JPS6167755A - Aluminum killed steel for low-temperature service for large heat input welding - Google Patents

Aluminum killed steel for low-temperature service for large heat input welding

Info

Publication number
JPS6167755A
JPS6167755A JP19034084A JP19034084A JPS6167755A JP S6167755 A JPS6167755 A JP S6167755A JP 19034084 A JP19034084 A JP 19034084A JP 19034084 A JP19034084 A JP 19034084A JP S6167755 A JPS6167755 A JP S6167755A
Authority
JP
Japan
Prior art keywords
steel
toughness
heat input
less
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19034084A
Other languages
Japanese (ja)
Inventor
Motomi Kanano
叶野 元巳
Haruo Kaji
梶 晴男
Nobutsugu Takashima
高嶋 修嗣
Manabu Yamauchi
学 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP19034084A priority Critical patent/JPS6167755A/en
Publication of JPS6167755A publication Critical patent/JPS6167755A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide excellent low-temp. toughness and to lessen the brittleness in a weld heat affected zone even if an aluminum killed steel is subjected to large heat input welding by specifying the compsn. consisting of C, Si, Mn, Al, Nb, Ti, N and Fe and compsn. relation. CONSTITUTION:This aluminum killed steel for low-temp. service for large heat input welding contains 0.03-0.12wt% C, 0.1-0.50% Si, 0.7-1.70% Mn, 0.01-0.08% Al, 0.005-0.025% Nb, 0.003-0.025% Ti and 0.0040% N, satisfies the relation 3<=Ti/N<=6, contains further at least 1 kind of <=0.005% Ca and <=0.01% Ce and/or at least one kind of <=0.50% Cu, <=1.5% Ni, <=0.50% Cr, <=0.50% Mo and <=0.10% V and consists of the balance Fe and unavoidable impurities. This steel has the excellent low-temp. toughness of the steel plate and weld joint part.

Description

【発明の詳細な説明】 本発明は大入熱溶接用低温用アルミキル+S鋼に関し、
詳しくは、大入熱溶接を施しても、溶接熱影響部(以下
、HA Zという。)、特にボンド部近傍の脱化の少な
い大入熱溶接用低温用アルミキルド鋼に関する。
[Detailed description of the invention] The present invention relates to low-temperature aluminum kil+S steel for large heat input welding,
More specifically, the present invention relates to a low-temperature aluminum killed steel for high heat input welding that exhibits little deoxidization in the weld heat affected zone (hereinafter referred to as HAZ), especially near the bond area, even when high heat input welding is performed.

近年、船舶をはじめとする各種構造物の溶接には、溶接
作業能率を向」ニさせ、溶接施工費を軽減するために、
大入熱の片面一層号ブマージアーク熔接やエレクトロガ
スアーク溶接等の高能率溶接法が採用されてきている。
In recent years, in order to improve welding work efficiency and reduce welding construction costs, welding of various structures such as ships,
High-efficiency welding methods such as single-sided, single-layer Bumage arc welding with high heat input and electrogas arc welding are being adopted.

また、他方においては、極寒冷地での石油資源の開発の
活発化に伴い、石油掘削用の海洋構造物や砕氷船に用い
られる鋼材については、tm板のみならず、溶接継手部
にずくれた低温靭性が要求されている。しかし、一般に
、従来の溶接構造用鋼材に大入熱溶接を施すと、そのH
A Z力」危化し、この傾向は@(4の強度レヘルが高
くなるほど著しい。
On the other hand, as the development of oil resources in extremely cold regions becomes more active, steel materials used in offshore structures for oil drilling and icebreakers are not only used in TM plates but also in welded joints. Low-temperature toughness is required. However, in general, when high heat input welding is applied to conventional welded structural steel materials, the H
AZ force" is at risk, and this tendency becomes more pronounced as the strength level of @(4) increases.

一般に、大入熱ン容接によるHAZ、特に、ボンド部近
傍の脆化は、溶接熱によってその部分が少なくとも12
00 ’c或いはそれ以上の高温に加熱されるうえに、
その後に緩慢に冷却されるため、ボンド部近傍の結晶粒
が著しく粗大化する結果、組織が靭性の極めて悪い粗大
な上部へイナイト組織となり、しかも、AIN等の窒化
物が溶接熱により解離し、固溶Nが増加して、地の靭性
を劣化させるために生しると考えられている。
In general, embrittlement in the HAZ due to large heat input and displacement, especially near the bond area, is caused by welding heat that causes the area to become at least 12
In addition to being heated to a high temperature of 00'C or higher,
After that, it is slowly cooled, and as a result, the crystal grains in the vicinity of the bond area become significantly coarsened, resulting in a coarse upper inite structure with extremely poor toughness, and nitrides such as AIN dissociate due to welding heat. It is thought that this occurs because solid solution N increases and deteriorates the toughness of the soil.

このため、従来より大入熱溶接部の靭性を改善する方法
が種々提案されているが、これらは概路次の二つの方法
に大別される。その第1は、Ti、Zr、)If、B等
の炭窒化物やREM等の酸化物、硫化物によってボンド
部近傍のオーステナイト結晶粒の*■大化を抑制し、組
織を倣細なフエライ1〜・パーライトとする方法であり
、第2は、鋼中のNを低減させると同時に、鋼にTi、
Al1等の窒化物形成元素を添加して、溶接時の高温に
よって解離した固溶Nを捕捉し、地の靭性を改善する方
法であり、既に、これらの方法に基づいて種々の実用鋼
が開発されている。
For this reason, various methods have been proposed to improve the toughness of high heat input welds, but these can be roughly divided into the following two methods. The first is to suppress the enlargement of austenite crystal grains near the bond area by using carbonitrides such as Ti, Zr, If, B, etc., and oxides and sulfides such as REM, and to shape the structure into fine ferrite grains. The second method is to reduce N in the steel and at the same time add Ti, pearlite to the steel.
This is a method of adding nitride-forming elements such as Al1 to capture solid solution N dissociated due to high temperatures during welding and improving the toughness of the base. Various practical steels have already been developed based on these methods. has been done.

しかし、−h起筆1の方法は、TiN等の窒化物を微細
に且つ多数分散させるためには、N量を約0゜0040
%以上とする必要があり、一方、第2の方法によれば、
N量を約0.0040%以下に抑えることが必要である
。このように、従来の方法は鋼中のN量が相反するので
、従来、これらの方法を同時に有効に活用して、大入熱
溶接部の靭性を改善することは困難であるとされている
However, in the method of -h 1, in order to disperse finely and in large numbers nitrides such as TiN, the amount of N must be adjusted to about 0°0040
% or more, while according to the second method,
It is necessary to suppress the amount of N to about 0.0040% or less. As described above, since the conventional methods have conflicting effects on the amount of N in the steel, it has been considered difficult to effectively utilize these methods at the same time to improve the toughness of high heat input welds. .

しかし、本発明者らは上記した問題を解決するために鋭
意研究した結果、鋼中のN量を所定の限智値以下に抑え
ると共に、このN量によって規制される所定b1のTi
を添加し、更に、鋼に所定量のNbを添加するごとに、
Lつで、N量の低減による地の靭性向上効果、Ti及び
Nbの微細炭窒化物によるオーステナイト粒鉗犬化抑制
及び組織のフェライト・パーライト化を同時に達成する
ことに成功し、かくして、大入熱溶接を施しても、II
AZの脆化の少ない大入熱溶接用低温用アルミキル)鋼
を得ることができることを見出した。
However, as a result of intensive research by the present inventors in order to solve the above-mentioned problems, the amount of N in the steel is suppressed to a predetermined critical value or less, and the Ti of the predetermined b1 regulated by this amount of N is
and each time a predetermined amount of Nb is added to the steel,
With L, we succeeded in simultaneously achieving the effect of improving the toughness of the base by reducing the amount of N, suppressing the formation of austenite grains by fine carbonitrides of Ti and Nb, and changing the structure to ferrite and pearlite. Even if heat welded, II
It has been found that it is possible to obtain low-temperature aluminum kiln steel for high heat input welding with little AZ embrittlement.

即ち、Nbは強力な炭窒化物形成元素であるので、本発
明者らは、鋼へのNbの添加がTi炭窒化物の微細分散
に影響を及ばず可能性があるごとに着目し、微量のNb
を添加した低N鋼について、大熱量200 K J /
 cmに相当する熱ザイクル試験、即ち、1350°C
に加熱した後、800°Cから500℃までの冷却時間
を180秒として、鋼の■IAZ靭性に及ばずTi量の
影響を研究し、次のような新しい知見を得た。
That is, since Nb is a strong carbonitride-forming element, the present inventors focused on the possibility that the addition of Nb to steel would not affect the fine dispersion of Ti carbonitrides. of Nb
For low N steel with addition of
Thermal cycle test equivalent to cm, i.e. 1350°C
After heating, the cooling time from 800°C to 500°C was set to 180 seconds, and the influence of the amount of Ti on the IAZ toughness of the steel was studied, and the following new findings were obtained.

先ず、第1図にNN28−30ppmの低N鋼(C0,
07%、Si0.25%、Mn1.25%、A10.0
35%、Nb0.01%)についての跪性破面剤移/晶
度(νTrs )と”Fi iIlとの関係を示す。
First, Figure 1 shows low N steel (C0,
07%, Si0.25%, Mn1.25%, A10.0
35%, Nb 0.01%) is shown.

比較のために(jt・UてNb無添加鋼についても示す
For comparison, Nb-free steel (jt/U) is also shown.

N b無添加鋼は、従来より知られているように、Ti
とNとが化学V論的に結合する比率のときに最も靭性が
良好であるのに対して、N l)添加鋼の場合にL土、
HA Z靭性の向1−に有効な最適のTi量が変化して
おり、Nb添加鋼に比べてTi量が過剰のときにνTr
sが最も低くなる。
As is conventionally known, Nb-free steel contains Ti
The toughness is best when the ratio of N and N is chemically combined, whereas in the case of N l) addition steel, L soil,
The optimal amount of Ti that is effective in the direction of HAZ toughness changes, and when the amount of Ti is excessive compared to Nb-added steel, νTr
s is the lowest.

この場合のHA Zのhen織ば、第2図(al〜(d
iに示ずように、Ti量の増加に伴って結晶粒が微細と
なり、旧つ、粒内に析出するフエライ)[が多くなって
おり、高靭性が低N化による地の靭性向−1−のみなら
ず、析出物による組織改善効果にまるごとが明らかであ
る。このように、HA Zの靭性向上の効果力脣忍めら
れるNb、Ti及びN量の範囲は、従来、大入熱溶接鋼
について知られている成分範囲とし−1全く異なるもの
である。
In this case, the hen weaving of HAZ is shown in Figure 2 (al~(d
As shown in Figure i, as the Ti content increases, the crystal grains become finer, and the amount of ferrite precipitated within the grains increases. In addition to -, the effect of improving the structure due to the precipitates is clear. As described above, the range of Nb, Ti, and N amounts that can be tolerated to improve the toughness of HAZ is completely different from the range of components conventionally known for high heat input welding steels.

そこで、更に種々の3.11成の鋼(C0,07%、S
i0.25%、Mn1.25%、Δ7!0.035%、
Nb0.010%、1” i 0. (l O3%、N
0.0017〜0.0072%)について、溶接入熱]
02KJ/ cmにて両面一層ザブマージアーク溶接を
行ない、ポンド部を切欠いてvE−、、、、を求め、こ
のようにして、靭性に与えるTjとNの量を調べた結果
、第3図に示すように、N量を0.0040%以下に抑
え、Ti量を0.005〜0.025%の範囲とすると
共に、3≦Ti/N≦6なる関係を満足させることによ
って、靭性を最大限に改善し得ることを見出した。
Therefore, we further developed various 3.11 composition steels (C0.07%, S
i0.25%, Mn1.25%, Δ7!0.035%,
Nb0.010%, 1” i 0. (l O3%, N
0.0017-0.0072%), welding heat input]
Double-sided submerged arc welding was performed at 0.02 KJ/cm, and the pound part was cut out to determine vE-, and the amounts of Tj and N that affect the toughness were investigated in this way, and the results are shown in Figure 3. As shown, the toughness can be maximized by suppressing the N content to 0.0040% or less, keeping the Ti content in the range of 0.005 to 0.025%, and satisfying the relationship 3≦Ti/N≦6. We have found that improvements can be made to a certain extent.

本発明は一ヒ記のような知見に基づいてなされたもので
あり、低温靭性にすぐれる大入熱溶接用低温用アルミキ
ルド鋼を提供することを目的とする。
The present invention has been made based on the knowledge as described above, and an object of the present invention is to provide a low-temperature killed aluminum steel for high heat input welding that has excellent low-temperature toughness.

本発明による大入熱溶接用低温アルミキルF鋼は、重量
%で C0.03〜0.12%、 Si0.1〜0.50%、 Mn  0.7〜1.70%、 Aβ 0.01〜0.08%、 Nb  0.005〜0.025%、 Ti  0.003〜0.025%、 N   0.004(1%以下、 グ(部鉄及び不可避的不純物よりなると共に、3≦T 
i / N13 なる関係を満たすことを特徴とする。
The low-temperature aluminum kill F steel for high heat input welding according to the present invention has, in weight percent, C 0.03-0.12%, Si 0.1-0.50%, Mn 0.7-1.70%, Aβ 0.01-0. 0.08%, Nb 0.005-0.025%, Ti 0.003-0.025%, N 0.004 (1% or less, consisting of iron and inevitable impurities, and 3≦T
It is characterized by satisfying the relationship: i/N13.

上記のような本発明の鋼において、Nb、′Fj及びN
が如何なる冶金学的作用効果によって、I(AZ靭性の
向上に寄与しているかについては十分に解明されてはい
ないが、次のような作用によるものと考えられる。
In the steel of the present invention as described above, Nb, 'Fj and N
Although it has not been fully elucidated what metallurgical effect contributes to the improvement of I(AZ toughness), it is thought that it is due to the following effect.

■ NbとTiを複合添加した鋼板ij、(Ti、Nh
)N及び(’Nh、Ti)Cなる2種の複合炭窒化物を
形成し、このうち、(Ti量、Nb)NはTiNと同様
にオーステナイト粒相大化防止に効果があり、月つ、フ
ェライト変態核として有効に作用する。
■ Steel plate ij with composite addition of Nb and Ti, (Ti, Nh
)N and ('Nh, Ti)C, and among these, (Ti content, Nb)N is effective in preventing austenite grain phase enlargement like TiN, and , effectively acts as a ferrite transformation nucleus.

■(Ti、Nb)Nは、1200°C付近の高温に加熱
された場合に最も多量に析出し、溶接ボン1”部近傍の
靭性を著しく改善する。
(Ti, Nb)N precipitates in the largest amount when heated to a high temperature around 1200°C, and significantly improves the toughness near the 1'' portion of the welding bond.

■ 本発明て規定する3≦T i / N13なる関係
で示されるように、化学1的にTiNとしてNと結合す
るTi量よりも過剰のTiは、Nbの存在と相俟って、
溶接後の冷却過程で(Nb、Ti)Cとして再析出し、
フェライトの変態様として作用する。
■ As shown by the relationship 3≦T i /N13 defined in the present invention, the amount of Ti in excess of the amount of Ti that combines with N as TiN in chemical terms, together with the presence of Nb,
In the cooling process after welding, it re-precipitates as (Nb, Ti)C,
Acts as a modified form of ferrite.

即ち、靭性を劣化さゼる固溶状態として残存することが
ない。
That is, it does not remain in a solid solution state that deteriorates toughness.

そして、本発明鋼におけるこれらの効果は、圧延ままで
使用される場合は勿論のこと、圧延後加速冷却処理(直
接焼入れを含む。)焼準し、焼入れ一焼戻し、更に加速
冷却後焼戻し処理して製造されるt岡(反においてもイ
呆持されろ。
These effects of the steel of the present invention can be obtained not only when used as rolled, but also when subjected to accelerated cooling treatment after rolling (including direct quenching), normalizing, quenching and tempering, and further tempering treatment after accelerated cooling. Don't be surprised at the quality of the products manufactured by the manufacturer.

次に、本発明による大入熱溶接用低温用アルミキ月月鋼
における化学成分の限定理由について説明する。
Next, the reason for limiting the chemical composition of the low-temperature aluminized moon steel for high heat input welding according to the present invention will be explained.

Cは、その含有量が低いほど、鋼の溶接性及びT−T 
A Z靭性は良好となるか、Cが0.03%よりも少な
い場合はm材強度が低下し、また、0.12%を越える
ときは、7容接性及びHAZ靭性の劣化が顕著となる。
The lower the C content, the better the weldability and T-T of the steel.
AZ toughness will be good, or if C is less than 0.03%, m material strength will decrease, and if it exceeds 0.12%, deterioration of 7 weldability and HAZ toughness will be noticeable. Become.

従って、本発明においては、C添加量は0.03〜0.
12%とする。
Therefore, in the present invention, the amount of C added is 0.03 to 0.
It shall be 12%.

Siは、脱酸のために0.1%以−1−の添加を必要と
し、一方、過多に添加するときG」溶接性を■■害する
ので、その」二限を0.5%とする。
Si needs to be added in an amount of 0.1% or more for deoxidation, and on the other hand, when added in excess, it impairs G's weldability, so its limit is set at 0.5%. .

Mnは、鋼の高張力化を図るためには少なくとも0.7
%の添加を必要とするか、1.7%を越えるとき番よ溶
接性が劣化する。従って、本発明において&;i、Mロ
添加量は0.7〜1.7%の1・h凹点する。
Mn is at least 0.7 in order to increase the tensile strength of steel.
%, or if it exceeds 1.7%, weldability deteriorates. Therefore, in the present invention, the addition amount of &;

A 7!4;I脱酸元素として必要不可欠であるが、0
゜01%よりも少ないときは、その効果を十分に発揮す
ることができず、反面、0.08%よりも過多に添加す
るときは溶接性を劣化させる。従って、本発明において
シ、1″、その添加量は0.01〜0.08%とする。
A 7!4; I is essential as a deoxidizing element, but 0
When it is less than 0.01%, the effect cannot be fully exhibited, while on the other hand, when it is added in excess of 0.08%, weldability deteriorates. Therefore, in the present invention, the amount of 1'' added is 0.01 to 0.08%.

Nb口、微量の添加によって析出強化及び細粒強化に有
効であるが、本発明においては、これらの効果のほかに
、後述するTiやNとの絹合せによ゛つて、溶接熱サイ
クルの冷却過程でフェライトの変態様となる (Nb、
Ti)Cの複炭窒化物を形成させるために必須元素とし
て添加される。この効果を有効に発揮させるためには、
少なくとも0.00、 5%の添加が必要である。
Addition of a small amount of Nb is effective for precipitation strengthening and fine grain strengthening, but in addition to these effects, in the present invention, by combining with Ti and N, which will be described later, cooling during the welding thermal cycle is achieved. In the process, it transforms into ferrite (Nb,
Ti) It is added as an essential element to form a C double carbonitride. In order to effectively utilize this effect,
It is necessary to add at least 0.00.5%.

しかし、過多に添加するときは、−1−記効果が有効に
発現されるとしても、同時に*■大なヘイナイトが生成
し、良好な靭性が得られないので、その」二限を0.0
25%とする。
However, when adding too much, even if the effect described in -1- is effectively expressed, a large amount of *■ large haynite is generated at the same time, and good toughness cannot be obtained.
It shall be 25%.

TiはTiNを形成して鋼中にi戚細に分散析出し、&
;Iliのフェライト・パーライト化及び微細化を促進
すると共に、鋼中の固溶Nを低減して、靭性を向」ニさ
せるためのめならず、Nb添加鋼である本発明鋼におい
ては、高温で比較的安定な(Ti。
Ti forms TiN and precipitates finely dispersed in the steel.
In order to promote the formation of ferrite/pearlite and refinement of Ili and to reduce solid solution N in the steel to improve toughness, the steel of the present invention, which is an Nb-added steel, is heated at high temperature. and relatively stable (Ti.

Nb)Nを生成させ、オーステナイト粒の粗大化を抑制
すると共に、フェライト変態様としてN、■織の微細化
を図るための必須元素として添加される。
Nb) It is added as an essential element to generate N and suppress the coarsening of austenite grains, and to refine N as a ferrite transformation, and to refine the weave.

かかる効果を有効に発現さセるためには少なくとも0.
003%の添加が必要であるが、しかし、過多に添加す
るときは、上記効果が発現されないのみならず、固溶状
態のTiiが増加し、鋼の靭性を劣化させる和犬へイナ
イトを生成さ−するので、その−1−、限を0.025
%とする。
In order to effectively express such an effect, at least 0.
However, if too much is added, not only will the above effects not be achieved, but Tii in the solid solution state will increase, producing inite that deteriorates the toughness of the steel. -, so the -1-, limit is 0.025
%.

Nは、これを低減するごとによって、地の靭性を向トさ
せ、HAZ部、特に溶接ポンド部の靭性を改善すること
ができる。そのために本発明においてCat、許容」−
眼を0.004%とする。
By reducing the amount of N, it is possible to increase the toughness of the base and improve the toughness of the HAZ part, especially the weld pound part. Therefore, in the present invention, Cat is allowed.
The eye is 0.004%.

本発明においては、上記した諸元素のうち、Ti及びN
については、それぞれの添加量か−L記範囲にあること
が必要であるが、更に、所望のボンド部靭性を確保する
ために、Ti量及びN量は次の関係をも同時に満たずこ
とが必要である。
In the present invention, among the above-mentioned elements, Ti and N
It is necessary that the amount of each addition be within the range indicated by -L, but furthermore, in order to ensure the desired bond toughness, the amount of Ti and the amount of N must not satisfy the following relationship at the same time. is necessary.

3≦T i / N量6 前記したように、TiとN力司二記の関係を満たずとき
に、第3図に示すように、特に溶接ボンド部が衝撃特性
にすぐれるからである。
3≦T i /N amount 6 As described above, when the relationship between Ti and N is not satisfied, as shown in FIG. 3, especially the welded bond portion has excellent impact characteristics.

本発明による大入熱溶接用低温用アルミキルド鋼には、
上記の元素に加えて、更にCa及びCeから選ばれる少
なくとも1種の元素を添加することができる。かかる元
素は硫化物系の非金属介在物を球状化して、異方性を改
善するのに有効である。しかし、これらの元素も過剰に
添加するときは、却って鋼の清浄度を阻害し、靭性を劣
化させるので、その」二限をCaについては0.005
%、Ceについては0.01%とする。
The low temperature aluminum killed steel for high heat input welding according to the present invention includes:
In addition to the above elements, at least one element selected from Ca and Ce can be added. Such elements are effective in spheroidizing sulfide-based nonmetallic inclusions and improving anisotropy. However, when these elements are added in excess, they actually impede the cleanliness of the steel and deteriorate its toughness, so the second limit for Ca is 0.005.
%, Ce is 0.01%.

更に、本発明においては、鋼に一1二記したCa及びC
eとは別に、又はこれらと共に、Cu、NiCr、Mo
及び■から選ばれる少なくとも1種の元素をI−(A 
Z靭性を損なわない程度に、又は靭11を更に向」二さ
セるために添加することかできる。
Furthermore, in the present invention, Ca and C described in 112 are added to the steel.
Apart from or together with e, Cu, NiCr, Mo
I-(A
It can be added to the extent that it does not impair the Z-toughness or to further improve the toughness 11.

Cuは鋼の強度及び耐食性を向」ニさせるのに有効であ
るが、過多に添加するときはT−+ A Z靭性を劣化
させるので、その−1二限を0.50%とする。
Cu is effective in improving the strength and corrosion resistance of steel, but when added in excess, it deteriorates T-+A-Z toughness, so its -1 limit is set to 0.50%.

Niは靭性を改善するのに有効な元素であるが、経済性
を考慮して上限を1.5%とする。
Although Ni is an effective element for improving toughness, the upper limit is set at 1.5% in consideration of economic efficiency.

Crも鋼の強度及び靭性を向上させるか、過剰の添加は
却って靭性を劣化さセるので、その−1−眼を0.50
%とする。
Cr also improves the strength and toughness of steel, but excessive addition actually deteriorates toughness, so the -1-eye ratio is 0.50.
%.

Moは鋼の強度を上昇させるのに有効であるが、過多に
添加するときは、靭性を劣化さ−lるので、」二限を0
.50%とする。
Mo is effective in increasing the strength of steel, but when added in excess, it deteriorates the toughness, so the limit is set to 0.
.. It shall be 50%.

VもMoと同様に鉗1の強度を上昇させるのに有効であ
るが、過多に添加するときは靭性を劣化さセるので、に
限を0.10%とする。
Like Mo, V is also effective in increasing the strength of the forceps 1, but when added in excess, the toughness deteriorates, so the amount is limited to 0.10%.

以上のように、本発明によれば、鋼中のNb1を所定値
以下に抑えると共に、このN量によって規制される所定
部のTiを添加し、更に、銅に所定量のNbを添加する
ことによって、低N化による地の靭性向」二と、Ti、
Nb等の(数組炭窒化物の析出による!+1+1織の改
善、即ち、フエライI・・パーライト化を同時に達成し
、かくして、広い入熱範囲にわたってvE−Hが安定し
て5kgf−m以上である高靭性ポンド部及びHA Z
を有する大入熱溶接用低温用アルミ−1−ルl鋼得るこ
とができる。
As described above, according to the present invention, it is possible to suppress Nb1 in steel to a predetermined value or less, add Ti in a predetermined portion regulated by this N amount, and further add a predetermined amount of Nb to copper. Accordingly, the toughness of the soil due to low N2 and Ti,
Nb, etc. (by precipitation of several pairs of carbonitrides!+1+1 weave improvement, i.e., ferrite I... Pearlitization is simultaneously achieved, and thus vE-H is stable over a wide heat input range at 5 kgf-m or more. Some high toughness pond parts and HAZ
It is possible to obtain a low-temperature aluminum steel for high heat input welding having the following properties.

尚、本発明による大入熱溶接構造用鋼は、前記したよう
に熱処理によっては何らそのずくれた特性を失われない
ので、任意の方法によ・つて製造することができる。
It should be noted that the high heat input welded structural steel according to the present invention does not lose any of its outstanding characteristics through heat treatment, as described above, and therefore can be manufactured by any method.

以下に実施例を挙げて本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1 表に示す化学3、■成を有する本発明@ A −H及び
比較鋼1〜Mから表に示す方法にて所定の板厚の鋼板を
得、これを所定の入熱量にて溶接した。溶接ボンド部の
衝撃試験結果を表に示す。
Example 1 A steel plate of a predetermined thickness was obtained by the method shown in the table from the present invention @A-H and comparative steels 1 to M having chemical compositions 3 and 1 shown in the table, and this was welded with a predetermined heat input. did. The table shows the impact test results for the welded bond.

N、Ti及びN bを調整した本発明鋼の一60°Cで
の吸収エネルギー(vE3.。)は、いずれも5kg 
−m以上であり、すくれた衝撃特性を有し、比較鋼9〜
14に比べて、l(A Z靭性が著しく良好である。
The absorbed energy (vE3..) at 60°C of the steel of the present invention with adjusted N, Ti, and Nb is 5 kg.
−m or more, has low impact properties, and has a comparative steel of 9 to
Compared to No. 14, the AZ toughness is significantly better.

即ち、比較fliiliK及びI、は1” i / N
比が本発明において規定する条件を満足しないため、J
は更にN量が高いため、また、Mは、T i / N比
は本発明において規定する条件を満足しているが、N量
が高いため、いずれも溶接ボンド部の靭性が劣化してい
ることが明らかである。
That is, the comparison fliiliK and I is 1” i/N
Since the ratio does not satisfy the conditions specified in the present invention, J
Since the amount of N is further high, and although the T i / N ratio of M satisfies the conditions specified in the present invention, the toughness of the weld bond is deteriorated due to the high amount of N. That is clear.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、低N鋼においてHAZ靭性に及はずT i 
Nの影響をNb添加鋼及びNb無添加鋼について示すグ
ラフ、第2図は本発明による鋼のミクロ組織を示す顕微
鏡写真であり、Ti量は(al 0.005%、[bl
0.OO9%、(CIo、 014%及び(dl 0.
018%である。第3図はNb添加鋼におけるTiZN
比と一60°Cでの吸収エネルギー(VE−60)との
関係を示すグラフである。 第1図 Ti量(十)−%) 図面の浄書(内容に変更なし) 第2図 図面のrfI書(内容に変更なし) 第2図 第3図 TVN 手続補正書(方式) %式% 1、事件の表示 昭和59年特許廓第190340号 2、発明の名称 大入熱溶接用低温用アルミキル1′鋼 3、補正をする者 事件との関係 特許出願人 住 所 神戸市中央区脇浜町1丁目3番18号名 称 
株式会社神戸製鋼所 代表者 牧   冬 彦 4、代理人 住 所 大阪市西区新町1丁目8番3号新町七福ビル
Figure 1 shows that HAZ toughness cannot be achieved in low N steel.
A graph showing the influence of N on Nb-added steel and Nb-free steel, and FIG. 2 is a micrograph showing the microstructure of the steel according to the present invention.
0. OO9%, (CIo, 014% and (dl 0.
It is 018%. Figure 3 shows TiZN in Nb-added steel.
It is a graph showing the relationship between the ratio and absorbed energy at -60°C (VE-60). Figure 1 Ti amount (10) - %) Engraving of drawings (no change in content) Figure 2 rfI document of drawings (no change in content) Figure 2 Figure 3 TVN Procedural amendment (method) % formula % 1 , Indication of the case 1982 Patent Office No. 190340 2 Title of the invention Low-temperature aluminum kil 1' steel for high heat input welding 3 Person making the amendment Relationship to the case Patent applicant Address 1 Wakihama-cho, Chuo-ku, Kobe City Chome 3-18 Name
Kobe Steel, Ltd. Representative: Fuyuhiko Maki 4, Agent address: Shinmachi Shichifuku Building, 1-8-3 Shinmachi, Nishi-ku, Osaka

Claims (4)

【特許請求の範囲】[Claims] (1)重量%で C 0.03〜0.12%、 Si 0.1〜0.50%、 Mn 0.7〜1.70%、 Al 0.01〜0.08%、 Nb 0.005〜0.025%、 Ti 0.003〜0.025%、 N 0.0040%以下、 残部鉄及び不可避的不純物よりなると共に、3≦Ti/
N≦6 なる関係を満たすことを特徴とする大入熱溶接用低温用
アルミキルド鋼。
(1) C 0.03-0.12%, Si 0.1-0.50%, Mn 0.7-1.70%, Al 0.01-0.08%, Nb 0.005 in weight% ~0.025%, Ti 0.003~0.025%, N 0.0040% or less, the balance consisting of iron and inevitable impurities, and 3≦Ti/
A low-temperature killed aluminum steel for high heat input welding, which satisfies the relationship N≦6.
(2)重量%で (a)C 0.03〜0.12%、 Si 0.1〜0.50%、 Mn 0.7〜1.70%、 Al 0.01〜0.08%、 Nb 0.005〜0.025%、 Ti 0.003〜0.025%、 N 0.0040%以下を含有し、更に、 (b)Ca 0.005%以下及び Ce 0.01%以下よりなる群から選ばれる少なくと
も1種を含有し、 残部鉄及び不可避的不純物よりなると共に、3≦Ti/
N≦6 なる関係を満たすことを特徴とする大入熱溶接用低温用
アルミキルド鋼。
(2) In weight% (a) C 0.03-0.12%, Si 0.1-0.50%, Mn 0.7-1.70%, Al 0.01-0.08%, Nb A group containing 0.005 to 0.025%, Ti 0.003 to 0.025%, N 0.0040% or less, and further consisting of (b) Ca 0.005% or less and Ce 0.01% or less Contains at least one selected from
A low-temperature killed aluminum steel for high heat input welding, which satisfies the relationship N≦6.
(3)重量%で (a)C 0.03〜0.12%、 Si 0.1〜0.50%、 Mn 0.7〜1.70%、 Al 0.01〜0.08%、 Nb 0.005〜0.025%、 Ti 0.003〜0.025%、 N 0.0040%以下を含有し、更に、 (b)Cu 0.50%以下、 Ni 1.5%以下、 Cr 0.50%以下、 Mo 0.50%以下及び V 0.10%以下よりなる群から選ばれる少なくとも
1種を含有し、 残部鉄及び不可避的不純物よりなると共に、3≦Ti/
N≦6 なる関係を満たすことを特徴とする大入熱溶接用低温用
アルミキルド鋼。
(3) In weight% (a) C 0.03-0.12%, Si 0.1-0.50%, Mn 0.7-1.70%, Al 0.01-0.08%, Nb 0.005 to 0.025%, Ti 0.003 to 0.025%, N 0.0040% or less, and further, (b) Cu 0.50% or less, Ni 1.5% or less, Cr 0 .50% or less, Mo 0.50% or less, and V 0.10% or less, with the balance consisting of iron and inevitable impurities, and 3≦Ti/
A low-temperature killed aluminum steel for high heat input welding, which satisfies the relationship N≦6.
(4)重量%で (a)C 0.03〜0.12%、 Si 0.1〜0.50%、 Mn 0.7〜1.70%、 Al 0.01〜0.08%、 Nb 0.005〜0.025%、 Ti 0.003〜0.025%、 N 0.0040%以下を含有し、更に、 (b)Ca 0.005%以下及び Ce 0.01%以下よりなる群から選ばれる少なくと
も1種と、 (c)Cu 0.50%以下、 Ni 1.5%以下、 Cr 0.50%以下、 Mo 0.50%以下及び V 0.10%以下よりなる群から選ばれる少なくとも
1種とを含有し、 残部鉄及び不可避的不純物よりなると共に、3≦Ti/
N≦6 なる関係を満たすことを特徴とする大入熱溶接用低温用
アルミキルド鋼。
(4) In weight% (a) C 0.03-0.12%, Si 0.1-0.50%, Mn 0.7-1.70%, Al 0.01-0.08%, Nb A group containing 0.005 to 0.025%, Ti 0.003 to 0.025%, N 0.0040% or less, and further consisting of (b) Ca 0.005% or less and Ce 0.01% or less (c) selected from the group consisting of Cu 0.50% or less, Ni 1.5% or less, Cr 0.50% or less, Mo 0.50% or less, and V 0.10% or less 3≦Ti/
A low-temperature killed aluminum steel for high heat input welding, which satisfies the relationship N≦6.
JP19034084A 1984-09-10 1984-09-10 Aluminum killed steel for low-temperature service for large heat input welding Pending JPS6167755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19034084A JPS6167755A (en) 1984-09-10 1984-09-10 Aluminum killed steel for low-temperature service for large heat input welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19034084A JPS6167755A (en) 1984-09-10 1984-09-10 Aluminum killed steel for low-temperature service for large heat input welding

Publications (1)

Publication Number Publication Date
JPS6167755A true JPS6167755A (en) 1986-04-07

Family

ID=16256563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19034084A Pending JPS6167755A (en) 1984-09-10 1984-09-10 Aluminum killed steel for low-temperature service for large heat input welding

Country Status (1)

Country Link
JP (1) JPS6167755A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272156A (en) * 1991-02-28 1992-09-28 Kobe Steel Ltd Steel plate hardly causing haz cracking in high heat input welded square joint part of steel-frame box pillar
KR100431610B1 (en) * 1999-12-27 2004-05-17 주식회사 포스코 Shipbuilding steel for ultra high heat input welding and manufacturing therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52128821A (en) * 1976-04-12 1977-10-28 Nippon Steel Corp Preparation of high tensile steel having superior low temperature toughness and yield point above 40 kg/pp2
JPS52156125A (en) * 1976-06-22 1977-12-26 Nippon Kokan Kk <Nkk> Production of tough, thick steel plate by use of continuous hot roller
JPS54115619A (en) * 1978-02-28 1979-09-08 Kobe Steel Ltd Steel for welded structure with superior toughness and weld crack resistance in weld heat-affected zone

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52128821A (en) * 1976-04-12 1977-10-28 Nippon Steel Corp Preparation of high tensile steel having superior low temperature toughness and yield point above 40 kg/pp2
JPS52156125A (en) * 1976-06-22 1977-12-26 Nippon Kokan Kk <Nkk> Production of tough, thick steel plate by use of continuous hot roller
JPS54115619A (en) * 1978-02-28 1979-09-08 Kobe Steel Ltd Steel for welded structure with superior toughness and weld crack resistance in weld heat-affected zone

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272156A (en) * 1991-02-28 1992-09-28 Kobe Steel Ltd Steel plate hardly causing haz cracking in high heat input welded square joint part of steel-frame box pillar
KR100431610B1 (en) * 1999-12-27 2004-05-17 주식회사 포스코 Shipbuilding steel for ultra high heat input welding and manufacturing therefor

Similar Documents

Publication Publication Date Title
US4219371A (en) Process for producing high-tension bainitic steel having high-toughness and excellent weldability
JP5079419B2 (en) Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure
KR100622888B1 (en) Steel product for high heat input welding and method for production thereof
US20190352749A1 (en) Steel material for high heat input welding
JP4787141B2 (en) Thick steel plate with excellent toughness of weld heat-affected zone and low softening
KR20070057027A (en) Thick steel plate having superior toughness and reduced softening in weld heat-affected zone
JP4341395B2 (en) High strength steel and weld metal for high heat input welding
JPS5935619A (en) Production of high tensile steel material having excellent toughness of weld zone
JPH0941074A (en) Ultra-high tensile strength steel excellent in low temperature tougheness
JP2009235549A (en) Method for producing low yield ratio high tension thick steel plate excellent in toughness at super-high heat input welding affected part
KR100847174B1 (en) High tension steel sheet having superior low temperature toughness in weld heat-affected zone
JPH01159356A (en) High tension steel having superior tougeness at weld heat-affected zone
US11326238B2 (en) Steel material for high heat input welding
JP7410438B2 (en) steel plate
JPS63210235A (en) Manufacture of steel excellent in toughness at low temperature in welding heat affected zone
JPH11189840A (en) High strength steel plate for line pipe, excellent in hydrogen induced cracking resistance, and its production
JPS6167755A (en) Aluminum killed steel for low-temperature service for large heat input welding
JP2930772B2 (en) High manganese ultra-high strength steel with excellent toughness of weld heat affected zone
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
TW202200802A (en) Steel plate containing predetermined chemical components
JP2020204091A (en) High strength steel sheet for high heat input welding
JP4259374B2 (en) High strength steel sheet with excellent low temperature toughness and weld heat affected zone toughness and method for producing the same
JPH0118967B2 (en)
JPS59159970A (en) Steel material for chain with high strength and toughness
JPH02175815A (en) Manufacture of high tensile steel stock for welded construction excellent in toughness