JP2004053613A - Oxidation-reduction potential measuring device - Google Patents

Oxidation-reduction potential measuring device Download PDF

Info

Publication number
JP2004053613A
JP2004053613A JP2003276201A JP2003276201A JP2004053613A JP 2004053613 A JP2004053613 A JP 2004053613A JP 2003276201 A JP2003276201 A JP 2003276201A JP 2003276201 A JP2003276201 A JP 2003276201A JP 2004053613 A JP2004053613 A JP 2004053613A
Authority
JP
Japan
Prior art keywords
electrode
oxidation
sample solution
reduction potential
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003276201A
Other languages
Japanese (ja)
Inventor
Shotaro Oka
岡 正太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003276201A priority Critical patent/JP2004053613A/en
Publication of JP2004053613A publication Critical patent/JP2004053613A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxidation-reduction potential measuring device which can make accurate measurements using a minor amount of a sample, is safe even if inserted into a living body, comprises a reference electrode containing an easy-to-handle inner solution, and can obtain the same measurement value whoever makes measurements. <P>SOLUTION: A porous material film (filter paper) impregnated, for example, with 1N-KCl is disposed on a reference electrode side silver chloride electrode 5, and a filter paper impregnated with a sample solution is superposed thereon. An upper lid 1 of an electrode portion is calmly closed to make up a battery of platinum-sample-KCl salt electrode-silver chloride. When the upper cap 1 of the electrode portion is closed, a measurement delay switch 14 works, thereby digitally indicating a stable potential in mV unit relative to NHE on an ORP counting indicator 10 after the lapse of a few seconds (5 to 120 seconds). <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、試料液中に含まれている電解質の濃度(以下、濃度≒活量とみなして記述する)や濃度比を測定する酸化還元電位測定装置に関する。本発明によれば、血液、尿、唾液など生体液中のイオンの濃度や酸化体・還元体の物質濃度あるいはそれらの比率などが測定できる。 (4) The present invention relates to an oxidation-reduction potential measuring device for measuring the concentration (hereinafter referred to as concentration / activity) of an electrolyte contained in a sample solution and a concentration ratio. ADVANTAGE OF THE INVENTION According to this invention, the density | concentration of the ion in biological fluids, such as blood, urine, and saliva, the substance density | concentration of an oxidant / reductant, or those ratios can be measured.

 試料液中に含まれている電解質の濃度や酸化体・還元体のイオン濃度比などを測定する装置として酸化還元電位測定装置が広く知られている。この装置の基本原理は次の通りである。 電解質溶液の中に1個の電極を挿入し(電極と溶液とを直接に接触させた一つの組合せを単極という)、このような電極と溶液の界面では電子の授受が行われ、電極に電位が発生する。単極2個を組合わせたものを電池というが、両方の単極電位が異なる場合には両電極間に電位差が現れる。単極電位は単独には測定できないものであって、一般に基準となる別の電極と組合わして1組の電池をつくり、両極間の電位差を実測したのち換算する。基準となる電極を参照電極といい、電気化学における定義にもとづき標準水素電極(NHE)を用いる。標準水素電極は、白金電極に白金黒をメッキし、1気圧の水素ガスを飽和させたガス電極で、すべての温度において、この電極の電位はゼロであると定義している。 酸化 A redox potential measurement device is widely known as a device for measuring the concentration of an electrolyte contained in a sample liquid and the ion concentration ratio of an oxidant / reductant. The basic principle of this device is as follows. One electrode is inserted into the electrolyte solution (one combination of the electrode and the solution in direct contact is called a single electrode). Electrons are transferred at the interface between the electrode and the solution, and the electrode is connected to the electrode. An electric potential is generated. A battery in which two single electrodes are combined is called a battery. If both single electrode potentials are different, a potential difference appears between the two electrodes. The unipolar potential cannot be measured alone, and is generally converted into a set of batteries in combination with another reference electrode, after actually measuring the potential difference between the two electrodes. The reference electrode is called a reference electrode, and a standard hydrogen electrode (NHE) is used based on the definition in electrochemistry. The standard hydrogen electrode is a gas electrode obtained by plating a platinum electrode with platinum black and saturating hydrogen gas at 1 atm. The potential of this electrode is defined as zero at all temperatures.

標準水素電極は単極電位測定の基準として採用されているのであるが、実際の測定にガス電極を使用することは幾多の困難と不便を伴なうので、構造が簡単で取り扱いやすく、しかも標準水素電極に対する電位が一定で安定な電極を2次的な基準として使用している。2次的な基準とする電極、すなわち参照電極の代表的なものは、カロメル電極である。 カロメル電極は、Pt│Hg│Hg2Cl2│KClで表される。カロメル電極は、KClの塩橋の先端を、測定しようとする単極の溶液に挿入すれば簡単に1組の電池ができる。
また、銀−塩化銀電極もカロメル電極と同様、2次的な基準に用いられる。
なお、参照電極と対になる指示電極としては、多くは金属の電極であって、例えば銅を電極として硫酸銅の溶液に挿入し、溶液中の銅イオンの濃度を求めることができる。また、他の例としては、白金のような不活性電極を使用して、両極間の電位差を測定すれば、可溶性成分の酸化形のものと還元形のものとの濃度比を知ることができる。
Although the standard hydrogen electrode is used as a standard for monopolar potential measurement, using a gas electrode for actual measurement involves a number of difficulties and inconveniences. An electrode having a constant and stable potential with respect to the hydrogen electrode is used as a secondary reference. A representative reference electrode, ie, a reference electrode, is a calomel electrode. Calomel electrode is represented by Pt│Hg│Hg 2 Cl 2 │KCl. For the calomel electrode, a set of batteries can be easily made by inserting the tip of the salt bridge of KCl into the monopolar solution to be measured.
In addition, the silver-silver chloride electrode is used as a secondary standard similarly to the calomel electrode.
The indicator electrode paired with the reference electrode is generally a metal electrode. For example, copper can be inserted into a copper sulfate solution as an electrode to determine the concentration of copper ions in the solution. As another example, by using an inert electrode such as platinum and measuring the potential difference between the two electrodes, the concentration ratio between the oxidized form and the reduced form of the soluble component can be known. .

従来の酸化還元電位測定装置において、例えば唾液など生体液を測定する場合、採取試料の容量はなるべく微量にしたいし、だからと言って電極部を口腔や生体内に挿入すると、参照電極のカロメルや塩化銀の毒性に生体が犯される危険性がある。このことはとくに乳幼児やペットの場合に好ましくない。
 また、従来の参照電極では、カロメル電極にしても銀−塩化銀電極にしても、塩橋のKCl溶液溜が必要で取扱いに注意しないと電位が不安定になったり、塩橋部に気泡が溜まって測定不能になったり、あるいは保存中に液絡部からKCl溶液が毛管現象で限りなく滲み出て周辺に白い結晶が蔓延して汚染する。
 さらに、従来装置では別途に試料溶液の温度を計測し、また使用する各種の参照電極自身の電位を、NHEを基準として測定しておいて、実際には2次的な参照電極との電極間電位差を測定した後に加減算をしてNHE基準に補正する必要がある。 なお、酸化還元電位の測定では、試料溶液の粘性、温度、空気との反応性あるいは、その他の物理的または化学的性質によって、指示応答速度が遅い場合や不安定な場合がある。これらの困難な問題は、当該試料溶液の求めたい化学的特性が同じであっても、すなわち同一の電位が測定されるべきであるのに、測定者によって、あるいは測定場所によって異なった酸化還元電位を与える結果となる。
For example, when measuring a biological fluid such as saliva in a conventional oxidation-reduction potential measuring device, the volume of the collected sample should be as small as possible. There is a risk that the body will be violated by the toxicity of silver chloride. This is particularly undesirable for infants and pets.
In addition, in the conventional reference electrode, whether the calomel electrode or the silver-silver chloride electrode is used, the KCl solution reservoir of the salt bridge is required, and if the handling is not handled carefully, the potential becomes unstable or bubbles are generated in the salt bridge portion. Accumulation makes measurement impossible, or during storage, the KCl solution oozes out of the liquid junction by capillary action without limit and white crystals spread around and contaminate the surroundings.
Further, in the conventional apparatus, the temperature of the sample solution is separately measured, and the potentials of the various reference electrodes used are measured with reference to NHE. After measuring the potential difference, it is necessary to add or subtract to correct the NHE standard. In the measurement of the oxidation-reduction potential, the indication response speed may be slow or unstable depending on the viscosity, temperature, reactivity with air, or other physical or chemical properties of the sample solution. These difficult problems are that even when the desired chemical properties of the sample solution are the same, that is, when the same potential is to be measured, different redox potentials vary depending on the operator or the measurement site. As a result.

そこで、本発明は、微量試料で正確な測定ができ、仮に生体内に挿入しても安全な方法、内部溶液の扱いが容易な参照電極、あるいは誰が測っても同一な測定値が得られるような測定装置などを提供することを目的とする。  Thus, the present invention provides an accurate measurement with a small amount of sample, a method that is safe even if it is inserted into a living body, a reference electrode that allows easy handling of an internal solution, or a method that can obtain the same measurement value regardless of who measures it. It is an object to provide a simple measuring device and the like.

本発明は、上記課題を解決するため、試料溶液に金属などの電極を挿入した単極の電位を測定して試料溶液の化学的性質を探知する酸化還元電位測定装置において、試料溶液を、化学的あるいは/または電気化学的に不活性な多孔性物質に含浸させ、該多孔性物質に含浸された溶液だけが、前記金属などの電極の表面に直接接触するようにした液体の酸化還元電位測定装置用指示電極を提供する。
この発明によれば、例えば、多孔性物質を口にくわえて唾液で湿らす程度で良いから迅速で安全に測定できる。しかも試料溶液も微量で十分であり、危険な電極を体内に挿入する必要はない。
ここで、多孔性物質としては、例えばフィルター・ペーパー、ろ紙、吸取紙、スポンジ、綿などを用いることができるが、これらに限定されない。また、材質は電気化学的あるいは化学的に不活性なものを用いる。このような材質としては、例えばセルロースエステル、ポリエチレンフタレートなどを挙げることができる。
多孔性物質は、用途によっては薄膜状が好ましく、その場合厚さは例えば、0.1μm〜10μmでも十分である。
また、試料溶液が十分な量を使用できる場合には、多孔性物質は高分子ブロック(直径20mm、厚さ10mm)も採用できる。
なお、多孔性物質は、指示電極に接触させるが、指示電極としては、例えば、白金、銀、パラジウム、金、ニッケル、銅、アルミニウム、インジウムなどの金属電極、ガラス電極、高分子膜電極などを用いることができるが、これらに限定されない。
したがって、請求項1等で用いている「金属など」は、金属、金属塩、高分子膜、ガラス、プラスチックを含む意味である。
The present invention provides an oxidation-reduction potential measuring apparatus for detecting a chemical property of a sample solution by measuring a potential of a single electrode in which an electrode such as a metal is inserted into the sample solution. Measurement of the oxidation-reduction potential of a liquid by impregnating a porous substance which is chemically or electrochemically inactive, so that only the solution impregnated with the porous substance comes into direct contact with the surface of the electrode such as the metal. An indicator electrode for a device is provided.
According to the present invention, for example, it is sufficient to wet the porous substance to the mouth with saliva, so that the measurement can be performed quickly and safely. Moreover, a small amount of the sample solution is sufficient, and there is no need to insert a dangerous electrode into the body.
Here, examples of the porous substance include, but are not limited to, filter paper, filter paper, blotting paper, sponge, cotton, and the like. The material used is electrochemically or chemically inert. Examples of such a material include cellulose ester and polyethylene phthalate.
The porous substance is preferably in the form of a thin film depending on the application.
When a sufficient amount of the sample solution can be used, a polymer block (diameter 20 mm, thickness 10 mm) can be used as the porous substance.
Note that the porous substance is brought into contact with the indicator electrode, and examples of the indicator electrode include metal electrodes such as platinum, silver, palladium, gold, nickel, copper, aluminum, and indium, glass electrodes, and polymer film electrodes. It can be used, but is not limited thereto.
Therefore, the term “metal or the like” used in claim 1 and the like includes metals, metal salts, polymer films, glass, and plastics.

また、本発明は、試料溶液に金属などの電極を挿入した単極の電位を測定して試料溶液の化学的性質を探知する酸化還元電位測定装置において、化学的あるいは/または電気化学的に不活性な多孔性物質に一定濃度の電解質溶液を含浸させ、該多孔性物質に含浸された一定濃度の電解質溶液だけが特定の金属あるいは金属塩の表面に直接接触させてなる、指示電極である単極の電位測定を補助する酸化還元電位測定装置用参照電極を提供する。
すなわち、この発明は参照電極をソリッドステートにすることにより、通常の参照電極の内部液として使用する電解質溶液が滲み出ることがなく、電極を清潔に、ひいては精度のよい測定装置を提供することができる。
ここで、多孔性物質は、前述と同様なものを用いることができ、金属電極としては、例えば、銀電極、難溶性の塩であるカロメル、塩化銀、硫化銀電極などを用いることができる。 また、電解質溶液は、通常の参照電極の内部液として使用する溶液を使用でき、例えば、KCl、NH4Cl,NaHCO3、NaHSO3などを用いることができるが、これらに限定されない。電解質溶液の濃度は、好ましくは0.1N〜常温飽和である。
Further, the present invention relates to an oxidation-reduction potential measuring device for measuring a chemical property of a sample solution by measuring a potential of a single electrode in which an electrode of a metal or the like is inserted into the sample solution. A single electrode serving as an indicator electrode in which an active porous material is impregnated with a certain concentration of an electrolyte solution, and only the certain concentration of the electrolyte solution impregnated in the porous material is brought into direct contact with the surface of a specific metal or metal salt. Provided is a reference electrode for an oxidation-reduction potential measuring device which assists in measuring a potential of a pole.
That is, the present invention makes it possible to provide a measuring device that cleans an electrode by using a solid-state reference electrode, thereby preventing the electrolyte solution used as an internal solution of a normal reference electrode from oozing out, and thus cleans the electrode. it can.
Here, the same porous material as described above can be used. As the metal electrode, for example, a silver electrode, calomel which is a hardly soluble salt, silver chloride, silver sulfide electrode, or the like can be used. Further, as the electrolyte solution, a solution used as a normal internal solution of the reference electrode can be used. For example, KCl, NH 4 Cl, NaHCO 3 , NaHSO 3 and the like can be used, but not limited thereto. The concentration of the electrolyte solution is preferably 0.1 N to room temperature saturation.

さらに、本発明は、試料溶液に指示電極と参照電極を挿入し、参照電極の補助により指示電極の単極電位を測定して、試料溶液の化学的性質を探知する酸化還元電位測定装置において、指示電極の金属など│試料溶液を含浸した多孔性物質│一定濃度の電解質溶液を含浸させた多孔性物質│参照電極の金属または金属塩│を順に接触させた電池を構成させたことを特徴とする酸化還元電位測定装置の電極系を提供する。
また、試料溶液を含浸した多孔性物質と一定濃度の電解質溶液を含浸させた多孔性物質との間に、電子は導通するが液体などの物質分子は通過し難い区画膜を挿入してもよい。これにより、試料溶液と参照電極の電解質溶液とが混合し難くなり、参照電極の寿命が長くなる。
区画膜としては、例えば、孔径の細かい多孔性ガラス、多孔性ナイロン膜などを用いることができる。 また、多孔性物質を薄膜状に、及び/又は電極を板状に形成することが好ましい。これにより、電極と多孔性物質とは重ね易くなるので、接触、分離も容易となる。
Furthermore, the present invention is an oxidation-reduction potential measuring device that inserts an indicator electrode and a reference electrode into a sample solution, measures the monopolar potential of the indicator electrode with the aid of the reference electrode, and detects the chemical properties of the sample solution. A battery in which a porous material impregnated with a sample solution, a porous material impregnated with a certain concentration of an electrolyte solution, a metal or a metal salt of a reference electrode, and the like are sequentially arranged. To provide an electrode system for an oxidation-reduction potential measuring apparatus.
Further, between the porous material impregnated with the sample solution and the porous material impregnated with the electrolyte solution of a certain concentration, a partition membrane that conducts electrons but does not easily pass material molecules such as liquid may be inserted. . This makes it difficult for the sample solution and the electrolyte solution of the reference electrode to mix, and extends the life of the reference electrode.
As the partition membrane, for example, a porous glass having a small pore diameter, a porous nylon membrane, or the like can be used. Further, it is preferable that the porous substance is formed in a thin film shape and / or the electrode is formed in a plate shape. Thereby, the electrode and the porous material can be easily overlapped with each other, so that the contact and the separation can be easily performed.

さらに、本発明は、試料溶液を含浸した多孔性物質の近傍に温度センサーを設置してもよい。これにより、表示部の読み取り数字そのもので温度補正換算をした酸化還元電位を知ることができる。 また、参照電極の標準水素電極(NHE)に対する電位値を記憶する記憶部と、該記憶部に記憶した電位値を基に測定値を標準水素電極に対する電位値に演算する演算部と、該演算部で演算した値を表示する表示部とを備えてもよい。これにより、使用する参照電極によって、一定のmV値を演算部で加減算して、NHE換算をした真の酸化還元電位を直接表示することができる。この場合、参照電極の種類は限定されず、適当な一定濃度の電解質溶液と金属電極を組み合わせた単極でも、予め安定なNHE電位が分かっておれば、NHE換算をした真の酸化還元電位を直接表示することができる。 Further, in the present invention, a temperature sensor may be installed near the porous material impregnated with the sample solution. This makes it possible to know the oxidation-reduction potential obtained by converting the temperature correction using the read number itself on the display unit. A storage unit for storing a potential value of the reference electrode with respect to the standard hydrogen electrode (NHE); a calculation unit for calculating a measured value into a potential value for the standard hydrogen electrode based on the potential value stored in the storage unit; A display unit for displaying a value calculated by the unit. Thus, a constant mV value is added or subtracted by the calculation unit depending on the reference electrode used, and the true oxidation-reduction potential converted into NHE can be directly displayed. In this case, the type of the reference electrode is not limited, and even if a single electrode obtained by combining an electrolyte solution having an appropriate constant concentration and a metal electrode is used, if a stable NHE potential is known in advance, the true oxidation-reduction potential in terms of NHE can be calculated. Can be displayed directly.

また、時間計測部を設け、指示電極が含浸試料溶液に接触した瞬間から一定時間経過後の指示電極電位を表示してもよい。これにより指示電極を試料溶液に接触してからの過渡現象による指示の不安定さを解消できる。時間は、試料溶液の粘性や化学反応の煩雑さにも関係するが、およそ5〜120秒の経過後が適当である。あまり長時間になると、電解質溶液と試料溶液とが拡散によって混合し、指示電極表面に接している試料の濃度が電解質溶液で薄められて測定を妨害する恐れがある。 さらに、従来、酸化還元電位の測定値は、測定者や測定場所によって変動が大きくて普遍性に乏しいというように評価されているが、本発明の請求項6(温度)、請求項7(NHE基準)、請求項8(過渡応答特性)は、測定値の客観性を著しく向上させるものであって、酸化還元電位測定法の有用性を再認識させ、本法の普及に極めて有効である。 Further, a time measuring unit may be provided to display the indicator electrode potential after a lapse of a predetermined time from the moment when the indicator electrode comes into contact with the impregnated sample solution. As a result, instability of indication due to a transient phenomenon after the indicator electrode is brought into contact with the sample solution can be eliminated. The time depends on the viscosity of the sample solution and the complexity of the chemical reaction, but it is appropriate after about 5 to 120 seconds have elapsed. If the time is too long, the electrolyte solution and the sample solution are mixed by diffusion, and the concentration of the sample in contact with the surface of the indicator electrode may be diluted with the electrolyte solution to hinder the measurement. Furthermore, conventionally, the measured value of the oxidation-reduction potential has been evaluated to be largely variable and poor in universality depending on the person or the place of measurement, but according to claims 6 (temperature) and 7 (NHE) of the present invention. Criteria) and claim 8 (transient response characteristics) remarkably improve the objectivity of the measured values, re-recognize the usefulness of the oxidation-reduction potential measurement method, and are extremely effective in spreading this method.

本発明によれば、多孔性物質を口にくわえて唾液で湿らす程度で測定できるから、乳幼児などは毒性に犯されることなく、迅速で安全に測定できる。しかも試料溶液も微量で十分である。 また、電極系をセミ・ソリッド・ステートにすることができ、多孔性物質はデスポーサブルであるから、掃除が簡単であり、電極系を清潔に保つことができ、ひいては精度のよい計測ができる。 さらに、測定者や測定場所によって変動が大きくて普遍性に乏しいと評価されている酸化還元電位の測定値が、本発明によれば、測定値の客観性が著しく向上し、酸化還元電位測定法の有用性を再認識させ、本法の普及に極めて有効となる。  According to the present invention, since the measurement can be performed by the degree that the porous substance is added to the mouth and moistened with saliva, infants and the like can quickly and safely measure without violating toxicity. In addition, a small amount of the sample solution is sufficient. Also, since the electrode system can be made semi-solid state and the porous substance is disposable, cleaning is easy, the electrode system can be kept clean, and accurate measurement can be performed. Further, according to the present invention, the measured value of the oxidation-reduction potential, which is evaluated as having large fluctuations and poor universality depending on the measurer or the measurement place, is significantly improved in the objectivity of the measured value, and the oxidation-reduction potential measurement method is improved. Will be re-recognized as useful, and will be extremely effective in promoting this method.

本発明に係る装置の全体概略図を図1に示す。
本発明の装置は、大別して電極部Eと電子回路部Cとからなり、電極部Eは、電極部上蓋1と電極部支持体2とが開閉用蝶番3によって開閉可能に接続されている。電極部上蓋1及び電極部支持体2は、ポリアクリルアミド樹脂やナイロン樹脂などの絶縁材料で形成されており、中央部には同じ大きさの円状の穴が開いている。また、電極部上蓋1及び電極部支持体2の厚さは、特に限定されないが、10〜50mmの厚さが好ましく、縦横のサイズは20〜100mm×40〜180mmが好ましい。中央部の穴には、各々指示電極側白金電極4と参照電極側塩化銀電極5が挿入されている。電極4、5はそれぞれリード線が接続されており、リード線は電極部上蓋1及び電極部支持体2の中を貫通して指示電極側結合コネクター6、6'及び参照電極側結合コネクター7、7'によって電子回路部Cと電気接続される。 また、電極部支持体2には、測定デレースイッチ14が設置されており、電極部上蓋1を閉じるとスイッチが働く。
FIG. 1 shows an overall schematic view of the apparatus according to the present invention.
The device of the present invention roughly includes an electrode portion E and an electronic circuit portion C. The electrode portion E is connected to the electrode portion upper lid 1 and the electrode portion support 2 so as to be openable and closable by an opening / closing hinge 3. The electrode unit upper lid 1 and the electrode unit support 2 are formed of an insulating material such as polyacrylamide resin or nylon resin, and have a circular hole of the same size in the center. In addition, the thickness of the electrode portion top cover 1 and the electrode portion support 2 is not particularly limited, but is preferably 10 to 50 mm, and the vertical and horizontal sizes are preferably 20 to 100 mm × 40 to 180 mm. The indicator electrode side platinum electrode 4 and the reference electrode side silver chloride electrode 5 are inserted into the holes at the center. The electrodes 4 and 5 are connected to lead wires, respectively, and the lead wires penetrate through the electrode portion top cover 1 and the electrode portion support body 2, and the indication electrode side connection connectors 6 and 6 ′ and the reference electrode side connection connector 7, 7 'electrically connects to the electronic circuit section C. In addition, a measurement delay switch 14 is provided on the electrode unit support 2, and the switch operates when the electrode unit upper lid 1 is closed.

電子回路部Cは、図示されていないが、オペアンプ、対NHE電位記憶素子、演算素子などが収容されている。また、電子回路部Cには、ORP計数表示器10、電源スイッチ11、目盛校正スイッチ12、入力スイッチ13が付いている。なお、目盛校正スイッチ12は、濃度既知の標準試料液を使用して目盛りを校正するもの、入力スイッチ13は指示電極と参照電極間の電位差を、オペアンプに入力するスイッチである。  Although not shown, the electronic circuit section C houses an operational amplifier, an NHE potential storage element, an arithmetic element, and the like. Further, the electronic circuit section C has an ORP counting display 10, a power switch 11, a scale calibration switch 12, and an input switch 13. The scale calibration switch 12 is for calibrating the scale using a standard sample solution of known concentration, and the input switch 13 is a switch for inputting the potential difference between the indicator electrode and the reference electrode to an operational amplifier.

以上の構成において、測定時は、参照電極側塩化銀電極5に、例えば1NーKClを含浸した多孔性物質の膜(フィルタ・ペーパー)をのせ、その上に試料溶液を含浸させたフィルタ・ペーパーを重ねる。静かに電極部上蓋1を閉じて白金−試料−KCl塩極−塩化銀の電池を構成させる。電極部上蓋1を閉じると、測定デレースイッチ14が働いて、数秒間(5〜120秒間)待ってから、安定した電位を対NHEのmV単位でORP計数表示器10上にデジタル表示する。  In the above configuration, at the time of measurement, a film (filter paper) of, for example, a porous substance impregnated with 1N-KCl is placed on the silver chloride electrode 5 on the reference electrode side, and the filter paper impregnated with the sample solution is placed thereon. Layer. The upper cover 1 of the electrode is gently closed to form a platinum-sample-KCl salt-silver chloride battery. When the electrode unit top cover 1 is closed, the measurement delay switch 14 is operated, and after waiting for several seconds (5 to 120 seconds), a stable potential is digitally displayed on the ORP counting display 10 in mV of NHE.

また、本発明の電極部の実施形態を図2に示す。この実施形態は、図1において電極部上蓋1および電極部支持体2を閉じた状態(測定状態)にしたときの模式図である。電極部下枠21上に表面が塩化銀でコーティングされた金属(銀)の参照電極22を載せ、その上に電解質溶液を含浸させた多孔質膜23を重ねる。参照電極22の厚さは、約0.5〜5mm、好ましくは0.5〜2.0mmである。また、多孔質膜としては、例えば分析化学用ろ紙を使用し、厚さは、約0.2〜10mm、好ましくは0.5〜1.0mmである。なお、電解質溶液としては、例えば1N-KCl溶液を使用する。  FIG. 2 shows an embodiment of the electrode section of the present invention. This embodiment is a schematic diagram when the electrode unit upper lid 1 and the electrode unit support 2 are closed (measurement state) in FIG. A metal (silver) reference electrode 22 whose surface is coated with silver chloride is placed on the electrode part lower frame 21, and a porous film 23 impregnated with an electrolyte solution is stacked thereon. The thickness of the reference electrode 22 is about 0.5 to 5 mm, preferably 0.5 to 2.0 mm. As the porous membrane, for example, filter paper for analytical chemistry is used, and the thickness is about 0.2 to 10 mm, preferably 0.5 to 1.0 mm. As the electrolyte solution, for example, a 1N-KCl solution is used.

さらに、多孔質膜23上に試料溶液を含浸した多孔質膜24、指示電極(例えば白金)25、電極部上枠26を積層する。多孔質膜24は、前述と同じろ紙を使用することができ、厚さは、約0.1〜10mm、好ましくは2〜5mmである。また、指示電極25の厚さは、約0.2〜1mm、好ましくは0.3〜0.5mmである。 参照電極22と指示電極25間の信号はリード線27、28によりオペアンプ29に送られ、一定の計算処理をしたのち表示部30にNHEを基準とした電位として表示される。  Further, a porous film 24 impregnated with a sample solution, an indicator electrode (for example, platinum) 25, and an electrode part upper frame 26 are laminated on the porous film 23. For the porous membrane 24, the same filter paper as described above can be used, and the thickness is about 0.1 to 10 mm, preferably 2 to 5 mm. The thickness of the indicator electrode 25 is about 0.2 to 1 mm, preferably 0.3 to 0.5 mm. The signal between the reference electrode 22 and the indicator electrode 25 is sent to the operational amplifier 29 via the lead wires 27 and 28, and after a certain calculation processing, is displayed on the display unit 30 as a potential based on NHE.

また、本発明は上記構成に限定されず、図3の構成でもよい。この図3の構成は、図2の構成のなかの多孔質膜を、フィルター・ペーパーのような薄膜ではなく、多孔性の高分子ブロックのような厚いものに代えた例である。 図3中、図2と同じものには同じ番号が付してある。この実施の形態は、参照電極22の上に電解質溶液を含浸した多孔性の高分子ブロック31、試料溶液をを含浸した多孔性物質のブロック(高分子ブロック)32を積層しており、高分子ブロック32に指示電極33が挿入される。 多孔性物質のブロック(高分子ブロック)31、32は、例えば、ポリエチレン、ポリスチレン、セルロースエステル、ガラス繊維などの電気的、化学的に不活性な高分子物質を使用する。高分子ブロック31の厚さは、約1〜10mm、好ましくは2〜5mm、高分子ブロック32の厚さは、約5〜30mm、好ましくは10〜15mmである。  Further, the present invention is not limited to the above configuration, and may have the configuration of FIG. The configuration of FIG. 3 is an example in which the porous membrane in the configuration of FIG. 2 is replaced with a thick film such as a porous polymer block instead of a thin film such as filter paper. 3, the same components as those in FIG. 2 are denoted by the same reference numerals. In this embodiment, a porous polymer block 31 impregnated with an electrolyte solution and a block (polymer block) 32 of a porous material impregnated with a sample solution are laminated on a reference electrode 22. The indicator electrode 33 is inserted into the block 32. For the blocks (polymer blocks) 31 and 32 of the porous substance, for example, an electrically and chemically inert polymer substance such as polyethylene, polystyrene, cellulose ester, or glass fiber is used. The thickness of the polymer block 31 is about 1 to 10 mm, preferably 2 to 5 mm, and the thickness of the polymer block 32 is about 5 to 30 mm, preferably 10 to 15 mm.

また、本発明は、図4の構成でもよい。この実施の形態は、いわゆる指示電極のみ本発明の形態を採用し、参照電極は従来の電極と同様のものを用いた例である。 図4中、41は支持台であり、支持台41上に、試料溶液を含浸した多孔性物質42が載置されている。多孔性物質42には電極部が接触する。電極部は中空の円筒43内にガラス管47が挿入されており、ガラス管47内にリード線46と接続した白金板45が接着している。この白金板45が指示電極となり、白金板45は試料溶液を含浸した多孔性物質42と接触する。 ガラス管47の外周には電解質溶液(KCl溶液)50が収容されており、電解質溶液(KCl溶液)50内に参照電極(銀-塩化銀電極)44が挿入される。 また、円筒43には液絡部48が設けられており、内面がスリガラスになった円筒状のガラス管49がはめ込まれている。すなわち、KCl溶液50は液絡部48を経てガラス管49の内面のスリガラスの隙間から、試料溶液を含んだ多孔性物質に導通している。 測定するときは、電極部により多孔性物質42をおさえて電池の回路を閉じる。したがって、多孔性物質42はスポンジのような弾力のあるものが好ましい。  Further, the present invention may have the configuration of FIG. This embodiment is an example in which only a so-called indicator electrode employs an embodiment of the present invention, and a reference electrode is the same as a conventional electrode. In FIG. 4, reference numeral 41 denotes a support, on which a porous material 42 impregnated with a sample solution is placed. The electrode portion contacts the porous material 42. The electrode portion has a glass tube 47 inserted into a hollow cylinder 43, and a platinum plate 45 connected to a lead wire 46 is adhered inside the glass tube 47. The platinum plate 45 serves as an indicator electrode, and the platinum plate 45 contacts the porous substance 42 impregnated with the sample solution. An electrolyte solution (KCl solution) 50 is accommodated in the outer periphery of the glass tube 47, and a reference electrode (silver-silver chloride electrode) 44 is inserted into the electrolyte solution (KCl solution) 50. A liquid junction 48 is provided in the cylinder 43, and a cylindrical glass tube 49 whose inner surface is made of ground glass is fitted therein. That is, the KCl solution 50 is conducted to the porous substance containing the sample solution from the gap of the ground glass on the inner surface of the glass tube 49 via the liquid junction 48. When the measurement is performed, the porous substance 42 is held down by the electrode section, and the battery circuit is closed. Therefore, it is preferable that the porous material 42 has elasticity such as sponge.

電極を試料溶液に挿入する従来法と、分析化学用ろ紙に試料溶液と電解質溶液とを含浸させた本発明(図2の構成)とを用い、夫々の電極対が与える電位差を精密な電位差計で測定して比較した。
(実験条件)
温度:28℃
電極:Pt vs. sat.Ag/AgCl
多孔性物質:分析化学用ろ紙(アドバンテック社製、サイズ110mm、厚さ0.5mm )
電解質溶液:1NKCl水溶液
電位差計:ORP計(自製)
Using the conventional method of inserting electrodes into a sample solution and the present invention (the configuration of FIG. 2) in which a sample solution and an electrolyte solution are impregnated in a filter paper for analytical chemistry, the potential difference given by each electrode pair is precisely measured by a potentiometer. Was measured and compared.
(Experiment conditions)
Temperature: 28 ° C
Electrode: Pt vs. sat.Ag/AgCl
Porous substance: Filter paper for analytical chemistry (Advantech, size 110mm, thickness 0.5mm)
Electrolyte solution: 1N KCl aqueous solution Potentiometer: ORP meter (manufactured)

(実験結果)
実験結果を表1に示す。

Figure 2004053613
本発明は、従来法とほぼ同一の電位を示し、本発明の方法が有効であることを示している。 (Experimental result)
Table 1 shows the experimental results.
Figure 2004053613
The present invention shows almost the same potential as the conventional method, indicating that the method of the present invention is effective.

 また、電極としてPt vs. 1NAg/AgClを用いた以外、上記と同じ条件で、分析化学用ろ紙に人の唾液を含浸させて(ろ紙を口にくわえて唾液でぬらす)実験を行った。

Figure 2004053613
 上記結果は、本発明によれば、ろ紙を口にくわえて唾液で湿らす程度で測定できるから、被験者は電極の毒性などに犯されることなく、迅速で安全に測定できることを示している。 In addition, an experiment was performed by impregnating human saliva into a filter paper for analytical chemistry (wet the filter paper to the mouth and wet with saliva) under the same conditions as above, except that Pt vs. 1NAg / AgCl was used as the electrode.
Figure 2004053613
The above results show that, according to the present invention, the measurement can be carried out only by holding the filter paper in the mouth and moistened with saliva, so that the subject can measure quickly and safely without violating the toxicity of the electrode.

本発明によれば、血液、尿、唾液など生体液中のイオンの濃度や酸化体・還元体の物質濃度あるいはそれらの比率などが測定できる。 ADVANTAGE OF THE INVENTION According to this invention, the density | concentration of the ion in biological fluids, such as blood, urine, and saliva, the substance density | concentration of an oxidant / reductant, or those ratios can be measured.

本発明の全体概略図Overall schematic diagram of the present invention 本発明の積層型電極の一実施例One embodiment of the laminated electrode of the present invention 多孔性の高分子ブロックに液体を含浸させた図Illustration of porous polymer block impregnated with liquid 指示電極のみ本発明の構成を採用した図Diagram in which the configuration of the present invention is adopted only for the indicator electrode

符号の説明Explanation of reference numerals

4:指示電極側白金電極
5:参照電極側塩化銀電極
22:参照電極
23:電解質溶液を含浸した多孔質膜
24:試料溶液をを含浸した多孔質膜
25:指示電極
31、32:多孔性物質のブロック42:多孔性物質
4: indicator electrode side platinum electrode 5: reference electrode side silver chloride electrode 22: reference electrode 23: porous membrane 24 impregnated with electrolyte solution 24: porous membrane 25 impregnated with sample solution: indicator electrodes 31, 32: porous Material Block 42: Porous Material

Claims (8)

試料溶液に金属などの電極を挿入した単極の電位を測定して試料溶液の化学的性質を探知する酸化還元電位測定装置において、試料溶液を、化学的あるいは/または電気化学的に不活性な多孔性物質に含浸させ、該多孔性物質に含浸された溶液だけが、前記金属などの電極の表面に直接接触するようにした液体の酸化還元電位測定装置用指示電極。 In an oxidation-reduction potential measurement device that detects the chemical properties of a sample solution by measuring the potential of a single electrode in which an electrode such as a metal is inserted into the sample solution, the sample solution is treated with a chemically or / chemically inert material. An indicator electrode for a liquid oxidation-reduction potential measuring device, wherein a porous material is impregnated so that only a solution impregnated in the porous material directly contacts the surface of an electrode such as the metal. 試料溶液に金属などの電極を挿入した単極の電位を測定して試料溶液の化学的性質を探知する酸化還元電位測定装置において、化学的あるいは/または電気化学的に不活性な多孔性物質に一定濃度の電解質溶液を含浸させ、該多孔性物質に含浸された一定濃度の電解質溶液だけが特定の金属あるいは金属塩の表面に直接接触させてなる、指示電極である単極の電位測定を補助する酸化還元電位測定装置用参照電極。 An oxidation-reduction potential measurement device that detects the chemical properties of a sample solution by measuring the potential of a single electrode in which a metal or other electrode is inserted into the sample solution. Impregnated with a certain concentration of electrolyte solution and assisted in measuring the potential of a single electrode as an indicator electrode, in which only a certain concentration of the electrolyte solution impregnated in the porous substance is brought into direct contact with the surface of a specific metal or metal salt. Reference electrode for the oxidation-reduction potential measurement device. 試料溶液に指示電極と参照電極を挿入し、参照電極の補助により指示電極の単極電位を測定して、試料溶液の化学的性質を探知する酸化還元電位測定装置において、指示電極の金属など│試料溶液を含浸した多孔性物質│一定濃度の電解質溶液を含浸させた多孔性物質│参照電極の金属または金属塩│を順に接触させた電池を構成させたことを特徴とする酸化還元電位測定装置の電極系。 An indicator electrode and a reference electrode are inserted into a sample solution, and a monopolar potential of the indicator electrode is measured with the aid of the reference electrode to detect a chemical property of the sample solution. An oxidation-reduction potential measuring device characterized by comprising a battery in which a porous material impregnated with a sample solution | a porous material impregnated with a constant concentration of an electrolyte solution | a metal or a metal salt of a reference electrode | Electrode system. 請求項3記載の酸化還元電位測定装置の電極系において、試料溶液を含浸した多孔性物質と一定濃度の電解質溶液を含浸させた多孔性物質との間に、電子は導通するが液体などの物質分子は通過し難い区画膜を挿入してなる酸化還元電位測定装置。 4. An electrode system for an oxidation-reduction potential measuring apparatus according to claim 3, wherein electrons are conducted between the porous material impregnated with the sample solution and the porous material impregnated with the electrolyte solution of a certain concentration, but a substance such as a liquid. An oxidation-reduction potential measurement device that inserts a partition membrane through which molecules do not easily pass. 請求項1乃至4記載の酸化還元電位測定装置において、多孔性物質を薄膜状に、及び/又は電極を板状に形成してなる酸化還元電位測定装置。 5. The oxidation-reduction potential measuring apparatus according to claim 1, wherein the porous substance is formed in a thin film shape and / or the electrode is formed in a plate shape. 請求項3乃至5記載の酸化還元電位測定装置において、試料溶液を含浸した多孔性物質の近傍に温度センサーを設置してなる酸化還元電位測定装置。 6. The oxidation-reduction potential measuring device according to claim 3, wherein a temperature sensor is installed near the porous material impregnated with the sample solution. 請求項1乃至6記載の酸化還元電位測定装置において、参照電極の標準水素電極に対する電位値を記憶する記憶部と、該記憶部に記憶した電位値を基に測定値を標準水素電極に対する電位値に演算する演算部と、該演算部で演算した値を表示する表示部とを備えた酸化還元電位測定装置。 7. The oxidation-reduction potential measuring device according to claim 1, wherein a storage unit for storing a potential value of the reference electrode with respect to the standard hydrogen electrode, and a measured value based on the potential value stored in the storage unit with respect to the standard hydrogen electrode. An oxidation-reduction potential measuring apparatus, comprising: a calculation unit for calculating a value calculated by the calculation unit; 請求項7記載の酸化還元電位測定装置において、時間計測部を設け、指示電極が含浸試料溶液に接触した瞬間から一定時間経過後の指示電極電位を表示させることを特徴とする酸化還元電位測定装置。 8. The oxidation-reduction potential measuring device according to claim 7, further comprising a time measuring unit, wherein the indicator electrode potential is displayed after a lapse of a predetermined time from the moment when the indicator electrode comes into contact with the impregnated sample solution. .
JP2003276201A 2002-07-19 2003-07-17 Oxidation-reduction potential measuring device Pending JP2004053613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003276201A JP2004053613A (en) 2002-07-19 2003-07-17 Oxidation-reduction potential measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002210808 2002-07-19
JP2003276201A JP2004053613A (en) 2002-07-19 2003-07-17 Oxidation-reduction potential measuring device

Publications (1)

Publication Number Publication Date
JP2004053613A true JP2004053613A (en) 2004-02-19

Family

ID=31949518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003276201A Pending JP2004053613A (en) 2002-07-19 2003-07-17 Oxidation-reduction potential measuring device

Country Status (1)

Country Link
JP (1) JP2004053613A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033344A (en) * 2005-07-28 2007-02-08 Dkk Toa Corp Device for measuring oxidation-reduction potential
JP2010174328A (en) * 2009-01-29 2010-08-12 Nikka Micron Kk Ozone water generator
JP2012252016A (en) * 2012-08-23 2012-12-20 Nomura Micro Sci Co Ltd Electrochemical sensor, electrochemical detection device and electrochemical detection method
CN103196975A (en) * 2013-03-05 2013-07-10 浙江大学 Detection apparatus and detection method of medical relative oxidation reduction potential

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033344A (en) * 2005-07-28 2007-02-08 Dkk Toa Corp Device for measuring oxidation-reduction potential
JP4614841B2 (en) * 2005-07-28 2011-01-19 東亜ディーケーケー株式会社 Redox potential measuring device
JP2010174328A (en) * 2009-01-29 2010-08-12 Nikka Micron Kk Ozone water generator
JP2012252016A (en) * 2012-08-23 2012-12-20 Nomura Micro Sci Co Ltd Electrochemical sensor, electrochemical detection device and electrochemical detection method
CN103196975A (en) * 2013-03-05 2013-07-10 浙江大学 Detection apparatus and detection method of medical relative oxidation reduction potential

Similar Documents

Publication Publication Date Title
US6896793B2 (en) Liquid junction reference electrode and methods of use thereof
US6176988B1 (en) Membrane electrode for measuring the glucose concentration in fluids
US9528959B2 (en) Method and apparatus for measuring oxidation-reduction potential
US10139362B2 (en) Sensor head, electrochemical sensor, and method for using electrochemical sensor
EP3665479B1 (en) Apparatus for accurate sensing of physiological substance in blood
JP3700878B2 (en) Planar bicarbonate sensor and method for making and using the same
US5106482A (en) High speed oxygen sensor
JP2019023597A (en) Orp digitalization determination device and method for using the same
US20040188252A1 (en) Reference electrode assembly
JP2004053613A (en) Oxidation-reduction potential measuring device
WO2020044958A1 (en) Calcium ion concentration-measuring device
JP2004125668A (en) Oxidation-reduction potential measuring instrument
Nei Some milestones in the 50-year history of electrochemical oxygen sensor development
JP2001289812A (en) Reference electrode for measuring potential difference
Daud et al. Characterization of Electrolyte Layer for Dissolved Oxygen Sensor
JPH0330851Y2 (en)
JPH0129259B2 (en)
JPS58111750A (en) Reference electrode for ion electrode
AU2002336222A1 (en) Reference electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

A521 Written amendment

Effective date: 20050222

Free format text: JAPANESE INTERMEDIATE CODE: A523

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060706

RD04 Notification of resignation of power of attorney

Effective date: 20060901

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Effective date: 20061215

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070109

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20070515

Free format text: JAPANESE INTERMEDIATE CODE: A02