In addition, Si, N4 film 1 is formed on the oxide film 3 on the part other than the groove 2.
1 is formed to protect the electrode from the solution to be measured. Furthermore, a polyimide film 7 is laminated on top of the oxide film 3. The groove 2 is filled with an internal electrolyte gel 12, and a gas permeable membrane 8 is formed above the internal electrolyte gel 12.
またPt電極6には陰極端子9が、Ag/AgCl電極
4には陽極端子10がそれぞれ設けられ、これらの端子
9,10を介して外部測定回路と接続できるようになっ
ている。Further, the Pt electrode 6 is provided with a cathode terminal 9, and the Ag/AgCl electrode 4 is provided with an anode terminal 10, respectively, and can be connected to an external measurement circuit via these terminals 9 and 10.
このような溶存酸素センサは次のようにして製作される
。Such a dissolved oxygen sensor is manufactured as follows.
まず、結晶軸(100>のSiをセンサ基板lとして用
い、センサ先端のセンシング部にK OH水溶液で異方
性エツチングを行い溝2を形成する。First, using Si with a crystal axis (100>) as a sensor substrate 1, a groove 2 is formed in the sensing portion at the tip of the sensor by anisotropic etching with a KOH aqueous solution.
センサ基板lに溝2を形成した後、酸化処理を行いセン
サ基板1表面に酸化膜3を形成する。そして、溝2の側
面にはA g / A g CQ電極4を形成する。溝
2の上部に溝形成時にとり残した酸化膜3により電極支
持体5を形成し、この上にPt電極6を形成する。Pt
電極6には陰極端子9を、A g / A g CQ電
極4には陽極端子10をそれぞれ接続する。りん酸緩衝
液にKCQを溶かした電解質溶液を作り、ポリビニルア
ルコール(PVA)を混ぜた内部電解質ゲル12を溝2
の内部に充填する。ポリイミド膜7を溝2の上部を開口
するように形成し、開口部分にシリコンによるガス透過
膜8を形成する。After forming the groove 2 on the sensor substrate 1, oxidation treatment is performed to form an oxide film 3 on the surface of the sensor substrate 1. Then, an A g /A g CQ electrode 4 is formed on the side surface of the groove 2 . An electrode support 5 is formed on the top of the groove 2 using the oxide film 3 left behind when forming the groove, and a Pt electrode 6 is formed on this. Pt
A cathode terminal 9 is connected to the electrode 6, and an anode terminal 10 is connected to the A g /A g CQ electrode 4, respectively. Prepare an electrolyte solution by dissolving KCQ in phosphate buffer, and insert internal electrolyte gel 12 mixed with polyvinyl alcohol (PVA) into groove 2.
Fill inside. A polyimide film 7 is formed so as to open the upper part of the groove 2, and a gas permeable film 8 made of silicon is formed in the opening.
第3図に本実施例の溶存酸素センサを用いて応答特性を
調べた実験結果を示す、実験結果より溶存酸素分圧O〜
800 m Hgの範囲でほぼ直線的な応答が得られる
ことが分かる。第4図に本センサにおけるガス透過膜8
と電極支持体5との距離を変化させ、その時のセンサ応
答時間を調べた実験結果を示す0間隔をはなすと応答時
間が極端に悪くなることが分かる6間隔が10μ這以内
であれば応答時間は1分以内である。このように電極支
持体5とガス透過膜8とを近接させることは、本センサ
では容易にできるため、早い応答時間が得られるように
なる。Figure 3 shows the experimental results of investigating the response characteristics using the dissolved oxygen sensor of this example.
It can be seen that a nearly linear response is obtained in the range of 800 m Hg. Figure 4 shows the gas permeable membrane 8 in this sensor.
The results of an experiment in which the sensor response time was investigated by changing the distance between the 0 interval and the electrode support 5 are shown.Response time becomes extremely poor when the 0 interval is removed.6If the interval is within 10μ, the response time is is within 1 minute. In this sensor, it is easy to bring the electrode support 5 and the gas permeable membrane 8 close to each other in this way, so that a quick response time can be obtained.
なお、電極支持体5は溝2の上部だけでなく、溝2の中
間部に設けてもよい、また電極支持体5は溝2の片側か
ら支持するだけでなく、溝2の両側から支持する。いわ
ゆる橋渡しの形状にしてもよい。Note that the electrode support 5 may be provided not only at the top of the groove 2 but also in the middle of the groove 2, and the electrode support 5 may be supported not only from one side of the groove 2 but also from both sides of the groove 2. . A so-called bridging shape may also be used.
また、Pt電極6の代わりに、金、イリジウム。Also, instead of the Pt electrode 6, gold or iridium is used.
インジウムのいずれかの金属からなる電極を使用しても
、同等の効果が得られる。The same effect can be obtained by using an electrode made of any metal such as indium.
(第2実施例)
本発明による第2実施例を第5図および第6図により説
明する。本センサは溶存炭酸ガスセンサであり、センサ
の基本的構造は第1実施例と似ている。異なる点は電極
部分であり、電極支持体5に金属/金属酸化膜電極が形
成されていることである。金属/金属酸化膜電極は、金
属として白金6を用い、その上に金属酸化膜としてイリ
ジウム酸化膜13を積層した構成となっている。この金
属/金属酸化膜電極はpHセンサとして使える。(Second Embodiment) A second embodiment of the present invention will be described with reference to FIGS. 5 and 6. This sensor is a dissolved carbon dioxide sensor, and the basic structure of the sensor is similar to that of the first embodiment. The difference is in the electrode portion, in that a metal/metal oxide film electrode is formed on the electrode support 5. The metal/metal oxide film electrode has a structure in which platinum 6 is used as the metal and an iridium oxide film 13 is laminated thereon as the metal oxide film. This metal/metal oxide film electrode can be used as a pH sensor.
炭酸ガスの測定原理は、被測定溶液から溶存炭酸ガスが
拡散し、溝2内に充填した内部電解質ゲル12のpHが
変化することを利用している。このpH変化をとらえる
ことにより被測定溶液中の溶存炭酸ガス濃度が測定でき
る。ここで内部電解質ゲルエ2には、NaCQとN a
HC○、を溶かした電解質溶液にポリビニルアルコー
ルを溶かしゲル状にしたものを用いている。The principle of measuring carbon dioxide gas is based on the fact that dissolved carbon dioxide gas diffuses from the solution to be measured, and the pH of internal electrolyte gel 12 filled in groove 2 changes. By capturing this pH change, the dissolved carbon dioxide concentration in the solution to be measured can be measured. Here, the internal electrolyte gel 2 contains NaCQ and Na
A gel made by dissolving polyvinyl alcohol in an electrolyte solution containing HC○ is used.
第7図に炭酸ガス分圧に対する応答結果を示す。Figure 7 shows the response results to the partial pressure of carbon dioxide gas.
ガス分圧の対数値に対し直線的な応答が得られることが
分かる。It can be seen that a linear response is obtained with respect to the logarithm of the gas partial pressure.
なお、金属/金属酸化膜電極には、金属としては白金以
外に金、銀、パラジウム、ステンレス。In addition to platinum, the metals used for the metal/metal oxide film electrodes include gold, silver, palladium, and stainless steel.
イリジウム、インジウムを、金属酸化膜としてはイリジ
ウム以外に白金、パラジウム、ステンレス。In addition to iridium, platinum, palladium, and stainless steel are used as metal oxide films.
インジウムを各々使用することができる。Indium can be used respectively.
(第3実施例)
本発明による第3実施例を第8図により説明する6本セ
ンサは溶存炭酸ガスセンサであり、第2実施例における
金属/金属酸化膜電極の一端をセンサと同一半導体基板
上に形成した電界効果トランジスタ(MOSFET)の
ゲート14に接続したものである。金属/金属酸化膜電
極の電位変化はMOSFETのゲート電位変化となって
、MOSFETのドレイン15.ソース16の間の電流
変化を起こす。この変化量により溶存炭酸ガス分圧を測
定できる。またMOSFETによりセンサ出力のインピ
ーダンスを低くできるので、雑音が入りにくく、外部測
定回路も入力インピーダンスの低い安価なものが使用で
きる。(Third Embodiment) The third embodiment of the present invention will be explained with reference to FIG. 8. The six sensors are dissolved carbon dioxide sensors, and one end of the metal/metal oxide film electrode in the second embodiment is mounted on the same semiconductor substrate as the sensor. It is connected to the gate 14 of a field effect transistor (MOSFET) formed in the above. A change in the potential of the metal/metal oxide film electrode results in a change in the gate potential of the MOSFET, resulting in a change in the gate potential of the MOSFET. causing a current change between sources 16; The dissolved carbon dioxide partial pressure can be measured based on this amount of change. Furthermore, since the impedance of the sensor output can be lowered using MOSFET, noise is less likely to enter, and an inexpensive external measurement circuit with low input impedance can be used.
第9図はガス分圧を2 Q an Hgから4OmmH
gに変化した時の時間応答を示す。曲線AはMOSFE
Tに接続しない第2実施例によるもの、曲線BはMOS
FETに接続した溶存炭酸ガスセンサの結果である。A
では95%応答時間が1分35秒でノイズレベル1.7
mVであるが、Bでは応答時間は40秒でノイズレベル
0.4mVである。これらの結果により、本実施例では
低ノイズの溶存炭酸ガスセンサを実現できることが分か
る。Figure 9 shows the gas partial pressure from 2 Q an Hg to 40 mmH.
It shows the time response when changing to g. Curve A is MOSFE
According to the second embodiment without connection to T, curve B is MOS
These are the results of a dissolved carbon dioxide sensor connected to an FET. A
In this case, the 95% response time is 1 minute 35 seconds and the noise level is 1.7.
mV, but in B, the response time is 40 seconds and the noise level is 0.4 mV. These results show that this example can realize a low-noise dissolved carbon dioxide sensor.
(第4実施例)
本発明による第4実施例を第10図により説明する。図
はナイロンチューブ17(1mmφ)に溶存ガスセンサ
18を装着した様子を示す。チューブ側面にチューブ開
口部19を設け、溶存ガスセンサの感応部20を露出さ
せている。チューブ開口部19を介して被測定溶液と感
応部20が接触し溶存ガス濃度を測定できる。センサ出
力はチューブ中のリード線21を通ってコネクタ22に
より外部測定回路で計測される。(Fourth Example) A fourth example according to the present invention will be described with reference to FIG. The figure shows a dissolved gas sensor 18 attached to a nylon tube 17 (1 mmφ). A tube opening 19 is provided on the side surface of the tube to expose the sensitive part 20 of the dissolved gas sensor. The solution to be measured comes into contact with the sensitive section 20 through the tube opening 19, and the dissolved gas concentration can be measured. The sensor output is measured by an external measurement circuit via a connector 22 through a lead wire 21 in the tube.
第11図は本センサを犬の動脈に挿入し、人工呼吸器に
より呼吸数を変えた時の血液中の溶存炭酸ガス分圧を調
べた実験結果である。この実験結果より、本センサは血
管内の炭酸ガス分圧を連続してモニターできることが分
かる。FIG. 11 shows the results of an experiment in which the sensor was inserted into a dog's artery and the partial pressure of carbon dioxide gas dissolved in the blood was investigated when the breathing rate was changed using a ventilator. The experimental results show that this sensor can continuously monitor the partial pressure of carbon dioxide in blood vessels.
以上説明したように、本発明によれば、ガス電極とガス
透過膜を近接配置でき、しかも内部電解質ゲル容量をセ
ンサ面積あたり有効に増すことができるので、応答速度
が早く且つ寿命が長い溶存ガスセンサが実現できる。As explained above, according to the present invention, the gas electrode and the gas permeable membrane can be placed close to each other, and the internal electrolyte gel capacity can be effectively increased per sensor area, so the dissolved gas sensor has a fast response speed and a long life. can be realized.
また異方性エツチングにより、エツチング用設計パター
ンはほとんど横方向へはエツチングされず、深さ方向だ
けエツチングできるので、製造上、溶存ガスセンサの形
状の再現性が良くなり、センサ間の特性のバラツキを減
少させることができる。In addition, due to anisotropic etching, the design pattern for etching is hardly etched in the lateral direction, but can be etched only in the depth direction, which improves the reproducibility of the shape of the dissolved gas sensor during manufacturing and reduces the variation in characteristics between sensors. can be reduced.
また、センサ基板上にMOSFETを形成することによ
り、センサ出力のインピーダンスを低くすることができ
るので、低雑音の溶存ガスセンサが実現できる。Further, by forming a MOSFET on the sensor substrate, the impedance of the sensor output can be lowered, so a low-noise dissolved gas sensor can be realized.
さらにセンサの感応部だけが露出するようにカテーテル
チューブに装着することにより、血管内等での連続計測
が可能となる。Furthermore, by attaching the sensor to a catheter tube so that only the sensitive part of the sensor is exposed, continuous measurement inside a blood vessel or the like becomes possible.
第1図は本発明の第1実施例である溶存酸素センサの概
念図、第2図は第1図の■−■線に沿った断面図、第3
図は溶存酸素センサの検量線を示す線図、第4図は溶存
酸素センサにおける電極支持体とガス透過膜との間の距
離と応答時間との関係を示す線図、第5図は本発明の第
2実施例である溶存炭酸ガスセンサの概念図、第6図は
第5図のVI−VI線に沿った断面図、第7図は溶存炭
酸ガスセンサの検量線を示す線図、第8図は本発明の第
3実施例であるMOSFETを集積化した溶存炭酸ガス
センサの概念図、第9図は溶存炭酸ガスセンサの応答曲
線図、第1O図は本発明の第4実施例であるカテーテル
形状の溶存炭酸ガスセンサの概念図、第11図は溶存炭
酸ガスセンサの応答曲線図である。
l・・・センサ基板、2・・・溝、3・・・酸化膜、4
・・・A g / A g CQ電極、5・・・電極支
持体、6・・・pt電極、7・・・ポリイミド膜、8・
・・ガス透過膜、9・・・陰極端子、10・・・陽極端
子、11・・・Si、N4膜、12・・・内部電解質ゲ
ル、
13・・・イリジウム酸化膜、14・・・ゲート、15
・・・ドレイン、16・・・ソース、17・・・ナイロ
ンチューブ、
18・・・溶存ガスセンサ、19・・・チューブ開口部
、20・・・感応部。
21・・・リード線、22・・・コネクタ。Fig. 1 is a conceptual diagram of a dissolved oxygen sensor according to the first embodiment of the present invention, Fig. 2 is a sectional view taken along the line ■-■ in Fig. 1, and Fig.
The figure is a diagram showing the calibration curve of a dissolved oxygen sensor, Figure 4 is a diagram showing the relationship between the distance between the electrode support and the gas permeable membrane and the response time in the dissolved oxygen sensor, and Figure 5 is a diagram showing the relationship between the response time and the distance between the electrode support and the gas permeable membrane in the dissolved oxygen sensor. 6 is a cross-sectional view taken along line VI-VI in FIG. 5, FIG. 7 is a diagram showing the calibration curve of the dissolved carbon dioxide sensor, and FIG. 10 is a conceptual diagram of a dissolved carbon dioxide sensor integrating MOSFET, which is the third embodiment of the present invention, FIG. 9 is a response curve diagram of the dissolved carbon dioxide sensor, and FIG. A conceptual diagram of the dissolved carbon dioxide sensor, and FIG. 11 is a response curve diagram of the dissolved carbon dioxide sensor. l...sensor substrate, 2...groove, 3...oxide film, 4
... A g / A g CQ electrode, 5... Electrode support, 6... PT electrode, 7... Polyimide membrane, 8...
... Gas permeable membrane, 9... Cathode terminal, 10... Anode terminal, 11... Si, N4 membrane, 12... Internal electrolyte gel, 13... Iridium oxide film, 14... Gate , 15
...Drain, 16...Source, 17...Nylon tube, 18...Dissolved gas sensor, 19...Tube opening, 20...Sensitive part. 21...Lead wire, 22...Connector.
Claims (1)
部に電極支持体を設け、前記電極支持体には金属電極を
、前記溝の側面または底部にはAg/AgCl等の参照
電極をそれぞれ配設するとともに、前記溝内に内部電解
質ゲルを充填し、その充填した内部電解質ゲルの上をガ
ス透過膜で覆ったことを特徴とする溶存ガスセンサ。 2、請求項1記載の溶存ガスセンサにおいて、前記金属
電極は、白金、金、イリジウム、インジウムのいずれか
で構成されていることを特徴とする溶存ガスセンサ。 3、半導体基板上に溝を形成し、該溝の上部または中間
部に電極支持体を設け、前記電極支持体には金属/金属
酸化膜電極を、前記溝の側面または底部にはAg/Ag
Cl等の参照電極をそれぞれ配設するとともに、前記溝
内に内部電解質ゲルを充填し、その充填した内部電解質
ゲルの上をガス透過膜で覆ったことを特徴とする溶存ガ
スセンサ。 4、請求項3記載の溶存ガスセンサにおいて、前記金属
/金属酸化膜電極は、白金、金、銀、パラジウム、ステ
ンレス、イリジウム、インジウムのいずれかの金属上に
、白金、パラジウム、ステンレス、イリジウム、インジ
ウムのいずれかの金属酸化膜が積層され構成されている
ことを特徴とする溶存ガスセンサ。 5、請求項1又は3記載の溶存ガスセンサにおいて、前
記電極支持体は、前記溝の一側で片持ちで支持されてい
ることを特徴とする溶存ガスセンサ。 6、請求項1又は3記載の溶存ガスセンサにおいて、前
記電極支持体は、前記溝の両側に橋渡しされて支持され
ていることを特徴とする溶存ガスセンサ。 7、半導体基板上に溝を形成し、該溝の上部または中間
部に電極支持体を設け、前記電極支持体には金属/金属
酸化膜電極を、前記溝の側面または底部にはAg/Ag
Cl等の参照電極をそれぞれ配設するとともに、前記溝
内に内部電解質ゲルを充填し、その充填した内部電解質
ゲルの上をガス透過膜で覆い、かつ前記金属/金属酸化
膜電極の一端を前記半導体基板上に設けられた金属ゲー
ト電界効果トランジスタに接続したことを特徴とする溶
存ガスセンサ。 8、請求項1、3又は7記載の溶存ガスセンサをカテー
テルチューブの一側に収納するとともに、前記溶存ガス
センサのガス感応部が被測定溶液に接触するための孔を
前記カテーテルチューブの一側に設け、かつ前記溶存ガ
スセンサが外部と電気的接続するためのコネクタを前記
カテーテルチューブの他側に設けたことを特徴とするプ
ローブ状溶存ガスセンサ。 9、結晶軸<100>の珪素を半導体基板とし、該半導
体基板の表面に酸化膜または窒化珪素膜等の珪素と異な
る材質の膜体を積層させ、積層した膜体に電極支持体の
パターンを残して溝部分のエッチングをしたのち、異方
性エッチングにより前記電極支持体の下部を含めて前記
半導体基板に溝を形成することを特徴とする溶存ガスセ
ンサの溝形成方法。[Claims] 1. A groove is formed on a semiconductor substrate, an electrode support is provided at the top or middle part of the groove, a metal electrode is provided on the electrode support, and an Ag layer is provided on the side or bottom of the groove. A dissolved gas sensor, characterized in that reference electrodes such as /AgCl and the like are respectively disposed, an internal electrolyte gel is filled in the groove, and the filled internal electrolyte gel is covered with a gas permeable membrane. 2. The dissolved gas sensor according to claim 1, wherein the metal electrode is made of platinum, gold, iridium, or indium. 3. A groove is formed on the semiconductor substrate, an electrode support is provided at the top or middle part of the groove, a metal/metal oxide film electrode is provided on the electrode support, and an Ag/Ag film is provided on the side or bottom of the groove.
A dissolved gas sensor characterized in that reference electrodes such as Cl are provided, an internal electrolyte gel is filled in the grooves, and the filled internal electrolyte gel is covered with a gas permeable membrane. 4. In the dissolved gas sensor according to claim 3, the metal/metal oxide film electrode is formed of platinum, palladium, stainless steel, iridium, or indium on any one of platinum, gold, silver, palladium, stainless steel, iridium, and indium. A dissolved gas sensor comprising a stack of metal oxide films. 5. The dissolved gas sensor according to claim 1 or 3, wherein the electrode support is supported in a cantilever manner on one side of the groove. 6. The dissolved gas sensor according to claim 1 or 3, wherein the electrode support is supported across both sides of the groove. 7. A groove is formed on the semiconductor substrate, an electrode support is provided at the top or middle of the groove, a metal/metal oxide film electrode is provided on the electrode support, and an Ag/Ag film is provided on the side or bottom of the groove.
Reference electrodes such as Cl are provided respectively, and the grooves are filled with an internal electrolyte gel, and the filled internal electrolyte gel is covered with a gas permeable membrane, and one end of the metal/metal oxide film electrode is connected to the A dissolved gas sensor characterized in that it is connected to a metal gate field effect transistor provided on a semiconductor substrate. 8. The dissolved gas sensor according to claim 1, 3 or 7 is housed on one side of the catheter tube, and a hole is provided on one side of the catheter tube for the gas sensitive part of the dissolved gas sensor to come into contact with the solution to be measured. A probe-shaped dissolved gas sensor, further comprising a connector on the other side of the catheter tube for electrically connecting the dissolved gas sensor to the outside. 9. Using silicon with crystal axis <100> as a semiconductor substrate, laminating a film body made of a material different from silicon, such as an oxide film or a silicon nitride film, on the surface of the semiconductor substrate, and forming an electrode support pattern on the laminated film body. A method for forming a groove in a dissolved gas sensor, comprising: etching a groove portion, and then forming a groove in the semiconductor substrate including a lower portion of the electrode support by anisotropic etching.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22532989A JPH0389154A (en) | 1989-08-31 | 1989-08-31 | Dissolved gas sensor and forming method of groove of the same sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22532989A JPH0389154A (en) | 1989-08-31 | 1989-08-31 | Dissolved gas sensor and forming method of groove of the same sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0389154A true JPH0389154A (en) | 1991-04-15 |
Family
ID=16827646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22532989A Pending JPH0389154A (en) | 1989-08-31 | 1989-08-31 | Dissolved gas sensor and forming method of groove of the same sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0389154A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5388443A (en) * | 1993-06-24 | 1995-02-14 | Manaka; Junji | Atmosphere sensor and method for manufacturing the sensor |
US5423212A (en) * | 1993-06-18 | 1995-06-13 | Ricoh Seiki Company, Ltd. | Flow sensor |
JP2006030198A (en) * | 2004-07-14 | 2006-02-02 | Heraeus Sensor Technology Gmbh | Platform chip or high-temperature stable sensor having conductor structure exposed to external influence, method for manufacturing platform chip or sensor, and use of sensor |
-
1989
- 1989-08-31 JP JP22532989A patent/JPH0389154A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5423212A (en) * | 1993-06-18 | 1995-06-13 | Ricoh Seiki Company, Ltd. | Flow sensor |
US5388443A (en) * | 1993-06-24 | 1995-02-14 | Manaka; Junji | Atmosphere sensor and method for manufacturing the sensor |
JP2006030198A (en) * | 2004-07-14 | 2006-02-02 | Heraeus Sensor Technology Gmbh | Platform chip or high-temperature stable sensor having conductor structure exposed to external influence, method for manufacturing platform chip or sensor, and use of sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4020830A (en) | Selective chemical sensitive FET transducers | |
US4492622A (en) | Clark cell with hydrophylic polymer layer | |
US9255903B2 (en) | Methods of producing an electrochemical sensor for determining an analyte concentration | |
JPS59133455A (en) | Analyzer providing plural sensors | |
US20120209097A1 (en) | Sensor with increased biocompatibility | |
KR20050055202A (en) | Micro reference electrode of implantable continuous biosensor using iridium oxide, manufacturing method thereof, and implantable continuous biosensor | |
JPH0617889B2 (en) | Biochemical sensor | |
Tsukada et al. | An integrated chemical sensor with multiple ion and gas sensors | |
JP2512843B2 (en) | Carbon dioxide sensor | |
EP0193676B1 (en) | Solid state electrode | |
KR20180085760A (en) | Biosensor and its manufacturing method | |
JPH061257B2 (en) | Inert film diffusive substance concentration measuring device | |
JPH0389154A (en) | Dissolved gas sensor and forming method of groove of the same sensor | |
US5736029A (en) | Amperometric dual-electrode sensors | |
US4706678A (en) | Electrochemical reference electrode | |
JPS59206756A (en) | Fet chemical sensor combined with reference electrode | |
JPH02129541A (en) | Disposable type enzyme electrode | |
JP4620215B2 (en) | Diaphragm sensor | |
CA1202367A (en) | Electro-chemical cell for determining a particular property or component of a fluid | |
Bos et al. | The ion-sensitive field effect transistor in rapid acid-base titrations | |
JP2004053613A (en) | Oxidation-reduction potential measuring device | |
JPH0375552A (en) | Enzyme electrode | |
JPS5933389B2 (en) | Polarography sensor | |
Espadas-Torre et al. | Electrochemical sensors for the continuous monitoring of blood gases and electrolytes | |
Harsányi et al. | Low cost ceramic sensors for biomedical use: a revolution in transcutaneous blood oxygen monitoring? |