JPS6227926A - Electrode for living body - Google Patents

Electrode for living body

Info

Publication number
JPS6227926A
JPS6227926A JP60166672A JP16667285A JPS6227926A JP S6227926 A JPS6227926 A JP S6227926A JP 60166672 A JP60166672 A JP 60166672A JP 16667285 A JP16667285 A JP 16667285A JP S6227926 A JPS6227926 A JP S6227926A
Authority
JP
Japan
Prior art keywords
electrode
porous membrane
polyurethane
insulating coating
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60166672A
Other languages
Japanese (ja)
Other versions
JPH0217172B2 (en
Inventor
山森 久嘉
内田 晃誉
筒井 豊
田下 純一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP60166672A priority Critical patent/JPS6227926A/en
Publication of JPS6227926A publication Critical patent/JPS6227926A/en
Publication of JPH0217172B2 publication Critical patent/JPH0217172B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、生体成分を測定するための金属電極に関し、
更に詳しくは、そのような金属電極の保存安定性及び測
定の精度を向上せしめるだめの金属電極表面の改良に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a metal electrode for measuring biological components,
More specifically, the present invention relates to improvements to the surface of metal electrodes that improve storage stability and measurement accuracy of such metal electrodes.

〔従来の技術〕[Conventional technology]

従来より血液や組織中の生体成分を電極を用いて電気的
に測定する方法が知られている。中でも、例えば酸素ガ
ス成分、各種イオン等を測定する方法、特に成分の濃度
変化を連続的に測定する方法としてボーラログラフィの
原理を応用した測定方法が広く用いられてきた。血液や
組織中の生体成分としては種々の成分が電極を用いて測
定されているが、以下、本明細書においては酸素分圧の
測定を例にとり説明する。ポーラログラフィの原理を応
用した測定方法としては金、白金、銀等の貴金属製電極
と銀−塩化銀等でできた不関電極を用い、両電極間に微
小電圧を印加して関電極(陰極)表面で酸素の還元を行
ない、この除虫ずる還元電流を測定することによυ液中
の酸素ガス濃度を測定するものである。
BACKGROUND ART Conventionally, methods of electrically measuring biological components in blood and tissues using electrodes have been known. Among these methods, for example, a method of measuring oxygen gas components, various ions, etc., and in particular, a measurement method applying the principle of boularography has been widely used as a method of continuously measuring changes in the concentration of components. Various biological components in blood and tissues are measured using electrodes, and hereinafter, measurement of oxygen partial pressure will be described as an example. A measurement method that applies the principle of polarography uses an electrode made of a noble metal such as gold, platinum, or silver, and an indifferent electrode made of silver-silver chloride, etc., and applies a minute voltage between the two electrodes to create a different electrode (cathode). ) Oxygen gas concentration in the υ liquid is measured by reducing oxygen on the surface and measuring the reduction current flowing through the extermination.

一方、生体中の酸素ガス濃度(酸素分圧)が生体に及ぼ
す影響は重大であり、特に新生児、麻酔科、心臓外科、
脳外科、消化器外科等において酸素分圧の推移を正確に
連続してとらえることの重要性が認識されるにともない
血管中あるいは組織の測定したい部位における酸素分圧
変化を測定したいという要望が強くなっている。
On the other hand, the influence of oxygen gas concentration (oxygen partial pressure) in living organisms is significant, especially in neonatal, anesthesiology, cardiac surgery, and other areas.
As the importance of accurately and continuously capturing changes in oxygen partial pressure has been recognized in fields such as neurosurgery and gastrointestinal surgery, there has been a growing desire to measure changes in oxygen partial pressure in blood vessels or tissue at the desired site. ing.

しかるに、上記測定法は陰極表面と液中との酸素濃度勾
配に基づく拡散電流を基本としているが、生体は心筋の
動き、血液の脈動等たえず運動しており、これによって
拡散電流は大きく影響され、微小な酸素分圧を正確に測
定することは困難であった。この欠点を改良するため種
々の検討が行なわれ、関、不関電極及び電解液を酸素透
過性の膜中に内蔵したいわゆる複合電極あるいは関電極
表面をポリヒドロキシエチルアクリレート、セロファン
等の親水性水膨潤膜で被覆し、分子間にとりこまれた水
を通して酸素の電極表面への移動を行なわしめる方法等
が提案され、一部実用に供されている。しかし、前者は
電極形態が大きくそのため特定の部位例えば太い血管中
にしか挿入できず、後者は水膨潤膜の保持状態が変ると
測定感度が変化するため充分な測定精度が得られないと
いう問題があり、また、乾燥するともろくなり膜の破損
が生じ易いという問題があり、従って、常時水に浸して
おか力ければならないという不便があり、改良が要望さ
れている。本発明者等は、このような現状に鑑み、生体
組織、血管中の全てにわたる部位に挿入でき、組織ある
いは血液の動きに影響されることなく連続的にしかも安
定して正確に酸素分圧を測定できる生体用電極として金
属線電極〔発明が解決しようとする問題点〕 上記の多孔質膜で被覆した生体用電極は、生体組織血管
中の全ての部位に挿入でき、組織あるいは血液の動きに
影響されることなく連続的に安定して酸素分圧を測定で
きる点では優れているものの、滅菌前後における酸素還
元電流の値にズレが生じることがあシ、また、長時間の
保存において酸素還元電流の値が経時的に変化する場合
がちシ、これらの問題のない生体用電極が要望されてい
た。
However, although the above measurement method is based on the diffusion current based on the oxygen concentration gradient between the cathode surface and the liquid, the living body is constantly in motion due to the movement of the heart muscle and the pulsation of the blood, and the diffusion current is greatly affected by this. However, it has been difficult to accurately measure minute oxygen partial pressures. In order to improve this drawback, various studies have been carried out, and the so-called composite electrode, in which a related electrode, an indifferent electrode, and an electrolyte are housed in an oxygen-permeable membrane, or a related electrode surface made of hydrophilic water such as polyhydroxyethyl acrylate or cellophane, etc. A method has been proposed in which oxygen is transferred to the electrode surface through water trapped between the molecules by coating the electrode with a swelling film, and some of these methods have been put to practical use. However, the former has a large electrode shape, so it can only be inserted into a specific area, such as a large blood vessel, and the latter has the problem that measurement sensitivity changes when the retention state of the water-swollen membrane changes, making it impossible to obtain sufficient measurement accuracy. Furthermore, there is a problem that the membrane becomes brittle when dried, and the membrane is easily damaged.Therefore, there is an inconvenience that the membrane must be constantly immersed in water, and improvements are desired. In view of the current situation, the present inventors have developed a device that can be inserted into all parts of living tissues and blood vessels, and can continuously, stably and accurately supply oxygen partial pressure without being affected by the movement of tissues or blood. Metal wire electrode as a biological electrode capable of measurement [Problem to be solved by the invention] The biological electrode coated with the above porous membrane can be inserted into any part of the biological tissue or blood vessel, and can be inserted into any part of the biological tissue or blood vessel. Although it is excellent in that oxygen partial pressure can be measured continuously and stably without being affected, there is a risk that the oxygen reduction current value before and after sterilization may deviate. The current value tends to change over time, and there has been a need for a biological electrode that does not have these problems.

本発明者等は、上記のような問題点の原因について鋭意
検討の結果、出力値に再現性が得られなかったシ、安定
な出力になるまでに時間がかがシすぎるという現象は、
金属線電極表面を被覆している多孔質膜が滅菌あるいは
保存期間中に乾燥するために酸素の拡散状態が変化する
ことが主因であることを見い出し、本発明に到達した。
As a result of intensive investigation into the causes of the above-mentioned problems, the inventors of the present invention found that the phenomenon of not being able to obtain reproducibility in output values and the fact that it takes too long to achieve stable output is due to the following:
The inventors have discovered that the main reason for this is that the porous membrane covering the surface of the metal wire electrode dries during sterilization or storage, resulting in a change in the oxygen diffusion state, and has thus arrived at the present invention.

即ち、乾燥そのことが膜の再湿潤化1でに長時間全必要
とすること、更に乾燥によυ多孔質膜の孔径などの孔形
状が変化するということが主因となっているのである。
That is, the main reason for this is that drying requires a long time for rewetting the membrane (1), and that the pore shape such as the pore diameter of the υ porous membrane changes due to drying.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

上述の問題点は、本発明の生体用電極、すなわち、周囲
に絶縁被覆層を設けた貴金属線の先端及び/または側面
の絶縁被罹層のない部分が多孔質膜で被覆され、該多孔
質膜の少くとも外側が水溶性の実質的に室温では蒸発し
ない化合物で被覆されていることを特徴とする生体用電
極によって解決される。
The above-mentioned problem is that the biological electrode of the present invention, that is, the tip and/or side surface of the noble metal wire with an insulating coating layer provided thereon, is coated with a porous membrane, The problem is solved by a biological electrode characterized in that at least the outside of the membrane is coated with a water-soluble compound that does not substantially evaporate at room temperature.

本発明において「貴金属線」とは金、銀、および白金属
元素等の貴金属からなる金属線あるいは該金属線の周囲
に原子番号21(スカンジウム)から原子番号30(亜
鉛)までに含まれる遷移金属からなる層を設けた金属線
をいう。生体用電極として体内に挿入した時の侵聾を考
慮すると該貴金属線の直径は細い方が好ましく、作業性
等を考慮すると直径が20〜500μmであるととが好
ましく、50〜300μmであることがより好ましい0 該貴金属線が、その外周に遷移金属層を設けた線の場合
、用いる遷移金属は1種類であっても2種類以上であっ
てもよく、複数種が多層構造をとっていてもよい。用い
る遷移金属の種類は用いた貴金属の種類、絶縁被覆層の
材質を勘案して適宜選択すればより。該遷移金属層の厚
みはできるだけ薄い層を形成させる方が電極性能の面、
特に測定初期の安定性等の点からみて、好ましく、貴金
属線の直径の10係以下の厚みになるようにすることが
好ましく、均一な厚みになっていることが好ましい。遷
移金属層を設ける方法としては、電解メッキ、無電解メ
ッキ、スパッタリング等通常金属層を形成させる方法を
採用することができる〇絶縁被覆層の材質としてはポリ
ウレタン、ポリエステル、ポリアミド、エポキシ樹脂等
通常金属線の液温に用いられる高分子化合物が用いられ
る。
In the present invention, "noble metal wire" refers to a metal wire made of noble metals such as gold, silver, and platinum metal elements, or a transition metal contained around the metal wire from atomic number 21 (scandium) to atomic number 30 (zinc). A metal wire with a layer of In consideration of the hearing loss when inserted into the body as a biological electrode, the diameter of the noble metal wire is preferably thinner, and in consideration of workability, the diameter is preferably 20 to 500 μm, and 50 to 300 μm. More preferably 0 When the noble metal wire is a wire provided with a transition metal layer on its outer periphery, the transition metal used may be one type or two or more types, and a plurality of types may have a multilayer structure. Good too. The type of transition metal to be used can be selected appropriately taking into consideration the type of noble metal used and the material of the insulating coating layer. It is better to form the transition metal layer as thin as possible in terms of electrode performance.
Particularly from the viewpoint of stability in the initial stage of measurement, it is preferable that the thickness be less than 10 times the diameter of the noble metal wire, and it is preferable that the thickness be uniform. As a method for forming the transition metal layer, methods for forming a normal metal layer such as electrolytic plating, electroless plating, and sputtering can be adopted. Materials for the insulating coating layer include normal metals such as polyurethane, polyester, polyamide, and epoxy resin. A polymer compound used for line liquid temperature is used.

この絶縁被覆層は単一の高分子化合物からなるものでも
よいが、多層構造をとっていてもよい。
This insulating coating layer may be made of a single polymer compound, or may have a multilayer structure.

電極の耐屈曲性等からみて絶縁被覆層の最外層はポリウ
レタンであることが好ましい。絶縁被覆層の厚みは電気
的絶縁状態を保つことができ、かつ使用時の外的な力、
例えば屈曲等がかかっても絶縁状態を維持できる程度の
厚みがあればよい。
In view of the bending resistance of the electrode, the outermost layer of the insulating coating layer is preferably made of polyurethane. The thickness of the insulating coating layer can maintain electrical insulation and resist external forces during use.
For example, it only needs to be thick enough to maintain an insulating state even if it is bent.

厚すぎると電極が不必要に太くなるため、5〜30μm
の厚みであることが好捷しい。
If it is too thick, the electrode will become unnecessarily thick, so the thickness should be 5 to 30 μm.
The thickness is good.

本発明の生体用電極は、貴金属線の先端及び/又は側面
の一部が絶縁被覆層のかわりに多孔質膜で覆われている
ことが必要である。多孔質膜で覆うには、周囲に絶縁被
覆層を設けた貴金属線を長さ方向に直角に切断して露出
する金属面あるいはさらにその近傍の絶縁被覆層を剥し
て金属が露出[〜た部分を多孔質膜で覆えばよい。
The biological electrode of the present invention requires that the tip and/or part of the side surface of the noble metal wire be covered with a porous membrane instead of an insulating coating layer. To cover with a porous film, cut a noble metal wire with an insulating coating layer around it at right angles to the length, and then peel off the exposed metal surface or the insulating coating layer in the vicinity to expose the metal. can be covered with a porous membrane.

本発明において、多孔質膜は少々くとも0.7μm以下
の平均孔径を有する緻密層を最外層に有(〜、該最外層
に連続して最外層の孔径に等しいか、それ以上の孔径を
有する内層とからなる多孔質膜であることが好捷しい。
In the present invention, the porous membrane has a dense layer having an average pore size of at least 0.7 μm or less in the outermost layer (~, and the outermost layer has a dense layer having a pore size equal to or larger than the pore size of the outermost layer). Preferably, it is a porous membrane comprising an inner layer.

この上う々多孔質膜で覆われた電極は血液や組織中に挿
入された場合、i!電極表面多孔質膜で保睦されて安定
した水膜層を形成し、酸素ガスは最外層の孔を通過した
後この水膜層を経て速やかに電極表面に達する。最外層
の平均孔径が0.7μm、l:#)大きくなると血液中
の高分子量物や固形成分が孔を通過1−て金属線表面に
付着したり、孔を塞ぐ可能V1ユがあり、これにょυ酸
素ガスの透過を阻害して電極の性能を低下せし7める可
能性がある。この観点から平均孔径は0.5μm以下で
あることがより好ましい。
When an electrode covered with this highly porous membrane is inserted into blood or tissue, the i! The electrode surface is protected by a porous membrane to form a stable water film layer, and after passing through the pores in the outermost layer, oxygen gas quickly reaches the electrode surface via this water film layer. When the average pore diameter of the outermost layer becomes 0.7 μm (l:#), high molecular weight substances and solid components in the blood can pass through the pores and adhere to the metal wire surface, or block the pores. This may impede the permeation of oxygen gas and reduce the performance of the electrode. From this point of view, the average pore diameter is more preferably 0.5 μm or less.

多孔質膜の厚みは電極を挿入する部位により異なるが、
要請される物理的強度及び多孔質膜内で形成される安定
した水膜層に必要な厚み等から決定されるが大略5〜2
00μmであることが好壕しく、20〜100μmであ
ることがより好ましい。多孔質膜の空孔率は大きいほど
電極感度の点では好ましいが、膜の物理的強度とのから
みで適宜定めればよい。
The thickness of the porous membrane varies depending on the site where the electrode is inserted.
It is determined based on the required physical strength and the thickness required for a stable water film layer formed within the porous membrane, but approximately 5 to 2
00 μm is preferable, and 20 to 100 μm is more preferable. The higher the porosity of the porous membrane, the better from the viewpoint of electrode sensitivity, but it may be determined as appropriate in view of the physical strength of the membrane.

多孔質膜の材質としてはどのようなものも用い得るが、
水中に浸漬した時に過度に膨潤しないものであることが
好ましい。このような素材の例としてセルロースアセテ
ート、セルロース、ポリウレタン等を挙げることができ
る。これらの中ではポリウレタンが膜強度等の点で好ま
しい。ポリウレタンとしてはポリエステル型でもポリエ
ーテル型でもよいが、ポリウレタンを均質フィルムにし
た時そのフィルムの1oosモジユラス力10kg /
 c11i以上であるものが多孔質膜の安定性の点で好
ましい。
Any material can be used for the porous membrane, but
It is preferable that the material does not swell excessively when immersed in water. Examples of such materials include cellulose acetate, cellulose, and polyurethane. Among these, polyurethane is preferred in terms of film strength and the like. The polyurethane may be either a polyester type or a polyether type, but when polyurethane is made into a homogeneous film, the modulus of the film is 10 kg /
Those having c11i or more are preferable from the viewpoint of stability of the porous membrane.

多孔質膜を形成する方法としては、多孔質膜を形成する
高分子化合物を適当な溶媒に溶解してなる溶液を前述の
金属電極の金属が露出した面全体に付着させた後、空気
中あるいは溶媒と相溶する該高分子化合物の非溶媒中で
脱溶媒して核高分子化合物を凝固させる方法をとること
ができる。孔径の調整は溶液組成、濃度、例えば凝固浴
組成等による脱溶媒速度の調整、あるいは溶液への塩類
や界面活性剤等の第3成分の添加等により行なうことが
できる。該溶液を金属面に付着させる方法としては浸漬
、塗布、吹付は弊種々の方法を採用することができる。
The method for forming a porous membrane is to apply a solution prepared by dissolving a polymer compound forming a porous membrane in an appropriate solvent to the entire surface of the metal electrode where the metal is exposed, and then to A method can be used in which the core polymer compound is coagulated by desolvation in a nonsolvent of the polymer compound that is compatible with the solvent. The pore size can be adjusted by adjusting the solution composition and concentration, for example, the desolvation rate by adjusting the coagulation bath composition, or by adding a third component such as a salt or a surfactant to the solution. Various methods such as dipping, coating, and spraying can be used to attach the solution to the metal surface.

上記多孔質膜は前述した露出金属面を1h接被覆するも
のであるが該多孔質膜のずれや脱落を防止する意味から
近傍の絶縁被覆層をも一部被覆していることが好ましい
。ここにいう近傍とは絶縁被覆部と金属露出部の境界か
ら0.5 mm〜]、 mm以内の部分をいう。膜と絶
縁被覆層の接着性の観点から多孔質膜と絶縁被覆最外層
の両者がポリウレタンであることが好ましい。
The above-mentioned porous film is used to cover the above-mentioned exposed metal surface for 1 hour, but in order to prevent the porous film from shifting or falling off, it is preferable to partially cover the nearby insulating coating layer as well. The vicinity here refers to a portion within 0.5 mm or more from the boundary between the insulating coating and the exposed metal portion. From the viewpoint of adhesion between the membrane and the insulating coating layer, both the porous membrane and the outermost insulating coating layer are preferably made of polyurethane.

本発明の生体用電極は、上記多孔fi嘆の少くとも外側
が水溶性の実質的に室温では蒸発しない化合物で被覆さ
れていることを特徴とし、それ故に多孔質膜の乾燥を防
ぐことができる。
The biological electrode of the present invention is characterized in that at least the outside of the porous membrane is coated with a water-soluble compound that does not substantially evaporate at room temperature, thereby preventing the porous membrane from drying out. .

本発明にいう水溶性の実質的に室温では蒸発しない化合
物とは、沸点が少くとも100℃以−Fあり、水に対し
て易溶性であって、室温における蒸気圧が非常に低く、
室温下で開放された状態で放置しても重量減少をほとん
どお・こさないものを指す。かかる化合物としては、生
体に対し安全なものを選ぶべきである。具体的にはグリ
セリン、ポリエチレングリコール、フロピレンゲリコー
ル等をあげることができる。
The water-soluble compound that does not substantially evaporate at room temperature as used in the present invention has a boiling point of at least 100°C or higher, is easily soluble in water, and has a very low vapor pressure at room temperature.
Refers to items that hardly lose weight even if left open at room temperature. Such compounds should be selected to be safe for living organisms. Specific examples include glycerin, polyethylene glycol, and fluoropylene gellicol.

一般的に、多孔質膜の乾燥を防ぐ方法として、例えば中
空繊維をグリセリンで処理する方法が知られている。
Generally, as a method of preventing drying of a porous membrane, for example, a method of treating hollow fibers with glycerin is known.

しかしながら、この膜は、使用時必ず付着しているグリ
セリンを洗浄除去しなければならず、さもなければ、分
離されたものの中にグリセリンが混入し、不都合を生じ
る。
However, when this membrane is used, the adhering glycerin must be washed off, otherwise the separated product will be contaminated with glycerin, causing problems.

本発明のような生体用電極では、一般に使用前に電極を
洗浄することは行なわれない。従来は、本発明において
用いるような化合物で処理したものは、その化合物を除
去することが難かしく、従って、電極の安定化、再現性
に支障があると考えられていた。ところが、本発明者等
は本発明のような生体用電極では、上記化合物は電極使
用時、使用に支障のない程度まで速やかに除去されるか
、あるいは水を保持して多孔質膜内が実質上水で充填さ
れている状態にあるか、使用に支障のない程度の時間で
速やかに水を吸収することを見い出した。
In biological electrodes such as those of the present invention, the electrodes are generally not cleaned before use. Conventionally, it has been thought that it is difficult to remove the compounds treated with compounds such as those used in the present invention, and that this poses a problem in electrode stabilization and reproducibility. However, in the biological electrode of the present invention, the present inventors have found that the above-mentioned compounds are either quickly removed to the extent that they do not interfere with the electrode's use, or that water is retained and the inside of the porous membrane is substantially reduced. It has been found that when the container is filled with clean water, it quickly absorbs water within a period of time that does not interfere with its use.

上記化合物は、多孔質膜の少くとも外側を被覆している
必要がある。これにより、膜内にとじこめられた水を保
持したυ、水を吸収しやすくする機能を果す。
The above compound needs to coat at least the outside of the porous membrane. As a result, υ, which retains the water trapped within the membrane, functions to make it easier to absorb water.

多孔質膜にポリウレタンを使用する場合、上記化合物と
しては、グリセリンを用いるのが出力の再現性の点で最
も好ましい。例えば、ポリエチレングリコールの場合で
は、長時間ポリエチレングリコールで被覆したまま放置
しておくと、ポリウレタン膜が若干膨潤するため、保存
前後での出力値の再現性が得られないことがある。しか
しながら、この場合でも、出力値の変化を連続して測定
する時にはそのまま使用できる。また、絶対値の精度を
求める場合には、計測前に既知濃度の液を測定し較正す
ることにより、較正後の測定を精度よ〈実施できる。
When using polyurethane for the porous membrane, it is most preferable to use glycerin as the above compound from the viewpoint of output reproducibility. For example, in the case of polyethylene glycol, if the polyurethane film is left coated with polyethylene glycol for a long time, the polyurethane film will swell slightly, so reproducibility of output values before and after storage may not be obtained. However, even in this case, it can be used as is when continuously measuring changes in output values. Furthermore, when determining the accuracy of the absolute value, by measuring and calibrating a liquid with a known concentration before measurement, the measurement after calibration can be performed with the same accuracy.

被覆の方法としては、予め多孔質膜を水または電解質を
含む水で充填し、ついで、上記化合物で被覆処理、例え
ば、上記化合物中あるいはその溶液中への浸漬処理を行
う方法をあげることができる。
Examples of coating methods include filling the porous membrane in advance with water or water containing an electrolyte, and then coating with the above compound, for example, immersing it in the above compound or its solution. .

上記化合物で被覆処理された生体用電極は、生体特に人
体への使用にあたっては滅菌をする必要があり、滅菌法
としては、エチレンオキサイドガス滅菌、γ−線滅菌等
を例示できる。
A biological electrode coated with the above compound needs to be sterilized when used on a living body, especially a human body, and examples of sterilization methods include ethylene oxide gas sterilization and γ-ray sterilization.

〔実施例〕〔Example〕

以下、実施例について本発明を更に詳しく説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1゜ 直径100μmの白金線の周囲に厚みが約0.5μ肌に
なるようにニッケルを電解メッキにより被覆した。次い
で−その外側に厚さが10μmになるようにエポキシ樹
脂を塗付焼付けし、更にその外側にポリウレタンを4μ
票になるように塗付焼付けし、絶縁被覆層とした。この
金属線を長さ20cmになるように鋭利な刃物で長さ方
向に直角に切断して新しい金属面を露出させた。
Example 1 A platinum wire having a diameter of 100 μm was coated with nickel to a thickness of approximately 0.5 μm by electrolytic plating. Next, apply and bake epoxy resin to a thickness of 10 μm on the outside, and then apply 4 μm of polyurethane on the outside.
It was coated and baked to form an insulating coating layer. This metal wire was cut perpendicularly to the length direction with a sharp knife to a length of 20 cm to expose a new metal surface.

一方ポリエステル型ポリウレタンにツボラン5109、
商品名、日本ポリウレタン社製)を固形分濃度20qb
になるようにジメチルホルムアミドに溶解して均一な溶
液を準備し、上記貴金属線を該ポリウレタン溶液に切断
面から約5mmの長さまで浸漬し、次いで室温のイオン
交換水中に浸漬し、脱溶媒させ、再び上記ポリウレタン
溶液に該先端部分のみを接触させてポリウレタン溶液を
付着させた後室温のイオン交換水中に浸漬し脱溶媒を完
全に行なった。この電極のポリウレタン多孔質膜の表面
及び断面、該金属線の断面を走査型電子顕微鏡及びX線
マイクロアナライザーで分析した結果、多孔質膜の最外
層には平均0.3μmの孔が均一に分散しておいてお9
、内層にいくにつれて大きな孔径の孔があシ、膜厚は2
5μmであることが判明した0多孔質膜と絶縁被覆層と
はよく接着しており、絶縁被覆層と白金との間にはニッ
ケル層が介在しており、これらの間に剥離は認められ彦
かった。
On the other hand, polyester type polyurethane contains Tuboran 5109,
Product name, manufactured by Nippon Polyurethane Co., Ltd.) with a solid content concentration of 20 qb
Prepare a homogeneous solution by dissolving it in dimethylformamide so that Only the tip portion was brought into contact with the polyurethane solution again to adhere the polyurethane solution, and then immersed in ion-exchanged water at room temperature to completely remove the solvent. As a result of analyzing the surface and cross section of the polyurethane porous membrane of this electrode and the cross section of the metal wire using a scanning electron microscope and an X-ray microanalyzer, it was found that pores with an average diameter of 0.3 μm were uniformly dispersed in the outermost layer of the porous membrane. Please leave it to me9
, the pores become larger towards the inner layer, and the film thickness is 2.
The porous film, which was found to have a thickness of 5 μm, and the insulating coating layer were well bonded, and a nickel layer was interposed between the insulating coating layer and the platinum, and no peeling was observed between them. won.

このようにして得られた電極のポリウレタン多孔質膜で
被覆されていない側の端の絶縁被覆層を約2cm剥し、
銀−塩化銀電極を不関電極として酸素分圧測定装置の関
電極として用いた。
Approximately 2 cm of the insulating coating layer on the end of the electrode obtained in this way that was not covered with the polyurethane porous membrane was peeled off.
A silver-silver chloride electrode was used as an indifferent electrode in an oxygen partial pressure measuring device.

ガス交換部、加熱部を有する循環装置を用いて、生理食
塩水を37℃、100m1/mで循環させ、該循環系に
」二記両電極の先端を挿入し7た。次いで、空気をガス
交換部に流入し、生理食塩水が常時空気で飽和されてい
る状態にしだ後、測定を開始した。測定値は液の流れに
よる影響がなく、一定値を示した。飽和空気による電流
値を酸素分圧150mm Hgと読みかえた後、空気の
代りに窒素ガスを該循環系のガス交換部を流入すると同
時に該電極による測定値は150 mmHgに相当する
電流値から直線的に低下し、はぼ酸素分圧On+mHg
に相当するところで安定値に達した。この値をO+++
+nHgとして検量線を求めた。次いで、酸素ガスと窒
素ガスの比率を適当に選択した種々の気体を各々該循環
系のガス交換部に流入させて各々の値を求めたところ、
先に求めた検量線にほぼ一致し、精度の高い酸素分圧測
定が可能でおった。
Physiological saline was circulated at 37° C. and 100 ml/m using a circulation device having a gas exchange section and a heating section, and the tips of the two electrodes were inserted into the circulation system. Next, air was introduced into the gas exchange section so that the physiological saline was constantly saturated with air, and then measurement was started. The measured value was not affected by the flow of the liquid and showed a constant value. After reading the current value due to saturated air as an oxygen partial pressure of 150 mm Hg, nitrogen gas is introduced into the gas exchange section of the circulation system instead of air, and at the same time the value measured by the electrode is linearly calculated from the current value corresponding to 150 mm Hg. The partial pressure of oxygen decreases to On+mHg
It reached a stable value at a point corresponding to . Set this value to O+++
A calibration curve was determined as +nHg. Next, various gases with appropriately selected ratios of oxygen gas and nitrogen gas were introduced into the gas exchange section of the circulation system, and the respective values were determined.
It almost matched the calibration curve obtained earlier, and it was possible to measure oxygen partial pressure with high accuracy.

次いで、この電極を生理食塩水から取り出し、25℃に
した局状態グリセリン液(グリセ970度98%)に3
0分間浸漬した。この時グリセリン液はよく攪拌された
状態にしてあった030分間の浸漬処理後、電極をグリ
セリン液から取り出し、エチレンオキサイドガスによる
滅菌を行い、室温下で約1ケ月保存した。保存後、先に
述べた測定温及び装置を用いてグリセリン処理前に実施
したと同じ測定を行った結果、測定値は前回と±5憾以
内で前回作成した検量線と一致し、精度よく測定を行う
ことができた。この時の安定化までの時間は約15分と
速やかであった。
Next, this electrode was taken out of the physiological saline and soaked in a local glycerin solution (glycerate 970 degrees 98%) at 25 degrees Celsius for 3 minutes.
It was immersed for 0 minutes. At this time, the glycerin solution was kept in a well-stirred state. After immersion treatment for 0.30 minutes, the electrode was taken out from the glycerin solution, sterilized with ethylene oxide gas, and stored at room temperature for about one month. After storage, we performed the same measurements as before the glycerin treatment using the measurement temperature and equipment described above, and the measured values matched the previously created calibration curve within ±5 degrees of the previous measurement, indicating that the measurements were accurate. I was able to do this. The time required for stabilization at this time was as quick as about 15 minutes.

実施例2゜ 実施例1.と同様の手法により作成したポリウレタン多
孔質膜の電極を、実施例1.で用いた測定系を使用して
、電極の出力値を計測した。次いで、この電極を生理食
塩水から取り出し、攪拌下40℃に加温したポリエチレ
ングリコール分子:ji:400に30分間浸漬したの
ち、この電極を室温にて2週間放置後、電極の出力値を
再計測した。この結果、出力値は±10%以内で一致し
ており、続いて8時間の連続=−を測においても安定し
た出力を得ることができた0測定浴への吹込春巻みを空
気から窒素ガスへ、更に50%酸素ガスへの変化に対し
ても瞬時に応答し、その出力値は空気と平衡時の出力値
を基に計算した値と一致した。
Example 2゜Example 1. An electrode of a polyurethane porous membrane prepared by the same method as in Example 1. The output value of the electrode was measured using the measurement system used in . Next, this electrode was removed from the physiological saline and immersed in polyethylene glycol molecules: ji:400 heated to 40°C with stirring for 30 minutes. After leaving the electrode at room temperature for 2 weeks, the output value of the electrode was measured again. I measured it. As a result, the output values agreed within ±10%, and a stable output was obtained even after 8 hours of continuous measurement. It responded instantaneously to changes to gas and even to 50% oxygen gas, and its output value matched the value calculated based on the output value at equilibrium with air.

との電極の安定化時間は約15分であった。The stabilization time of the electrode was approximately 15 minutes.

実施例3゜ 直径150μmの白金線にポリウレタンを厚み10μm
になるように塗装焼付けし、絶縁被覆層とした。この貴
金属線を長さ20cmになるように鋭利な刃物で長さ方
向に直角に切断し、新しい白金断面を露出させた。
Example 3: Platinum wire with a diameter of 150 μm and polyurethane coated with a thickness of 10 μm
It was painted and baked to form an insulating coating layer. This precious metal wire was cut perpendicularly to the longitudinal direction with a sharp knife to a length of 20 cm to expose a new platinum cross section.

一方ポリエーテル型ポリウレタン(クリスボン1367
、商品名、大日本インキ化学社製)を固形分濃度15憾
になるようにジメチルホルムアミドに溶解し、これにさ
らに平均分子量400のポリエチレングリコールをポリ
ウレタン固形分と同量になるように添加してポリウレタ
ン溶液を作成した。この溶液を用いて実施例1.と同様
にして金属線の先端にポリウレタンの多孔質膜を形成さ
せたO このポリウレタン多孔質膜被覆電極を操作型電子顕微鏡
で観察した結果、多孔質膜の最外層には平均0.2μm
の孔が均一に分散しておいており、内層にいくにつれて
大きな孔径の孔がおいており、膜厚は一番厚い箇所で約
50μmであった。このものの絶縁被覆層の厚みは12
μ扉であった。
On the other hand, polyether type polyurethane (Crisbon 1367
, trade name, manufactured by Dainippon Ink Chemical Co., Ltd.) in dimethylformamide to a solid content concentration of 15, and polyethylene glycol with an average molecular weight of 400 was further added to this in an amount equal to the solid content of polyurethane. A polyurethane solution was prepared. Using this solution, Example 1. A porous polyurethane film was formed on the tip of the metal wire in the same manner as O.As a result of observing this polyurethane porous film-covered electrode with an operating electron microscope, the outermost layer of the porous film had an average thickness of 0.2 μm.
The pores were uniformly dispersed, and the pores became larger toward the inner layer, and the film thickness was about 50 μm at the thickest point. The thickness of the insulation coating layer of this product is 12
It was a μ door.

この電極と同一手法により得られた電極を用いて実施例
1.と同様にして酸素分圧を測定した。さらに、実施例
1.と同様にグリセリンで多孔質膜を処理した後、室温
にて2ケ月間保存した。2ケ月後、酸素分圧の測定を上
記と同様の方法で行った結果、計測値は前回とほぼ同じ
値を示しだ。
Example 1 was performed using an electrode obtained by the same method as this electrode. Oxygen partial pressure was measured in the same manner as above. Furthermore, Example 1. After treating the porous membrane with glycerin in the same manner as above, it was stored at room temperature for 2 months. Two months later, the oxygen partial pressure was measured using the same method as above, and the measured value was almost the same as the previous time.

実施例4゜ 直径150μmの白金線の周囲にポリウレタンを厚み1
0μmになるように塗装焼付けし、絶縁被覆層とした。
Example 4 Polyurethane was applied to a thickness of 1 around a platinum wire with a diameter of 150 μm.
It was painted and baked to a thickness of 0 μm to form an insulating coating layer.

この貴金属線を長さ30mになるように鋭利な刃物で長
さ方向に直角に切断し、新しい白金陣i面ヲ露出さぜた
〇 一方、アセチル含有量42係以上のセルロースアセデー
トを90%ギ酸に固型分濃度5%になるように溶解し均
一な溶液とした。この溶液に上記貴金属線の先端を接触
させ、先端に該溶液を付着させた後、速やかに50℃の
イオン交換水中に浸漬し、脱溶媒した0との操作を2回
縁シ返し行った後、室温のイオン交換水でよく洗浄し、
実施例1、と同様にして酸素分圧を測定した。次いで、
この電極を室温の98%グリセリン中に60分浸漬後、
室温下にて1ケ月保存後上記と同様の方法にて酸素分圧
を測定した。この時の安定化時間は約20分であり、出
力値はほぼ一致した。
This precious metal wire was cut perpendicularly to the length direction with a sharp knife to a length of 30 m, and the new platinum layer i-side was exposed.Meanwhile, cellulose acedate with an acetyl content of 42 parts or more was cut at right angles to the length direction with a sharp knife. % formic acid to a solid content concentration of 5% to obtain a uniform solution. After bringing the tip of the noble metal wire into contact with this solution and adhering the solution to the tip, it was immediately immersed in ion-exchanged water at 50°C, and the process with desolvated 0 was repeated twice. , wash thoroughly with deionized water at room temperature,
Oxygen partial pressure was measured in the same manner as in Example 1. Then,
After immersing this electrode in 98% glycerin at room temperature for 60 minutes,
After one month of storage at room temperature, the oxygen partial pressure was measured in the same manner as above. The stabilization time at this time was about 20 minutes, and the output values almost matched.

〔発明の効果〕〔Effect of the invention〕

本発明の電極は、滅菌前後における酸素還元電流の値に
ズレが生じることなく、壕だ、長時間の保存においても
酸素還元電流の値は変化なく、安定化時間も短かく、応
答が速く、精度の高い信頼性に優れた電極である。
The electrode of the present invention has no deviation in the oxygen reduction current value before and after sterilization, the oxygen reduction current value does not change even after long-term storage, the stabilization time is short, and the response is fast. It is a highly accurate and reliable electrode.

Claims (1)

【特許請求の範囲】[Claims] 周囲に絶縁被覆層を設けた貴金属線の先端及び/または
側面の絶縁被覆層のない部分が多孔質膜で被覆され、該
多孔質膜の少くとも外側が水溶性の実質的に室温では蒸
発しない化合物で被覆されていることを特徴とする生体
用電極。
The tip and/or side parts of a noble metal wire with an insulating coating layer around it and the parts without the insulating coating layer are covered with a porous membrane, and at least the outside of the porous membrane is water-soluble and does not substantially evaporate at room temperature. A biological electrode characterized by being coated with a compound.
JP60166672A 1985-07-30 1985-07-30 Electrode for living body Granted JPS6227926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60166672A JPS6227926A (en) 1985-07-30 1985-07-30 Electrode for living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60166672A JPS6227926A (en) 1985-07-30 1985-07-30 Electrode for living body

Publications (2)

Publication Number Publication Date
JPS6227926A true JPS6227926A (en) 1987-02-05
JPH0217172B2 JPH0217172B2 (en) 1990-04-19

Family

ID=15835583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60166672A Granted JPS6227926A (en) 1985-07-30 1985-07-30 Electrode for living body

Country Status (1)

Country Link
JP (1) JPS6227926A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063810A (en) * 1989-06-29 1991-11-12 Suzuki Jisoshi Kogyo Kabushiki Kaisha Shift mechanism
JP2002506209A (en) * 1998-03-04 2002-02-26 セラセンス、インク. Electrochemical analyte sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021048816A1 (en) * 2019-09-12 2021-03-18 Gupta Ronak Rajendra Recycled separable multi-filament parallel yarns and woven fabric thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063810A (en) * 1989-06-29 1991-11-12 Suzuki Jisoshi Kogyo Kabushiki Kaisha Shift mechanism
JP2002506209A (en) * 1998-03-04 2002-02-26 セラセンス、インク. Electrochemical analyte sensor
JP5021115B2 (en) * 1998-03-04 2012-09-05 アボット ダイアベティス ケア インコーポレイテッド Electrochemical analyte sensor

Also Published As

Publication number Publication date
JPH0217172B2 (en) 1990-04-19

Similar Documents

Publication Publication Date Title
US4672970A (en) Electrode for living body
US4442841A (en) Electrode for living bodies
JP5116697B2 (en) Hydrogels for intravenous amperometric biosensors
US6613379B2 (en) Implantable analyte sensor
JP2009528084A (en) Flux limiting membranes for intravenous amperometric biosensors
US20050227398A1 (en) Method of manufacturing an electrical lead
JPS6356498B2 (en)
WO1994020602A1 (en) Implantable glucose sensor
WO1993010827A1 (en) A process for hydrophilic coating of metal surfaces
EP0056178B1 (en) Electrode for living bodies
EP0149693A1 (en) Method of forming an antithrombogenic layer on medical devices
US3635212A (en) Coated ion measuring electrode
JPS6227926A (en) Electrode for living body
CN109142485B (en) Glucose sensor and preparation method thereof
JPH0240330B2 (en)
JPS6133644A (en) Living body electrode
JPH06119B2 (en) Transdermal sensor for detecting organic matter and electrolytes in sweat
JPH0216134B2 (en)
Hagihara et al. Intravascular oxygen monitoring with a polarographic oxygen cathode
JPS61187837A (en) Body electrode
JPS644456B2 (en)
US4499901A (en) Retreated sensing electrode
JPH0117296Y2 (en)
Nagaoka et al. Antithrombogenic pO2 sensor for continuous intravascular oxygen monitoring
JPS62261341A (en) Internal stay type sensor for measuring level of glucose