【発明の詳細な説明】[Detailed description of the invention]
〔産業上の利用分野〕
本発明は、電気化学的酸化・還元測定法のため
の改良された微小加工電極に関する。
〔従来の技術〕
液体中に溶存する物質を酸化または還元し、そ
の際に発生する電流量を測定して測定しようとす
る物質を定量する分析法は広く用いられている。
例えば(1)生体中や醗酵槽中の溶存酵素を測定す
る場合に溶存酵素を電極上で電気化学的に還元し
て発生する電流量を測定する方法が用いられてい
る。また(2)溶液中に溶存する物質の酸化・還元電
位を測定する際に、その物質を電気化学的に酸
化・還元して電圧−電流曲線を求め、酸化・還元
電位を測定する方法が用いられる。さらには(3)酵
素あるいは微生物を用いて、測定しようとする化
学物質を選択的に反応させ、発生する化合物を酸
化または還元して発生する電流を測定する方法、
いわゆるバイオセンサ、が用いられる。
電気化学分析用微小電極は、上述のように多く
の目的に使用されるので、それぞれの場合につい
て従来の技術との関係を説明する。
(1) 体液の酸素分圧が生体に及ぼす影響は大き
い。
近年Clark型酸素電極の登場により、酸素の
生体外測定が精度高くできるようになり、呼吸
障害をともなう患者の治療を大きく進歩させ
た。
また、心肺蘇生を目的とするICU(intensive
care unit)の発展も酸素分圧測定の進歩をも
たらした。
こうした試料採取によ生体外測定は、採取に
頻度上の限界があり、しかも試料貯蔵の間に変
化が生じて測定値が不正確になることがある。
したがつて直接電極を生体中に入れ酸素分圧
を連続的に測定することが、理想的な方法であ
ることは論をまたない。
生体中の酸素分圧を連続的に測定する方法も
提案されている。即ち白金、イリジウム、金等
の金属製作用電極と銀−塩化銀等による参照電
極を用い、これら電極間に電圧を印加して、作
用電極(陰極)で酸素の還元をおこない、拡散
電流を測定する原理を応用したものである。
この際、生体中における心筋の動きや血液の
脈動などによつて、電極表層の濃度勾配が変化
すると、測定する拡散電流が大きな変化を受
け、酸素分圧を正確に測定できない。
この問題を解決するため種々の検討がおこな
われている。即ち、両極を酸素透過性の膜で隔
離し、電解液を内蔵したいわゆる「クラーク電
極」を小型化したもの(萩原文二編“電極法に
よる酸素測定”講談社サイエンテイフイク、
1977年、を参照)、微細金属線電極表面を多層
構造からなる多孔質膜で被覆して、陰極表面と
溶液との間に安定接触状態を作り出さしめる方
法(特開昭57−117838号)あるいは、細線状金
属電極を、先端が開口したチユーブに該電極先
端が該チユーブの開口先端から後退した位置に
なるように挿入する方法(特開昭57−195436
号)等が提案されている。
しかしながら、これらの方法は、電極形態が
大きく、特定の部位、例えば太い血管中にしか
挿入出来ないとか、多孔質膜がはがれて医源病
になる可能性がある等の欠点があつた。
(2) 溶液中に溶存する物質の酸化・還元電位を測
定するには、よくおこなわれる分析法の1つで
ある。即ち物質の同定やイオン濃度測定などに
用いられる。従来の電極を用いる場合は、溶液
が流動している場合は、電流値が安定せず、静
置した状態でしか、測定できない欠点があつ
た。
(3) 従来のバイオセンサーは、酵素電極や過酸化
水素電極などの電極上に、酵素または微生物を
含有したフイルムを設置する際にかかるフイル
ムの強度を強くすることが必要であるがそれは
困難でありまた小さくできない欠点があつた。
これらの問題を解決するための種々の検討がお
こなわれている。即ち、グルコースセンサの場
合について説明すると、酵素含有アセチルセル
ロース膜に第三成分を加えて強度向上をはかる
方法や、膜厚を厚くしたり機械的に膜を強化し
たりする方法が提案されている。[伊藤要、化
学、40巻、6号、374〜379頁(1985)参照]。
〔発明が解決しようとする問題点〕
本発明は、これらの欠点を除き、連続的にしか
も安定して正確に液体中に溶存する物質を電気化
学的に酸化あるいは還元し、発生する変化を電気
信号に変える各種センサー用の電極を提供するも
のである。
〔問題点を解決するための手段〕
上記目的は、以下の本発明により達成される。
すなわち本発明は、炭素繊維1とそれを覆う非導
電性物質2とから成り、炭素繊維の一端3が部分
的に削り込まれていることを特徴とする各種セン
サに用いられる電気化学分析用の微小加工電極で
ある。
用いられる炭素繊維の種類は特に制限がなく、
ポリアクリロニトリル、ピツチ、レーヨン、フエ
ノール樹脂などを原料とする炭素繊維や気相成長
法で製作した炭素繊維が好ましい。
炭素繊維の直径は通常30μm以下で特に好まし
いのは20μm以下である。
非導電性物質としては、特に制限はないが弗素
樹脂、ポリエステル樹脂、エポキシ樹脂、ポリフ
エレンオキシド樹脂、ポリフエニレンスルフイド
樹脂、ウレタン樹脂、シリコン樹脂、フエノール
樹脂などの高分子材料が用いられ、抗血栓性の優
れた樹脂を用いるのが好ましい。またセラミツク
スを使うことも可能である。
本発明のセンサの構造を例示的に第1図に示
す。
図中1の点線で囲まれた部分は炭素繊維であ
り、2はそれを覆う非導電性物質である。炭素繊
維の一端である一点鎖線で示される部分3は除去
されており、従つてこの部分は中空になつてい
る。
この中空部分の深さは通常500μmまでであり、
それ以上深くするのは一般に望ましくない。その
下限は0.5μm程度である。
炭素繊維は複数本の束を用いるのが特に望まし
い。その場合には、複数本の炭素繊維を例えばエ
ポキシ樹脂のような非導電性物質で固め、その断
面を見た時に非導電性物質の海の中にそれぞれの
炭素繊維が島成分として存在するように構成す
る。
本発明のセンサは、例えばまず炭素繊維を浸漬
法などにより非導電性物質で覆い、得られる複合
材料を切断することにより電極表層とするが、通
常断面は研磨してから用いられる。
断面研磨は通常用いられている方法が用いられ
る。断面形状は特に限定されるのでなく、平面、
球面、先端をとがらせた形状など使用目的に沿つ
た形状にする。炭素繊維の一端を削り込む処理は
電解酸化法が好ましいが、炭素繊維のみが分解除
去される方法であればその方法に限定されるもの
ではない。以下に電解酸化法についてさらに詳し
く説明する。電解液として、酸性あるいはアルカ
リ性水溶液、塩類を溶解した水溶液、およびメタ
ノールなどのアルコール類が用いられる。炭素繊
維を陽極へ接続し、対極に金属電極を用いて陽極
酸化する。酸化の際の電圧は1〜100ボルトの範
囲が好ましい。また酸化と還元を繰り返しおこな
う方法も好ましい方法の一つである。
分解除去量が少ないと、液の流れによつて酸化
電流量または還元電流量が変化を受けやすい一
方、分解除去量が大き過ぎると、酸化・還元電流
量が小さくなり過ぎる傾向がある。
バイオセンサ用の電極に用いる場合は従来のバ
イオセンサの様に酵素や微生物を含有する膜を用
いる必要はなく、部分的に削り込まれた部分に何
らかの方法で酵素あるいは微生物を固定すればよ
い。この際も分解除去量が小さすぎると固定化が
困難であり、大きすぎると電流量が小さくなる欠
点がある。
削り込まれる部分の深さは、目的によつて異な
るが、通常0.5〜500μm、特に2〜200μmが好ま
しい。
酸化・還元能を有する電極部分として炭素繊維
表面をそのまま用いても差支えないが、炭素繊維
の反応面を修飾することにより改質するのも好ま
しい方法の一つである。
修飾材料として白金、イリジウム、金、亜鉛、
フタロシアニン類やプルシアンブルーなどの酸化
還元触媒活性のある材料を用いる場合は、常法に
従い、真空蒸着、スパツタリング、メツキ、イオ
ン注入電解酸化重合法などの方法が用いられる。
機能物質で修飾することも好ましい方法の1つで
ある。
この際、これらの材料で炭素繊維の表面を完全
に覆つてもよいが、部分的に附着させるか、注入
させても差し支えない。
測定の際に妨害物質であれば、これらの物質を
排除し必要な物質のみを透過する薄膜を常法によ
り電極表面にはることが好ましい。
本発明の電極は、直接生体中に挿入する用途に
用いる場合は微小であることが好ましいが、醗酵
槽用などの用途に用いる場合は必ずしも微小であ
る必要はない。
〔発明の効果〕
本発明の微小加工電極は、流れの影響を実質的
に受けず、安定かつ正確に液体中の物質を電気化
学的に測定することができる。
以下、実施例に挙げて本発明をさらに具体的に
説明する。
実施例1、2、3および比較例
1炭素繊維100本の束(トレカT−3001K、直
径7μm)を硬化剤を含んだエポキシ樹脂中をは
しらせ樹脂を含浸させた。つぎに、この含浸した
繊維束を引張つたまま加熱して硬化させ直径約
0.8mmの針金状の複合材料を得た。これの側面を
エポキシ樹脂で完全に絶縁したのち切断し、断面
を常法で研磨した。
研磨した部分を2ミリモルの硫酸水溶液につけ
対極に白金線を用い後述する条件で陽極酸化をお
こなつた。得られたセンサーを用いて液の流動が
酵素還元に基づく電流に及ぼす影響を調べた。即
ちマグネチツクスターラーを装着したフラスコに
生理食塩水を入れ、作動極として上述のセンサー
を、また対極に銀/塩化銀電極を装着し、室温で
空気と触れさせ酵素を飽和させた。
作動極に0.75ボルトの負電圧をかけ、流れる還
元電流を測定した。マグネツクスターラーをでき
るだけ速く回転させた場合と、静置時に流れる電
流をそれぞれ測定しその比を求めた。
実施例1は1.75ボルトで15分酸化し引きつづき
−1.2ボルトで1分還元する操作を35回繰りかえ
した。実施例2では1マイクロアンペアの電流を
80分流して酸化したのち生理食塩水中−0.7ボル
トで10分間還元した。
また実施例3では0.5ミリアンペアで9分間電
解酸化をおこなつたのち生理食塩水中−0.7ボル
トで10分間還元をおこなつた。
比較例として酸化エツチング処理をおこなう前
の電極を用いた測定値を示した。
結果を次表に示す。
INDUSTRIAL APPLICATION FIELD OF THE INVENTION The present invention relates to an improved microfabricated electrode for electrochemical oxidation/reduction measurements. [Prior Art] Analytical methods are widely used in which a substance dissolved in a liquid is oxidized or reduced, and the amount of current generated during the oxidation or reduction is measured to quantify the substance to be measured. For example, (1) when measuring dissolved enzymes in living organisms or fermenters, a method is used in which the dissolved enzymes are electrochemically reduced on an electrode and the amount of current generated is measured. (2) When measuring the oxidation/reduction potential of a substance dissolved in a solution, a method is used in which the substance is oxidized/reduced electrochemically, a voltage-current curve is obtained, and the oxidation/reduction potential is measured. It will be done. Furthermore, (3) a method of selectively reacting the chemical substance to be measured using enzymes or microorganisms, oxidizing or reducing the generated compound, and measuring the generated electric current;
A so-called biosensor is used. Microelectrodes for electrochemical analysis are used for many purposes as described above, and the relationship with conventional techniques will be explained for each case. (1) The oxygen partial pressure of body fluids has a large effect on living organisms. In recent years, the advent of Clark-type oxygen electrodes has made it possible to measure oxygen in vitro with high precision, greatly advancing the treatment of patients with respiratory disorders. In addition, ICU (intensive
The development of oxygen partial pressure measurement also led to advances in oxygen partial pressure measurement. In vitro measurements using such sample collection are limited by the frequency of sample collection, and changes during sample storage can lead to inaccurate measurements. Therefore, it goes without saying that the ideal method is to directly insert an electrode into a living body and continuously measure oxygen partial pressure. A method of continuously measuring the oxygen partial pressure in a living body has also been proposed. In other words, using electrodes for metal production such as platinum, iridium, or gold and reference electrodes such as silver-silver chloride, a voltage is applied between these electrodes, oxygen is reduced at the working electrode (cathode), and the diffusion current is measured. This is an application of the principle of At this time, if the concentration gradient at the surface of the electrode changes due to the movement of the myocardium or the pulsation of blood in the living body, the measured diffusion current will undergo a large change, making it impossible to accurately measure the oxygen partial pressure. Various studies are being conducted to solve this problem. In other words, it is a miniaturized version of the so-called "Clark electrode", which separates both electrodes with an oxygen-permeable membrane and contains an electrolytic solution (edited by Bunji Hagiwara, "Oxygen Measurement by Electrode Method," Kodansha Scientific,
1977), a method in which the surface of a fine metal wire electrode is coated with a porous membrane consisting of a multilayer structure to create a stable contact state between the cathode surface and the solution (Japanese Patent Application Laid-Open No. 117838/1983), or , a method of inserting a thin wire metal electrode into a tube with an open end so that the tip of the electrode is in a position retracted from the open end of the tube (Japanese Patent Laid-Open No. 57-195436
) etc. have been proposed. However, these methods have drawbacks such as the electrodes are large and can only be inserted into specific areas, such as large blood vessels, and the porous membrane may peel off, causing iatrogenic diseases. (2) It is one of the analytical methods often used to measure the oxidation/reduction potential of substances dissolved in a solution. That is, it is used for identifying substances, measuring ion concentration, etc. When using conventional electrodes, the current value is unstable when the solution is flowing, and measurement can only be performed when the solution is left still. (3) In conventional biosensors, when installing a film containing enzymes or microorganisms on an electrode such as an enzyme electrode or a hydrogen peroxide electrode, it is necessary to increase the strength of the film, but this is difficult. There were some drawbacks that could not be made smaller.
Various studies are being conducted to solve these problems. Specifically, in the case of glucose sensors, methods have been proposed in which a third component is added to the enzyme-containing acetylcellulose membrane to improve its strength, and methods are made in which the membrane is thickened or mechanically strengthened. . [See Kaname Ito, Chemistry, Vol. 40, No. 6, pp. 374-379 (1985)]. [Problems to be Solved by the Invention] The present invention overcomes these drawbacks by electrochemically oxidizing or reducing substances dissolved in a liquid continuously, stably, and accurately, and by electrically converting the changes that occur. It provides electrodes for various sensors that convert into signals. [Means for Solving the Problems] The above object is achieved by the following present invention.
That is, the present invention consists of a carbon fiber 1 and a non-conductive substance 2 covering it, and is characterized in that one end 3 of the carbon fiber is partially shaved. It is a microfabricated electrode. There are no particular restrictions on the type of carbon fiber used;
Carbon fibers made from polyacrylonitrile, pitch, rayon, phenol resin, etc., or carbon fibers produced by vapor phase growth are preferred. The diameter of the carbon fiber is usually 30 μm or less, particularly preferably 20 μm or less. As the non-conductive substance, there are no particular restrictions, but polymeric materials such as fluororesin, polyester resin, epoxy resin, polyphelene oxide resin, polyphenylene sulfide resin, urethane resin, silicone resin, and phenolic resin are used. It is preferable to use a resin with excellent antithrombotic properties. It is also possible to use ceramics. The structure of the sensor of the present invention is exemplarily shown in FIG. In the figure, the part surrounded by the dotted line 1 is carbon fiber, and 2 is the non-conductive material covering it. One end of the carbon fiber, a portion 3 indicated by a dashed line, has been removed, so this portion is hollow. The depth of this hollow part is usually up to 500 μm,
Deeper depths are generally undesirable. The lower limit is about 0.5 μm. It is particularly desirable to use a plurality of bundles of carbon fibers. In that case, multiple carbon fibers are hardened with a non-conductive material such as epoxy resin, so that when looking at the cross section, each carbon fiber exists as an island component in a sea of non-conductive material. Configure. In the sensor of the present invention, for example, carbon fibers are first covered with a non-conductive substance by a dipping method or the like, and the resulting composite material is cut to form an electrode surface layer, but the cross section is usually polished before use. A commonly used method is used for cross-sectional polishing. The cross-sectional shape is not particularly limited, but can be flat,
Make it into a shape that suits the purpose of use, such as a spherical surface or a shape with a pointed tip. The process of scraping one end of the carbon fibers is preferably an electrolytic oxidation method, but is not limited to this method as long as only the carbon fibers are decomposed and removed. The electrolytic oxidation method will be explained in more detail below. As the electrolytic solution, an acidic or alkaline aqueous solution, an aqueous solution containing dissolved salts, and an alcohol such as methanol are used. The carbon fiber is connected to the anode, and anodic oxidation is performed using a metal electrode as the counter electrode. The voltage during oxidation is preferably in the range of 1 to 100 volts. Another preferred method is a method in which oxidation and reduction are repeated. If the amount removed by decomposition is small, the amount of oxidation current or reduction current is likely to change depending on the flow of the liquid, while if the amount removed by decomposition is too large, the amount of oxidation/reduction current tends to become too small. When used as an electrode for a biosensor, there is no need to use a membrane containing enzymes or microorganisms as in conventional biosensors, and the enzymes or microorganisms may be immobilized by some method on the partially carved portion. Also in this case, if the amount of decomposition and removal is too small, immobilization will be difficult, and if it is too large, the amount of current will be small. The depth of the cut portion varies depending on the purpose, but is usually 0.5 to 500 μm, preferably 2 to 200 μm. Although the carbon fiber surface may be used as it is as an electrode portion having oxidation/reduction ability, one preferable method is to modify the carbon fiber by modifying its reactive surface. Platinum, iridium, gold, zinc, as modified materials
When using materials with redox catalytic activity such as phthalocyanines and Prussian blue, conventional methods such as vacuum evaporation, sputtering, plating, and ion implantation electrolytic oxidation polymerization are used.
Modification with a functional substance is also one of the preferred methods. At this time, the surface of the carbon fiber may be completely covered with these materials, but it may also be partially attached or injected. If there are any interfering substances during measurement, it is preferable to apply a thin film on the electrode surface by a conventional method to exclude these substances and allow only the necessary substances to pass through. The electrode of the present invention is preferably minute when used for direct insertion into a living body, but does not necessarily have to be minute when used for use in a fermenter or the like. [Effects of the Invention] The microfabricated electrode of the present invention is substantially unaffected by flow and can stably and accurately electrochemically measure a substance in a liquid. Hereinafter, the present invention will be explained in more detail with reference to Examples. Examples 1, 2, 3 and Comparative Example 1 A bundle of 100 carbon fibers (Traca T-3001K, diameter 7 μm) was soaked in an epoxy resin containing a hardening agent to impregnate the resin. Next, this impregnated fiber bundle is heated and hardened while being stretched, and the diameter is approximately
A 0.8 mm wire-like composite material was obtained. The sides of this were completely insulated with epoxy resin, then cut, and the cross section was polished using a conventional method. The polished portion was immersed in a 2 mmol sulfuric acid aqueous solution, and anodic oxidation was performed using a platinum wire as a counter electrode under the conditions described below. Using the obtained sensor, we investigated the effect of liquid flow on the current caused by enzyme reduction. That is, physiological saline was placed in a flask equipped with a magnetic stirrer, the above-mentioned sensor was attached as the working electrode, and a silver/silver chloride electrode was attached as the counter electrode, and the flask was brought into contact with air at room temperature to saturate the enzyme. A negative voltage of 0.75 volts was applied to the working electrode, and the flowing reduction current was measured. The currents flowing when the magnetic stirrer was rotated as fast as possible and when it was left stationary were measured and the ratio was determined. In Example 1, the operation of oxidizing at 1.75 volts for 15 minutes, followed by reducing at -1.2 volts for 1 minute, was repeated 35 times. In Example 2, a current of 1 microampere
After being oxidized by flowing for 80 minutes, it was reduced for 10 minutes at −0.7 volts in physiological saline. In Example 3, electrolytic oxidation was performed at 0.5 mA for 9 minutes, and then reduction was performed in physiological saline at -0.7 volts for 10 minutes. As a comparative example, measured values using an electrode before oxidative etching treatment are shown. The results are shown in the table below.
【表】
実施例4および比較例2
実施例3で得られた電極(実施例4)および酸
化エツチングする前の電極(比較例2)をそれぞ
れ0.01MのK4Fe(CN)6および2重量%のNaClを
含む水溶液につけ三電極法でサイクリツクボルタ
ングラムの測定をおこなつた。
結果を第2図A(比較例2)、B(実施例4)に
示す。
aが静止の場合、bがN2バブリングによる撹
拌を行つた場合である。
比較例2では液の流れの影響を大きく受ける
が、実施例4では流れの影響を殆ど受けないこと
が同図からわかる。[Table] Example 4 and Comparative Example 2 The electrode obtained in Example 3 (Example 4) and the electrode before oxidative etching (Comparative Example 2) were treated with 0.01 M K 4 Fe (CN) 6 and 2 weight, respectively. The cyclic voltamgram was measured using the three-electrode method by immersing the sample in an aqueous solution containing % NaCl. The results are shown in FIG. 2A (Comparative Example 2) and B (Example 4). When a is stationary, b is when stirring by N 2 bubbling is performed. It can be seen from the figure that Comparative Example 2 is greatly affected by the flow of the liquid, but Example 4 is hardly affected by the flow.
【図面の簡単な説明】[Brief explanation of drawings]
第1図は本発明のセンサの構成を、第2図はサ
イクリツクボルタモグラフをそれぞれ示す。
FIG. 1 shows the configuration of the sensor of the present invention, and FIG. 2 shows a cyclic voltammograph.