JPS62123349A - Microelectrode for electrochemical analysis - Google Patents

Microelectrode for electrochemical analysis

Info

Publication number
JPS62123349A
JPS62123349A JP60262664A JP26266485A JPS62123349A JP S62123349 A JPS62123349 A JP S62123349A JP 60262664 A JP60262664 A JP 60262664A JP 26266485 A JP26266485 A JP 26266485A JP S62123349 A JPS62123349 A JP S62123349A
Authority
JP
Japan
Prior art keywords
carbon fiber
electrode
carbon fibers
oxidation
microelectrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60262664A
Other languages
Japanese (ja)
Other versions
JPH0358663B2 (en
Inventor
Kenichi Morita
健一 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP60262664A priority Critical patent/JPS62123349A/en
Publication of JPS62123349A publication Critical patent/JPS62123349A/en
Publication of JPH0358663B2 publication Critical patent/JPH0358663B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells

Abstract

PURPOSE:To obtain a microelectrode which is capable of electrochemically measuring material in a liquid stably and accurately, by constructing it of a carbon fiber and a non-conducting material as cover the fiber to partially scrape off one end of the carbon fiber. CONSTITUTION:The part 1 encircled by a dotted line is a carbon fiber and is covered with a non-conducting material 2. The part 3 is removed as shown by the alternate short and long dash line as one end of the carbon fiber, and hence it is hollow. The depth of the hollow part is normally up to about 500mum while the lower limit thereof about 0.5mum. A bundle of carbon fibers is preferably used. In this case, multiple carbon fibers are stuck with a non-conductive material such as epoxy resin. Viewed from the section, it is so arranged that individual carbon fibers exist as islands in a sea of the non-conductive material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気化学的酸化・還元測定法のための改良さ
れた微小加工電極に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an improved microfabricated electrode for electrochemical oxidation-reduction measurements.

〔従来の技術〕[Conventional technology]

液体中に溶存する物質を酸化または還元し、その際に発
生する電流量を測定して測定しようとする物質を定量す
る分析法は広く用いられている。
BACKGROUND OF THE INVENTION Analytical methods are widely used in which a substance dissolved in a liquid is oxidized or reduced, and the amount of current generated during the oxidation or reduction is measured to quantify the substance to be measured.

例えば(1)生体中や醗酵槽中の溶存酵素を測定する場
合に溶存酵素を電極上で電気化学的に還元して発生する
電流量を測定する方法が用いられている。また(2)溶
液中に溶存する物質の酸化還元電位を測定する際に、そ
の物質を電気化学的に酸化・還元して電圧−電流曲線を
求め、酸化・還元電位を測定する方法が用いられる。
For example, (1) when measuring dissolved enzymes in a living body or a fermenter, a method is used in which the dissolved enzyme is electrochemically reduced on an electrode and the amount of current generated is measured. (2) When measuring the oxidation-reduction potential of a substance dissolved in a solution, a method is used in which the substance is electrochemically oxidized and reduced, a voltage-current curve is obtained, and the oxidation-reduction potential is measured. .

さらには(3)酵素あるいは微生物を用いて、測定しよ
うとする化学物質を選択的に反応させ、発生する化合物
を酸化または還元して発生する電流を測定する方法、い
わゆるバイオセンサ、が用いられる。
Furthermore, (3) a so-called biosensor method is used in which a chemical substance to be measured is selectively reacted using an enzyme or a microorganism, and the generated compound is oxidized or reduced and the generated electric current is measured.

電気化学分析用微小電極は、上述のように多(の目的に
使用されるので、それぞれの場合について従来の技術と
の関係を説明する。
Microelectrodes for electrochemical analysis are used for multiple purposes as described above, so the relationship with conventional techniques will be explained for each case.

(1)体液の酸素分圧が生体に及ぼす影響は大きい。(1) The oxygen partial pressure of body fluids has a great effect on living organisms.

近年C1ark型酸素電極の登場により、酸素の生体外
測定が精度高くできるようになり、呼吸障害をともなう
患者の治療を太き(進歩させた。
In recent years, with the advent of the C1ark type oxygen electrode, it has become possible to measure oxygen in vitro with high precision, and this has greatly improved the treatment of patients with respiratory disorders.

また、心肺蘇生を目的とするICU(intensiv
e  care  unit)の発展も酸素分圧測定の
進歩をもたらした。
In addition, an intensive care unit (ICU) for cardiopulmonary resuscitation is also available.
The development of electronic care units also led to advances in oxygen partial pressure measurement.

こうした試料採取による生体外測定は、採取に頻度上の
限界があり、しかも試料貯蔵の間に変化が生じて測定値
が不正確になることがある。
In vitro measurements using such sample collection are limited by the frequency of sample collection, and changes may occur during sample storage, resulting in inaccurate measurements.

したがって直接電極を生体中に入れ酸素分圧、を連続的
に測定することが、理想的な方法であることは論をまた
ない。
Therefore, it goes without saying that the ideal method is to continuously measure oxygen partial pressure by directly inserting an electrode into a living body.

生体中の酸素分圧を連続的に測定する方法も提案されて
いる。即ち白金、イリジウム、金等の金属製作用電極と
銀−塩化銀等による参照電極を用い、これら電極間に電
圧を印加して、作用電極(陰極)で酸素の還元をおこな
い、拡散電流を測定する原理を応用したものである。
A method of continuously measuring the oxygen partial pressure in a living body has also been proposed. In other words, using electrodes for metal production such as platinum, iridium, or gold and reference electrodes such as silver-silver chloride, a voltage is applied between these electrodes, oxygen is reduced at the working electrode (cathode), and the diffusion current is measured. This is an application of the principle of

この際、生体中における心筋の動きや血液の脈動などに
よって、電極表層“の酸素の濃度勾配が変化すると、測
定する拡散電流が大きな変化を受け、酸素分圧を正確に
測定できない。
At this time, if the oxygen concentration gradient at the surface of the electrode changes due to the movement of the myocardium or the pulsation of blood in the living body, the measured diffusion current will undergo a large change, making it impossible to accurately measure the oxygen partial pressure.

この問題を解決するため種々の検討がおこなわれている
。即ち、両極を酸素透過性の膜で隔離し、電解液を内臓
したいわゆる「クラーク電極」を小型化したもの(萩原
文二編“電極法による酸素測定”講談社すイエンティフ
ィク、1977年、を参照)、微細金属線電極表面を多
層構造からなる多孔質膜で被覆して、陰極表面と溶液と
の間に安定接触状態を作り出さしめる方法(特開昭57
−117838号)あるいは、細線状金属電極を、先端
が開口したチューブに該電極先端が該チューブの開口先
端から後退した位置になるように挿入する方法(特開昭
57−195436号)等が提案されている。
Various studies are being conducted to solve this problem. In other words, it is a miniaturized version of the so-called "Clark electrode," which separates both poles with an oxygen-permeable membrane and contains an electrolyte (see Bunji Hagiwara, "Oxygen Measurement by Electrode Method," Kodansha Scientific, 1977). ), a method in which the surface of a fine metal wire electrode is coated with a porous membrane consisting of a multilayer structure to create a stable contact state between the cathode surface and the solution (Japanese Patent Laid-Open No. 57
117838) or a method of inserting a thin wire metal electrode into a tube with an open end so that the tip of the electrode is set back from the open end of the tube (Japanese Patent Application Laid-open No. 195436/1983) has been proposed. has been done.

しかしながら、これらの方法は、電極形態が大きく、特
定の部位、例えば太い血管中にしか挿入出来ないとか、
多孔質膜がはがれて医源病になる可能性がある等の欠点
があった。
However, these methods require large electrodes and can only be inserted into specific areas, such as large blood vessels.
There were drawbacks such as the possibility of the porous membrane peeling off and causing iatrogenic diseases.

(2)溶液中に溶存する物質の酸化・還元電位を測定す
るには、よくおこなわれる分析法の1つである。即ち物
質の同定やイオン濃度測定などに用いられる。従来の電
極を用いる場合は、溶液が流動している場合は、電流値
が安定せず、静置した状態でしか、測定できない欠点が
あった。
(2) It is one of the analytical methods that is often used to measure the oxidation/reduction potential of substances dissolved in a solution. That is, it is used for identifying substances, measuring ion concentration, etc. When using conventional electrodes, the current value is unstable when the solution is flowing, and measurement can only be performed when the solution is left still.

(3)従来のバイオセンサーは、酵素電極や過酸化水素
電極などの電極上に、酵素または微生物を含有したフィ
ルムを設置する際にかかるフィルムの強度を強くするこ
とが必要であるがそれは困難でありまた小さくできない
欠点があった。これらの問題を解決するために種々の検
討がおこなわれている。即ち、グルコースセンサの場合
について説明すると、酵素含有アセチルセルロース膜に
第三成分を加えて強度向上をはかる方法や、膜厚を厚く
したり機械的に膜を強化したりする方法が提案されてい
る。  [伊藤要、化学、40巻、6号、374〜37
9頁(1985)参照〕。
(3) In conventional biosensors, when installing a film containing enzymes or microorganisms on an electrode such as an enzyme electrode or a hydrogen peroxide electrode, it is necessary to strengthen the film, but this is difficult. There was also a drawback that it could not be made smaller. Various studies are being conducted to solve these problems. Specifically, in the case of glucose sensors, methods have been proposed in which a third component is added to the enzyme-containing acetylcellulose membrane to improve its strength, and methods are made in which the membrane is thickened or mechanically strengthened. . [Kaname Ito, Chemistry, Vol. 40, No. 6, 374-37
9 (1985)].

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、これらの欠点を除き、連続的にしかも安定し
て正確に液体中に溶存する物質を電気化学的に酸化ある
いは還元し、発生する変化を電気信号に変える各種セン
サー用の電極を提供するものである。
The present invention eliminates these drawbacks and provides electrodes for various sensors that electrochemically oxidize or reduce substances dissolved in a liquid continuously, stably, and accurately, and convert the resulting changes into electrical signals. It is something to do.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、以下の本発明により達成される。 The above object is achieved by the present invention as described below.

すなわち本発明は、炭素繊維Tl)とそれを覆う非導電
性物!(2)とから成り炭素繊維の一端(3)が部分的
に削り込まれていることを特徴とする各種センサに用い
られる電気化学分析用の微小加工電極である。
In other words, the present invention focuses on carbon fiber (Tl) and a non-conductive material covering it! This is a microfabricated electrode for electrochemical analysis used in various sensors, characterized in that one end (3) of the carbon fiber is partially shaved.

用いられる炭素繊維の種類は特に制限がなく、ポリアク
リロニトリル、ピッチ、レーヨン、フェノール樹脂など
を原料とする炭素繊維や気相成長法で作製した炭素繊維
が好ましい。
The type of carbon fiber used is not particularly limited, and carbon fibers made from polyacrylonitrile, pitch, rayon, phenol resin, etc. or carbon fibers produced by vapor phase growth are preferred.

炭素繊維の直径は通常30μm以下で特に好ましいのは
20μm以下である。
The diameter of the carbon fiber is usually 30 μm or less, particularly preferably 20 μm or less.

非導電性物質としては、特に制限はないが弗素樹脂、ポ
リエステル樹脂、エポキシ樹脂、ポリフェニレンオキシ
ド樹脂、ポリフェニレンスルフィド樹脂、ウレタン樹脂
、シリコン樹脂、フェノール樹脂などの高分子材料が用
いられ、抗血栓性の優れた樹脂を用いるのが好ましい。
As the non-conductive substance, there are no particular restrictions, but polymeric materials such as fluororesin, polyester resin, epoxy resin, polyphenylene oxide resin, polyphenylene sulfide resin, urethane resin, silicone resin, and phenol resin are used, and antithrombotic substances are used. It is preferable to use a superior resin.

またセラミックスを使うことも可能である。It is also possible to use ceramics.

本発明のセンサの構造を例示的に第1図に示す。The structure of the sensor of the present invention is exemplarily shown in FIG.

図中(1)の点線で囲まれた部分は炭素繊維であり、(
2)はそれを覆う非導電性物質である。炭素繊維の一端
である一点鎖線で示される部分(3)は除去されており
、従ってこの部分は中空になっている。
The part surrounded by the dotted line in (1) in the figure is carbon fiber, and (
2) is a non-conductive material covering it. One end of the carbon fiber, the part (3) indicated by the dashed line, has been removed, so this part is hollow.

この中空部分の深さは通常500μmまでであり、それ
以上深くするのは一般に望ましくない。その下限は0.
5μm程度である。
The depth of this hollow portion is usually up to 500 μm, and it is generally undesirable to make it deeper. Its lower limit is 0.
It is about 5 μm.

炭素繊維は複数本の束を用いるのが特に望ましい。その
場合には、複数本の炭素繊維を例えばエポキシ樹脂のよ
うな非導電性物質で固め、その断面を見た時に非導電性
物質の海の中にそれぞれの炭素繊維が島成分として存在
するように構成する。
It is particularly desirable to use a plurality of bundles of carbon fibers. In that case, multiple carbon fibers are hardened with a non-conductive material such as epoxy resin, so that when looking at the cross section, each carbon fiber exists as an island component in a sea of non-conductive material. Configure.

本発明のセンサは、例えばまず炭素繊維を浸漬法などに
より非導電性物質で覆い、得られる複合材料を切断する
ことにより電極表層とするが、通常断面は研磨してから
用いられる。
In the sensor of the present invention, for example, carbon fibers are first covered with a non-conductive substance by a dipping method or the like, and the resulting composite material is cut to form an electrode surface layer, but the cross section is usually polished before use.

断面研磨は通常用いられている方法が用いられる。断面
形状は特に限定されるものでなく、平面、球面、先端を
とがらせた形状など使用目的に沿った形状にする。炭素
繊維の一端を削り込む処理は電解酸化法が好ましいが、
炭素繊維のみが分解除去される方法であればその方法に
限定されるものではない。以下に電解酸化法についてさ
らに詳しく説明する。電解液として、酸性あるいはアル
カリ性水溶液、塩類を溶解した水溶液、およびメタノー
ルなどのアルコール類が用いられる。炭素繊維を陽極へ
接続し、対極に金属電極を用いて陽極酸化する。酸化の
際の電圧は1〜100ボルトの範囲が好ましい。
A commonly used method is used for cross-sectional polishing. The cross-sectional shape is not particularly limited, and may be a flat, spherical, or pointed shape depending on the purpose of use. The electrolytic oxidation method is preferable for the process of cutting down one end of the carbon fiber, but
The method is not limited to any method as long as only carbon fibers are decomposed and removed. The electrolytic oxidation method will be explained in more detail below. As the electrolytic solution, an acidic or alkaline aqueous solution, an aqueous solution containing dissolved salts, and an alcohol such as methanol are used. The carbon fiber is connected to the anode, and anodic oxidation is performed using a metal electrode as the counter electrode. The voltage during oxidation is preferably in the range of 1 to 100 volts.

また酸化と還元を繰り返しおこなう方法も好ましい方法
の一つである。
Another preferred method is a method in which oxidation and reduction are repeated.

分解除去量が少ないと、液の流れによって酸化電流量ま
たは還元電流量が変化を受けやすい一方、分解除去量が
大き過ぎると、酸化・還元電流量が小さくなり過ぎる傾
向がある。
If the amount removed by decomposition is small, the amount of oxidation current or reduction current is likely to change depending on the flow of the liquid, while if the amount removed by decomposition is too large, the amount of oxidation/reduction current tends to become too small.

バイオセンサ用の電極に用いる場合は従来のバイオセン
サの様に酵素や微生物を含存する膜を用いる必要はなく
、部分的に削り込まれた部分に何らかの方法で酵素ある
いは微生物を固定すればよい。この際も分解除去量が小
さすぎると固定化が困難であり、大きすぎると電流量が
小さくなる欠点がある。
When used as an electrode for a biosensor, there is no need to use a membrane containing enzymes or microorganisms as in conventional biosensors, and the enzymes or microorganisms may be immobilized by some method in the partially carved portion. Also in this case, if the amount of decomposition and removal is too small, immobilization will be difficult, and if it is too large, the amount of current will be small.

削り込まれる部分の深さは、目的によって異なるが、通
常0.5〜500I!m、特ニ2〜2o。
The depth of the carved part varies depending on the purpose, but is usually 0.5 to 500I! m, special D2-2o.

μmが好ましい。μm is preferred.

酸化・還元能を有する電極部分として炭素繊維表面をそ
のまま用いても差支えないが、炭素繊維の反応面を修飾
することにより改質するのも好ましい方法の一つである
Although the carbon fiber surface may be used as it is as an electrode portion having oxidation/reduction ability, one preferable method is to modify the carbon fiber by modifying its reactive surface.

修飾材料として白金、イリジウム、金、亜鉛、フタロシ
アニン類やプルシアンブルーなどの酸素還元触媒活性の
ある材料を用いる場合は、常法に従い、真空蒸着、スパ
ッタリング、メッキ、イオン注入電解酸化重合法などの
方法が用いられる。機能物質で修飾することも好ましい
方法の1つである。
When using a material with oxygen reduction catalytic activity such as platinum, iridium, gold, zinc, phthalocyanine, or Prussian blue as a modification material, use a conventional method such as vacuum evaporation, sputtering, plating, or ion implantation electrolytic oxidation polymerization method. is used. Modification with a functional substance is also one of the preferred methods.

この際、これらの材料で炭素繊維の表面を完全に覆って
もよいが、部分的に耐着させるか、注入させても差し支
えない。
At this time, the surfaces of the carbon fibers may be completely covered with these materials, but they may also be partially made to resist adhesion or injected.

測定の際に訪客物質があれば、これらの物質を排除し必
要な物質のみを透過する薄膜を常法により電極表面には
ることが好ましい。
If visitor substances are present during measurement, it is preferable to apply a thin film on the electrode surface by a conventional method to exclude these substances and allow only the necessary substances to pass through.

本発明の電極は、直接生体中に挿入する用途に用いる場
合は微小であることが好ましいが、醗酵槽用などの用途
に用いる場合は必ずしも微小である必要はない。
The electrode of the present invention is preferably minute when used for direct insertion into a living body, but does not necessarily have to be minute when used for use in a fermenter or the like.

〔発明の効果〕〔Effect of the invention〕

本発明の微小加工電極は、流れの影響を実質的に受けず
、安定かつ正確に液体中の物質を電気化学的に測定する
ことができる。
The microfabricated electrode of the present invention is substantially unaffected by flow and can stably and accurately electrochemically measure substances in a liquid.

以下、実施例を挙げて本発明をさらに具体的に説明する
Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1,2.3および比較例 ■炭素繊維1000本の束(トレカT−3001K、直
径7μm)を硬化剤を含んだエポキシ樹脂中をはしらせ
樹脂を含浸させた。つぎに、この含浸した繊維束を引張
ったまま加熱して硬化させ直径約0.8mmの針金状の
複合材料を得た。これの側面をエポキシ樹脂で完全に絶
縁したのち切断し、断面を常法で研磨した。
Examples 1, 2.3 and Comparative Example (1) A bundle of 1,000 carbon fibers (Trading Card T-3001K, diameter 7 μm) was soaked in an epoxy resin containing a hardening agent to impregnate it with the resin. Next, this impregnated fiber bundle was heated and cured while being stretched to obtain a wire-like composite material with a diameter of about 0.8 mm. The sides of this were completely insulated with epoxy resin, then cut, and the cross section was polished using a conventional method.

研磨した部分を2ミリモルの硫酸水溶液につけ対極に白
金線を用い後述する条件で陽極酸化をおこなった。得ら
れたセンサーを用いて液の流動が酵素還元に基づく電流
に及ぼす影響を調べた。即ちマグネチックスクーラーを
装着したフラスコに生理食塩水を入れ、作動棒として上
述のセンサーを、また対極に銀/塩化銀電極を装着し、
室温で空気と触れさせ酵素を飽和させた。
The polished portion was immersed in a 2 mmol sulfuric acid aqueous solution, and anodic oxidation was performed using a platinum wire as a counter electrode under the conditions described below. Using the obtained sensor, we investigated the effect of liquid flow on the current caused by enzyme reduction. That is, physiological saline is poured into a flask equipped with a magnetic cooler, the above-mentioned sensor is attached as an operating rod, and a silver/silver chloride electrode is attached as a counter electrode.
The enzyme was saturated by exposure to air at room temperature.

作動棒に0.75ボルトの負電圧をかけ、流れる還元電
流を測定した。マグネチックスクーラーをできるだけ速
く回転させた場合と、静置時に流れる電流をそれぞれ測
定しその比を求めた。
A negative voltage of 0.75 volts was applied to the actuating rod, and the flowing reduction current was measured. The current flowing when the magnetic cooler was rotated as fast as possible and when it was left standing was measured and the ratio was calculated.

実施例1は1.75ボルトで15分酸化し引きつづき−
1,2ボルトで1分遣元する操作を35回繰りかえした
。実施例2では1マイクロアンペアの電流を80分流し
て酸化したのち生理食塩水中−0,7ボルトで10分間
還元した。
Example 1 was oxidized at 1.75 volts for 15 minutes and continued.
The operation of energizing 1 or 2 volts was repeated 35 times. In Example 2, oxidation was carried out by passing a current of 1 microampere for 80 minutes, and then reduction was carried out in physiological saline at -0.7 volts for 10 minutes.

また実施例3では0.5ミリアンペアで9分間電解酸化
をおこなったのち生理食塩水中−〇、7ボルトで10分
間還元をおこなった。
In Example 3, electrolytic oxidation was performed for 9 minutes at 0.5 milliamps, and then reduction was performed for 10 minutes at 7 volts in physiological saline.

比較例として酸化エツチング処理をおこなう前の電極を
用いた測定値を示した。
As a comparative example, measured values using an electrode before oxidative etching treatment are shown.

結果を次表に示す。The results are shown in the table below.

実施例4および比較例2 実施例3で得られた電極(実施例4)および酸化エツチ
ングする前の電極(比較例2)をそれぞれ0.01Mの
Ka Fe (CN)bおよび2重量%のNaC1を含
む水溶液にっけ三電極法でサイクリックポルタングラム
の測定をおこなった。
Example 4 and Comparative Example 2 The electrode obtained in Example 3 (Example 4) and the electrode before oxidative etching (Comparative Example 2) were treated with 0.01 M Ka Fe (CN)b and 2 wt% NaCl, respectively. The cyclic portangram was measured using the three-electrode method using an aqueous solution containing .

結果を第2図A(比較例2)、B(実施例4)に示す。The results are shown in FIG. 2A (Comparative Example 2) and B (Example 4).

aが静止の場合、bがN2バブリングによる攪拌を行っ
た場合である。
When a is stationary, b is when stirring by N2 bubbling is performed.

比較例2では液の流れの影響を大きく受けるが、実施例
4では流れの影響を殆ど受けないことが同図かられかる
It can be seen from the figure that Comparative Example 2 is greatly affected by the flow of the liquid, but Example 4 is hardly affected by the flow.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のセンサの構成を、第2図はサイクリッ
クポルタモグラフをそれぞれ示す。
FIG. 1 shows the configuration of the sensor of the present invention, and FIG. 2 shows a cyclic portamography.

Claims (1)

【特許請求の範囲】[Claims] (1)炭素繊維(1)とそれを覆う非導電性物質(2)
とから成り、炭素繊維の一端(3)が部分的に削り込ま
れていることを特徴とする電気化学分析用微小電極。
(1) Carbon fiber (1) and non-conductive material covering it (2)
A microelectrode for electrochemical analysis, characterized in that one end (3) of the carbon fiber is partially shaved.
JP60262664A 1985-11-25 1985-11-25 Microelectrode for electrochemical analysis Granted JPS62123349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60262664A JPS62123349A (en) 1985-11-25 1985-11-25 Microelectrode for electrochemical analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60262664A JPS62123349A (en) 1985-11-25 1985-11-25 Microelectrode for electrochemical analysis

Publications (2)

Publication Number Publication Date
JPS62123349A true JPS62123349A (en) 1987-06-04
JPH0358663B2 JPH0358663B2 (en) 1991-09-06

Family

ID=17378900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60262664A Granted JPS62123349A (en) 1985-11-25 1985-11-25 Microelectrode for electrochemical analysis

Country Status (1)

Country Link
JP (1) JPS62123349A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273146A (en) * 1988-05-13 1990-03-13 Mira Josowicz Micro-electrode and manufacture thereof
JPH02159255A (en) * 1988-12-12 1990-06-19 Toray Ind Inc Oxygen electrode for living body
JP2000512743A (en) * 1996-05-16 2000-09-26 センデックス メディカル,インク. Sensor having microminiature through-holes and method of manufacturing such a sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107121381A (en) * 2017-05-03 2017-09-01 南京科兴新材料科技有限公司 The preparation method of working electrode in a kind of three-electrode system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273146A (en) * 1988-05-13 1990-03-13 Mira Josowicz Micro-electrode and manufacture thereof
JPH02159255A (en) * 1988-12-12 1990-06-19 Toray Ind Inc Oxygen electrode for living body
JP2000512743A (en) * 1996-05-16 2000-09-26 センデックス メディカル,インク. Sensor having microminiature through-holes and method of manufacturing such a sensor

Also Published As

Publication number Publication date
JPH0358663B2 (en) 1991-09-06

Similar Documents

Publication Publication Date Title
WO1987006701A1 (en) Microelectrode for electrochemical analysis
US5954685A (en) Electrochemical sensor with dual purpose electrode
US5827183A (en) Method of measuring chemical concentration iontophoretically using impermeable mask
US5989409A (en) Method for glucose sensing
US20240148280A1 (en) Implantable micro-biosensor and method for manufacturing the same
EP0505442B1 (en) Method for increasing the service life of an implantable sensor
JPH01114746A (en) Biosensor
US20210030316A1 (en) Method for manufacturing implantable micro-biosensor
JP2006500582A (en) Mesoporous platinum electrode and biochemical substrate detection method using the same
Wang et al. One-step electropolymeric co-immobilization of glucose oxidase and heparin for amperometric biosensing of glucose
JPS62123349A (en) Microelectrode for electrochemical analysis
JP2007534926A (en) Voltammetric detection of metabolites in physiological body fluids
JPH01153952A (en) Enzyme sensor
JPS6168030A (en) Minute sensor for measuring oxygen partial pressure
JPS61238231A (en) Production of minute sensor for measuring oxygen partial pressure
Wang A Membrane Biosensor for the Detection of Lactate in Body Fluids
JPH02140656A (en) Enzyme electrode
JPS5967452A (en) Biosensor
CN100343660C (en) Minisize vitamin C sensor and making method thereof
JPH03205549A (en) Electrochemical analysis
JPS58146847A (en) Enzymatic electrode
Findl et al. Electrochemical Techniques in the Biological Sciences