JPS59159970A - Steel material for chain with high strength and toughness - Google Patents

Steel material for chain with high strength and toughness

Info

Publication number
JPS59159970A
JPS59159970A JP3483383A JP3483383A JPS59159970A JP S59159970 A JPS59159970 A JP S59159970A JP 3483383 A JP3483383 A JP 3483383A JP 3483383 A JP3483383 A JP 3483383A JP S59159970 A JPS59159970 A JP S59159970A
Authority
JP
Japan
Prior art keywords
toughness
chain
steel
content
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3483383A
Other languages
Japanese (ja)
Inventor
Masaki Sakamoto
坂本 雅紀
Kazuhiko Nishida
和彦 西田
Susumu Matsumura
松村 享
Fukukazu Nakazato
中里 福和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3483383A priority Critical patent/JPS59159970A/en
Publication of JPS59159970A publication Critical patent/JPS59159970A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled steel material at a low cost by specifying a composition consisting of C, Si, Mn, Cr, Mo, sol.Al, N, P, S and Fe and the relation among such components and the required tensile strength of a chain. CONSTITUTION:A steel material for a chain of a large diameter with very high strength and superior toughness is obtd. at a low cost by providing a composition consisting of, by weight, 0.15-0.30% C, 0.10-0.50% Si, 1.30-2.50% Mn, 0.50-1.50% Cr, 0.10-0.60% Mo, 0.010-0.060% sol.Al, 0.003-0.020% N, <=0.040% P, <=0.040% S and the balance Fe with inevitable impurities and satisfying an equation C%+(Mn%+Cr%+2Mo%)/3>=1.25X10<-2>sigmaB+0.11 [where sigmaB is the required tensile strength (kg f/mm.<2>) of a chain]. The composition may further contain <=0.20% in total of one or more among V, Nb and Ti.

Description

【発明の詳細な説明】 この発明は、引張強さが75kyf/−以上で、しかも
0℃における母拐部及び溶接部の7ヤルビー衝撃吸収エ
ネルギー値がそれぞれ5に7f−m以上及び5]<9f
−m以上の、高強度と高靭性とを兼ね似えたチェーン用
鋼材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention has a tensile strength of 75 kyf/- or more, and a 7 Jarby impact absorption energy value of 5 to 7 f-m or more and 5]< 9f
The present invention relates to a steel material for a chain that has both high strength and high toughness, and has a strength of -m or more.

近年、エネルギー事情の変化にともなって、新たなエネ
ルギー資源を開発しようとの動きが世界の各地で活発化
してきており、陸上での開発資源プバ涸渇するにつれ海
底油田にまで注目が集まるようになって、石油掘11]
用のリグを用いた開発が、大陸だな付近を中心おして南
方から北海に至るまでの広範囲地域で行われるようにな
ってきた。
In recent years, with changes in the energy situation, efforts to develop new energy resources have become active in various parts of the world, and as onshore development resources are depleted, attention is also being focused on offshore oil fields. Now, oil drilling 11]
Development using commercial rigs has begun to take place in a wide range of areas, mainly near the continent, from the south to the North Sea.

そして、上記のような海底石油掘削用リグに代表される
海上構造物の増加にともない、これを撃留するのに用い
る大径チェーンの需要も増大の一途をたどってきており
、その上、石油掘削リグ等の海上構造物は最近に至って
益々犬型化する傾同を見せはじめてきたので、これらを
撃留するためのチェーンにも直径=60〜160節とい
ったより太いものが、しかも積載v景制限の面からそれ
以上に大径化できないので、より高強度の゛ものが要求
されるようになってきた。
As the number of offshore structures, typified by the above-mentioned offshore oil drilling rigs, increases, the demand for large-diameter chains used to hold them down continues to increase. Offshore structures such as drilling rigs have recently begun to show a tendency to become more and more dog-shaped, so the chains used to hold them down must be thicker, with a diameter of 60 to 160 knots, and the length of the load can be reduced. Since it is not possible to increase the diameter further due to restrictions, there has been a demand for something with even higher strength.

ところで、大径チェーンは、熱間圧延棒鋼を所定長さに
切断して円環状に成形後、端面全フラッシュバット浴接
して製造され、その後、熱処理を施すことによって所要
の機械的性グ(を得るのが普通であり、高強度・高靭性
を得るための手段としてはチェーンに成形した状態での
焼入れ焼戻し処理が最適であることは言うまでもないこ
とであるしかしながら、引張強さが75kyf/−以上
という高強度を要求される上記リグ等の撃留用チェーン
には、鋼板等に比べて、 ■ 直径が160nという極めて太い丸棒材の中心部1
でをもマルテンサイト化しなければならないので、高い
焼入れ件を必要とする、■ 上下面からの完全な冷却が
可能な板材に比べて、チェーンでは十分な冷却が困f倭
となり、所望の焼入れ組織ケ得難い、 等の問題があり、鋼材の焼入れ性を高めるための合金成
分の含有量を高ぐせざるを得なかったのである。しかし
、炭素等の焼入れ性向上成分の含有量を高めることは靭
性の劣化につながるものであり、しかも上述のようにチ
ェーンは棒鋼成形後にフラッシュバット溶接されるもの
であるが、焼入れ性向上成分の含有量が高いと溶接割れ
を生ずる危険も多くなるという新たな問題を引き起す懸
念があった。
Incidentally, large-diameter chains are manufactured by cutting a hot-rolled steel bar to a predetermined length, forming it into an annular shape, and then welding the entire end surface in a flash butt bath.Then, it is heat-treated to obtain the required mechanical properties. It goes without saying that quenching and tempering the formed chain is the best way to obtain high strength and high toughness. Compared to steel plates, etc., the chain for stopping the above-mentioned rigs, which requires high strength, is made of a very thick center part 1 of a round bar with a diameter of 160 nm.
Since even the chain must be made into martensite, high hardening conditions are required.■ Compared to plate materials, which can be completely cooled from the top and bottom, it is difficult to cool the chain sufficiently, and the desired hardening structure cannot be achieved. However, there were problems such as difficulty in obtaining the hardenability of the steel, and it was necessary to increase the content of alloying components in order to improve the hardenability of the steel material. However, increasing the content of hardenability-enhancing components such as carbon leads to deterioration of toughness.Moreover, as mentioned above, chains are flash butt welded after forming steel bars, but increasing the content of hardenability-improving components such as carbon leads to deterioration of toughness. There was a concern that a high content would cause a new problem in that there would be an increased risk of weld cracking.

しかるに、最近では、北海海底油田など寒冷地に°おけ
る石油掘削頻度が多くなり、このような地域では溶接部
の微細な欠陥でも脆性破壊の起点になりやすく、従って
高強度はもちろAのこと、母材部及び溶接部の0℃にお
ける゛ンヤルピー衝撃吸収エネルギーがそれぞれ6ky
f−m以上及び5に9f −rn以上という高い靭性を
有する大型掘削リダ撃留用チェーンが渇望されていたの
である。
However, recently, oil drilling in cold regions such as offshore oil fields in the North Sea has increased in frequency, and in such regions even minute defects in welds can easily become a starting point for brittle fracture, so high strength is of course difficult. , the base metal part and the welding part each have 6 ky of Yarpy impact absorption energy at 0℃.
There has been a desire for a large excavation lidar holding chain having high toughness of f-m or higher and 5 to 9f-rn or higher.

もちろん、高強度チェーン用シ:、匈材としてJISG
3105に5BC70なる記号で示されるものが知られ
ており、また各国船舶規格にも同様の鋼材が規定されて
いるが、これらの規格には、ClSi、Mn、P及びS
の成分量が示されているのみでNi 、 Cr 、 M
o及びVの添加も示唆されてはいるがその具体的な添加
量や作用については何も示されておらず、これによって
も、直径が60〜160mmで、かつ引張強さ: 75
 kgf/−以上を有し、しかも寒冷地において満足な
靭性を発揮する大径チェーンを実現することはできなか
ったのである。
Of course, JISG is used as a material for high-strength chains.
3105 with the symbol 5BC70 is known, and similar steel materials are specified in the ship standards of each country, but these standards include ClSi, Mn, P and S.
Only the component amounts of Ni, Cr, M are shown.
The addition of O and V is also suggested, but nothing is shown about their specific addition amounts or effects.
It has not been possible to realize a large-diameter chain that has more than kgf/- and also exhibits satisfactory toughness in cold regions.

本発明者等は、上述のような観点から、引張強さが ”
 ”/mA以上で、しかも0℃における母材部及び溶接
部の7ヤルビー衝撃吸収エネルギー値がそれぞれ5に4
f−m以上及び5kyf−m以上の高強度と高靭性とを
兼ね備えた大径チェーン用鋼材を提供すべく研究を行っ
た結果、靭性及び溶接性に有害なC含有量を必要最小限
に抑えた低C高Mn系鋼材に、焼入れ性を増大すること
のできるCr及ひ八10の特定量?添加して所望強度を
達成するとともに、7gr要引張強度に応じてこれらC
、Rh 、 Cr+及びMOの合金元素の添加量を調整
すれば、溶接部に良好な靭住金確保できること全知見し
たのである。
From the above-mentioned viewpoint, the present inventors believe that the tensile strength is ``
”/mA or more, and at 0°C, the 7-Yarby impact absorption energy value of the base metal part and welded part is 5 and 4, respectively.
As a result of conducting research to provide steel materials for large-diameter chains that have both high strength and toughness of f-m or more and 5kyf-m or more, we have minimized the C content, which is harmful to toughness and weldability, to the necessary minimum. Is it possible to add a specific amount of Cr and H810 to low C, high Mn steel materials that can increase hardenability? In addition to achieving the desired strength, these C
It was discovered that by adjusting the amounts of alloying elements such as , Rh, Cr+, and MO, good toughness could be ensured in the welded joint.

即ち、前記したようかチェーンは、その用途に応じて、
例えば引張強さ: 75 krf/−以上、85にりf
/−9、上、或いは95 kpf/−以上等のように種
々の強度水準のものが要求されるが、この要求に応じて
前記合金元素の添加量を制御することにより、Cr及び
MO等は単に焼入れ性を増大するだけでなく靭性改善に
も極めて有効に作用し、総じて、焼入れ性並びに靭性に
優れている高強度高靭性鋼材が得られることを見出した
。その上、このような鋼材に適当量のV 、 Ti 、
 Nbの1種以上を添加すれば、その靭性値がさらに口
上することをも見出したのである。
In other words, the above-mentioned chain can be used depending on its use.
For example, tensile strength: 75 krf/- or more, 85 krf/-
Various strength levels are required, such as 95 kpf/-9, above, or 95 kpf/- or above, but by controlling the amount of the alloying elements added according to these demands, Cr, MO, etc. It has been found that this method not only increases hardenability but also extremely effectively improves toughness, and that a high-strength, high-toughness steel material with excellent hardenability and toughness can be obtained overall. Moreover, appropriate amounts of V, Ti,
They also discovered that the toughness value further increases if one or more types of Nb are added.

この発明は、上記知見に基づいてなされたものであり、
チェーン用鋼材を、 (: : 0.15〜0.30%(以下、重量係とする
)、Si :  0.1 0〜0.5 0 % 、un
 :1.3 0〜2.50%。
This invention was made based on the above findings,
The steel material for the chain is (: 0.15~0.30% (hereinafter referred to as weight), Si: 0.10~0.50%, un
: 1.3 0-2.50%.

Cr :  0.5 0〜1.5 0 % 、Mo :
 o、1 0〜0.60%+sot、At :  0.
0 1 0〜0.0 6 0  % 。
Cr: 0.50-1.50%, Mo:
o, 10-0.60%+sot, At: 0.
010-0.060%.

N  :  0.0 0 3〜0.0 2 0  % 
N: 0.003~0.020%
.

p : 0.040係以下、  s:”o、o4o%以
丁。
p: 0.040 or less, s:”o, o4o% or less.

を含有するとともに、必要により、 V、Nb、及びTiの1種以上二合計で0.20%以下
and, if necessary, one or more of V, Nb, and Ti in a total of 0.20% or less.

をも含み、かつ、式、 〔但し、σB:チェーンの所要引張強さく kgf /
mA ) ]を満足し、 Fe及びその他の不可避不純′JfJ:残り、から成る
成分組成で構成することにより、引張強さ: 75 k
pf/−以上、0℃における母材及び溶接部の衝撃吸収
エネルギー:それぞれ5kyf−m以上及び5kyf−
m以上を実現したことに特徴を有するものである。
and the formula, [where σB: required tensile strength of the chain kgf /
mA )], and by configuring the composition with a component composition consisting of Fe and other unavoidable impurities 'JfJ: remainder, tensile strength: 75 k
pf/- or more, impact absorption energy of base metal and weld at 0°C: 5 kyf-m or more and 5 kyf-, respectively.
The feature is that it has achieved more than m.

なお、この発明のチェーン用鋼材の調質処理は通常の焼
入れ焼戻しで十分であるが、焼準し処理’fcNした後
焼入れ焼戻しを行うと、フラッシュバット溶接にて粗大
化した結晶粒が微細化さ−れ、溶接部靭性が一層改善さ
れるので望ましい手段である。
Note that normal quenching and tempering is sufficient for the thermal treatment of the steel material for the chain of this invention, but if quenching and tempering is performed after the normalizing treatment 'fcN, the crystal grains that have become coarse due to flash butt welding will become finer. This is a desirable measure because it further improves the toughness of the weld zone.

捷た、チェーンは、通常、海水中にて使用されるf:め
に腐食が問題となる場合もあるが、このようなときには
鋼材中[Cu及びNiの1種又は2種を添加するのが効
果的である。
Corrosion of broken chains, which are normally used in seawater, may be a problem, but in such cases, it is recommended to add one or both of Cu and Ni to the steel material. Effective.

つさ゛に、この発明のチェーン用鋼において、各成分元
素の添加量及び炭素当量全前記のように限足した理由全
説明する。
Next, in the steel for chains of the present invention, the reason why the amount of each component element added and the carbon equivalent are all limited as described above will be explained.

(a)  C C成分には、鋼材の焼入れ性を確保して強度及2、び靭
性を保持せしめる作用があるが、その含有量が0.10
%未満では前記作用に所望の効果を得ることができず、
一方0.30%を越えて含有させると靭性が劣化する上
、浴接部に割れを発生する確率が高くなることから、そ
の含有量を0.10 〜0.30饅さ定めた。
(a) C The C component has the effect of ensuring the hardenability of steel materials to maintain strength, strength, and toughness, but when the content is 0.10
If it is less than %, the desired effect cannot be obtained in the above action,
On the other hand, if the content exceeds 0.30%, the toughness will deteriorate and the probability of cracking in the bath contact area will increase, so the content was determined to be 0.10 to 0.30%.

(b)   5i Si成分は、鋼材の強111j’を確保する作用ととも
に脱酸剤としての作用をも有するものであるが、その含
有量が0.lO%未Ftでは脱酸作用に79r望の効果
か得られず、鋼材中の非金属介在物坩加全来たして靭性
劣化を招くこととなる。一方(J、50 %を越えて含
有させてもやはり靭性劣化を引さ起すことさなるので、
その含有FK k 0.10〜0.50%と定めた。
(b) 5i The Si component has the effect of ensuring the strength 111j' of the steel material and also acts as a deoxidizing agent, but if its content is 0. If Ft is less than 10%, the desired deoxidizing effect cannot be obtained, and non-metallic inclusions in the steel material are crucified, resulting in deterioration of toughness. On the other hand, even if the content exceeds 50% (J), it will not cause toughness deterioration.
The content of FK k was determined to be 0.10 to 0.50%.

(c)  Mn 地は所望の焼入れ性確保に必須の成分であるが、その含
有量が1.30%未満では十分に満足し得る焼入れ性を
確保できず、一方2.50%を越えて含有させると鋼材
の靭性及び浴接性を劣化させること巴なるので、その含
有量’i1.30〜2.50%と定めた。
(c) Mn base is an essential component to ensure the desired hardenability, but if its content is less than 1.30%, sufficient hardenability cannot be ensured, while if the content exceeds 2.50%, Since this may deteriorate the toughness and bath weldability of the steel material, the content was determined to be 1.30 to 2.50%.

(d)  Cr Cr成分には、鋼材の靭性會ある程度改善するとともに
焼入れ住金増大させる作用があるが、その含有量が0.
50%未満では大径チェーンに所望の焼入れ性を確保す
ることが困難となり、一方1.50%を越えて含有させ
ても靭性改善の効果が少ない上、溶接部の劣化を来たす
ようになることから、その含有H,k 0050〜1.
50%と定めた。
(d) Cr The Cr component has the effect of improving the toughness of the steel material to some extent and increasing the quenching strength, but if the content is 0.
If the content is less than 50%, it will be difficult to secure the desired hardenability for large diameter chains, while if the content exceeds 1.50%, the effect of improving toughness will be small and the weld will deteriorate. From, its content H,k 0050~1.
It was set at 50%.

(e)  M。(e) M.

MO酸成分、鋼材の靭性改善及び焼入れ性の確保に栖ぬ
て有効な元素であるが、その含有量が0.10%未満で
は前記効果を期待することができず、一方0.60%を
越えて含有させると焼入れ性が過大になるだけで、コス
トの上昇を招くという不都合′fr:結果がもたらされ
るので、その含有量全0.10〜0.60%と定めた。
The MO acid component is an element that is extremely effective in improving the toughness and ensuring hardenability of steel materials, but if its content is less than 0.10%, the above effects cannot be expected; If the content exceeds this amount, the hardenability becomes excessively high, resulting in an increase in cost. Therefore, the total content is set at 0.10 to 0.60%.

(f)  sot、A7 Sot、 At成分には、脱酸作用きあわせて鋼材の結
晶粒度を調整する作用があるが、その含有量が0.01
%未満では十分な細粒化効果を得ることができないので
靭性劣化の原因となり、一方0.06%を越えると鋼材
中のアルミナ系非金属介在物が増加してやはり靭性劣化
を引き起すことから、その含有量’eo、01〜0.0
6%と定めた。
(f) sot, A7 The Sot, At component has the effect of adjusting the grain size of steel materials in addition to its deoxidizing effect, but when the content is 0.01
If it exceeds 0.06%, alumina-based nonmetallic inclusions in the steel material increase, which also causes toughness deterioration. , its content 'eo, 01~0.0
It was set at 6%.

(g)   N N成分には、Atと結合して結晶粒度調整に有効なAt
Nを析出する作用があるが、その含有針が0.003 
%未満では前記作用が十分になされず、細粒化効果を期
待できない。一方0.020%を越えて含有させると固
溶Nが増大して鋼材の靭性劣化を来1こすようになるこ
とから、その含有量゛を0.003〜0.020%と定
めた。
(g) N The N component contains At which combines with At and is effective for adjusting the crystal grain size.
It has the effect of precipitating N, but the needle containing it is 0.003
If it is less than %, the above-mentioned effect will not be achieved sufficiently, and no grain refining effect can be expected. On the other hand, if the content exceeds 0.020%, solid solution N increases and the toughness of the steel material deteriorates, so the content was set at 0.003 to 0.020%.

(h)p、及びS P及びSは、いずれも鋼材羨造上避けることのできない
不純物であるが、これらの含有量がそれぞれ0.040
%を越えると鋼材の靭性全許容限以上に劣化させること
となるので、P及びSの含有量ヲそれぞれ0.040%
以下と定めた。
(h) P and S Both P and S are impurities that cannot be avoided in the construction of steel materials, but their content is 0.040% each.
If the P and S contents exceed 0.040%, the toughness of the steel material will deteriorate beyond the total allowable limit.
It was determined as follows.

(i)V、Ti、及びNb これらの成分はいずれも、鋼中で炭化物i炭窒化物或い
は窒化物を析出して鋼材の結晶粒を微細化し、靭性を改
善する作用を有しているので、必要により1種以上の添
加がなされるものであるがこれらの含有量が合計で0.
20%を越えても前記作用にそれ以上の効果が得られな
いばかりか、鋼拐コストヲ上昇することとなるので、そ
の含有量を合計で0.20%以下と定めた。
(i) V, Ti, and Nb All of these components have the effect of precipitating carbides, carbonitrides, or nitrides in steel, refining the grains of steel, and improving toughness. , one or more types may be added if necessary, but the total content of these may be 0.
If the content exceeds 20%, not only will no further effect be obtained in the above-mentioned action, but the cost of steel manufacturing will increase, so the total content was set at 0.20% or less.

第1図は、第1表に示す成分組成の供試鋼を熱間圧延し
て得た84闘φの棒鋼を素材として、熱間曲げ加工にて
チェーンに成形し、フラッシュバット溶接による整板、
パリ取り、スタッド装入、焼入れ、及びPlじく第1表
に示す温度での焼戻しをそれぞれ施して得られたチェー
ン製品の引張強−Ivln +Cr + 2 M。
Figure 1 shows a steel bar with a diameter of 84 mm obtained by hot rolling a sample steel with the composition shown in Table 1.The material is formed into a chain by hot bending, and then plated by flash butt welding. ,
Tensile strength -Ivln +Cr + 2 M of chain products obtained by deburring, stud charging, hardening and tempering at the temperatures shown in Table 1.

さくσB)1合金元累の添加量(C十−一。−)。σB) Addition amount of 1 alloy element (C1-1.-).

及び0℃での溶接部衝撃吸収エネルギー値相互の関係を
示す線図である。なお、供試鋼A−Dは焼入れ焼戻し処
理により引張強さを75〜80 kりf/aに、供試鋼
E−Lは引張強さf 85〜’95 kyf/mAに、
供試鋼M−8は引張強さ’k 95 kgf/−以上に
それぞれ調整したものであり、各供試鋼A−8それぞれ
の引張強さと0℃における溶接部衝撃吸収エネルギー値
を第1表に併せて示した。
FIG. 3 is a diagram showing the relationship between welding zone impact absorption energy values at 0° C. and 0° C. In addition, test steel A-D has a tensile strength of 75 to 80 kf/a through quenching and tempering treatment, and test steel E-L has a tensile strength of f85 to '95 kf/mA.
The test steel M-8 was adjusted to have a tensile strength of 'k95 kgf/- or more, and the tensile strength and weld impact absorption energy value at 0°C of each test steel A-8 are shown in Table 1. It is also shown in .

第1図からも明ら〃)なよりに、溶接部の良好な衝撃吸
収エネルギー値を確保するには、鋼材の強度が犬になる
ほど合金元素の添加量を増すことが重要であり、各強変
水準において0℃での浴接部衝撃吸収エネルギー値:5
kyf−m以上を確保するには、式 %式%() る必裟のあることがわ力)る。
It is clear from Figure 1) that in order to ensure a good impact absorption energy value of the weld, it is important to increase the amount of alloying elements added as the strength of the steel increases. Impact absorption energy value of bath contact part at 0℃ at variable level: 5
In order to ensure kyf-m or more, it is necessary to use the formula %().

合金元素増針の効果については、第一に焼入性の増加か
あげられるが、これに加えて焼戻し軟化抵抗の増大おい
つ点をあけることができる。
Regarding the effect of increasing the number of alloying elements, the first effect is an increase in hardenability, but in addition to this, an increase in tempering softening resistance can be an important factor.

ff1lち、鋼材の高強度を確保するために通常とられ
る手段は焼戻し温肢を下けるこさであり、これは靭性の
劣化全招くので好ましいものではなかったが、本発明者
等によって、合金元素の添加量を所要強度に応じて訪1
1整することによって焼戻し軟化抵抗を増大させ、高温
焼戻し全可能にするとさもに、これによって高強肋でか
つ高靭性のチェ−ンの製造が可能であること、特に、こ
の高温焼戻しは溶接部の靭性改善に極めて有効であるこ
とが究明されたのである。
ff1l, the usual measure to ensure high strength of steel is to lower the tempering temperature, which is not desirable as it causes a complete deterioration of toughness, but the inventors have discovered that alloying elements Adjust the amount of addition according to the required strength.
By adjusting the temperature, the tempering softening resistance is increased and high temperature tempering is possible.This also makes it possible to manufacture chains with high stiffness and high toughness. It was discovered that it is extremely effective in improving toughness.

合金元素の添加量と焼戻し温度“との関係は、第1表か
らも明らかであり、それぞれの強度水準において、合金
元素の添加量が多いものほど高温焼戻しが可能となり、
高靭性を得られることが確認できる。
The relationship between the amount of alloying elements added and the tempering temperature is clear from Table 1, and at each strength level, the higher the amount of alloying elements added, the higher the temperature tempering becomes possible.
It can be confirmed that high toughness can be obtained.

なお、合金元素の添加量は、強靭性の観点からは特に上
限を定める必要はないが、過大の添加はコスト上昇及び
溶接性の劣化を招くので、実用上下にすることが好まし
い。
Note that there is no particular need to set an upper limit to the amount of alloying elements added from the viewpoint of toughness, but since excessive addition causes increased costs and deterioration of weldability, it is preferable to set the amount above or below the practical limit.

次いで、この発明を実施例により比較例と対比しながら
さらに具体的に説明する。
Next, the present invention will be explained in more detail through Examples and in comparison with Comparative Examples.

実施例 まず、通常の大気溶解にて第2表に示される如き成分組
成の鋼を溶製した後、熱間圧延にて直径が同じく第2表
に示される如きサイズの丸棒鋼を得た。次に、これを切
断後、熱間曲げ加工にょってチェーンに成形し、フラッ
シュバット溶接を施して整板した。そして、溶接部のパ
リ取りを行ってから、スタッドを装入し、次いで、90
0℃に加熱して3.5時間保持後水冷するという焼入れ
を行った後、第3表に示す温度で焼戻し処理を施し、チ
ェーンを製造した。
EXAMPLE First, steel having the composition as shown in Table 2 was melted by ordinary atmospheric melting, and then a round steel bar having the same diameter as shown in Table 2 was obtained by hot rolling. Next, this was cut, formed into a chain by hot bending, and flash butt welded to form a plate. Then, after deburring the welded part, insert the stud, and then
After quenching by heating to 0° C., holding for 3.5 hours, and cooling with water, a tempering treatment was performed at the temperature shown in Table 3 to produce a chain.

このようにして製造された各チェーンから、つぎに示す
試験片、 引張り試験片:D=14φ、GL=5D。
The following test pieces were prepared from each chain manufactured in this way: Tensile test piece: D=14φ, GL=5D.

衝撃試験片:JIS4号シャルピー試験片。Impact test piece: JIS No. 4 Charpy test piece.

を採取して、その機械的性質を調べた。was sampled and its mechanical properties were investigated.

第3表に示される結果からも、引張強度に応じて合金元
素の添加量を所定の値に調整した本発明鋼材1〜13は
、高強度を有するとさもVcO℃における衝撃吸収エネ
ルギーが5に9f−m以上と良好な溶接部靭性が得られ
ていることが明らかであり、これに対して組成成分量が
本発明範囲から外れている比較鋼材14〜19では所望
の特性値を得ることができず、特に合金元素量が不足し
ているものでは所望の強度を確保するために低温焼戻し
をせざるを待ず、浴接部の衝撃特性が劣化していること
が明白である。
The results shown in Table 3 also show that steel materials 1 to 13 of the present invention, in which the amount of alloying elements added is adjusted to a predetermined value according to the tensile strength, have high strength and impact absorption energy at VcO ℃ is 5. It is clear that a good weld zone toughness of 9 f-m or more is obtained, whereas comparative steel materials 14 to 19 whose compositional content is outside the range of the present invention cannot obtain the desired characteristic values. However, in cases where the amount of alloying elements is particularly insufficient, low-temperature tempering is required to ensure the desired strength, and it is clear that the impact properties of the bath contact area deteriorate.

さらに、V、Nb、、或いはTiを添加した本発明鋼材
6〜10.及び13では、これらの元素を添加しないも
のに比べて溶接部の0℃衝撃吸収エネルギー値が1〜2
kyf−m程度増加しており、その添加効果も確認され
た。
Further, steel materials 6 to 10 of the present invention added with V, Nb, or Ti. and 13, the 0°C impact absorption energy value of the welded part is 1 to 2 compared to those without these elements added.
kyf-m increased, and the effect of its addition was also confirmed.

上述のように、この発明によれは、極めて高い強度と、
優れた靭性とを兼ね備えている大径チェーン用鋼材をコ
スト安く得ることができ、苛酷な条件下での資源開発等
に極めて有用な鋼材を提供できるなど、工業上有用な効
果がもたらされるのである。
As mentioned above, this invention provides extremely high strength and
It is possible to obtain steel materials for large-diameter chains that have excellent toughness at a low cost, and it brings about industrially useful effects such as providing extremely useful steel materials for resource development under harsh conditions. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、鋼材の引張強さ、合金元素の添加量、及び0
℃における溶接部シャルピー衝撃吸収エネルギーそれぞ
れの相互関係を示す図面である。 出願人  住友金属工業株式会社
Figure 1 shows the tensile strength of steel, the amount of alloying elements added, and the
3 is a drawing showing the mutual relationship between Charpy impact absorption energies of welded parts at ℃. Applicant: Sumitomo Metal Industries, Ltd.

Claims (1)

【特許請求の範囲】 +11  C: 0.15〜0.30%。 Si:0.10〜0.50%。 Δ紬: 1.30〜2.50%。 Cr : 0.50〜1.50%。 Mo : 0.10〜0.60%。 soL、AL : 0.010〜0.060%。 N : 0.003〜0.020%。 p : 0.040%以下。 S : 0.040%以下。 全含有する々ともに、式、 〔但し、σB:チェーンの所要引張強さくkg f /
a ) ]を満足し、 Fe及びその他の不可避不純物:残り、から成る成分組
成(以上重量%)を有することを特徴とする高強度高靭
性チェーン用銅材。 f21  C: 0.15〜0.30%。 Si : 0.10〜0.50%。 Mn : 1.30〜2.50%。 Cr : 0.50〜1.50%。 Mo:0.10〜0.60%。 sot、At: 0.010〜0.060%。 N : 0.003〜0.020%。 P : 0.040%以下。 S : 0.O10%以下。 全含有するとともに、 v 、 Nb、及びTiの1種以上二合計で0.20%
以下。 をも含み、かつ、式、 〔但し、σB:チェーンの所要引張強さくkff /m
、4 ) ]を満足し、 Fe及びその他の不可避不純物:残り、から成る成分組
成(以上N量%)を有することを特徴とする高強度高靭
性チェーン用鋼材。
[Claims] +11C: 0.15 to 0.30%. Si: 0.10-0.50%. ΔPongee: 1.30-2.50%. Cr: 0.50-1.50%. Mo: 0.10-0.60%. soL, AL: 0.010-0.060%. N: 0.003-0.020%. p: 0.040% or less. S: 0.040% or less. In addition to the total content, the formula is [However, σB: Required tensile strength of the chain kg f /
A) A high-strength, high-toughness copper material for a chain, which satisfies the following: Fe and other unavoidable impurities: the remainder (weight %). f21C: 0.15-0.30%. Si: 0.10-0.50%. Mn: 1.30-2.50%. Cr: 0.50-1.50%. Mo: 0.10-0.60%. sot, At: 0.010-0.060%. N: 0.003-0.020%. P: 0.040% or less. S: 0. O10% or less. Total content of one or more of v, Nb, and Ti is 0.20% in total
below. and the formula, [where σB: required tensile strength of the chain kff/m
, 4) ], and has a composition (N content % above) of Fe and other unavoidable impurities (remaining).
JP3483383A 1983-03-03 1983-03-03 Steel material for chain with high strength and toughness Pending JPS59159970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3483383A JPS59159970A (en) 1983-03-03 1983-03-03 Steel material for chain with high strength and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3483383A JPS59159970A (en) 1983-03-03 1983-03-03 Steel material for chain with high strength and toughness

Publications (1)

Publication Number Publication Date
JPS59159970A true JPS59159970A (en) 1984-09-10

Family

ID=12425198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3483383A Pending JPS59159970A (en) 1983-03-03 1983-03-03 Steel material for chain with high strength and toughness

Country Status (1)

Country Link
JP (1) JPS59159970A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202053A (en) * 1986-02-28 1987-09-05 Sumitomo Metal Ind Ltd Steel material for chain having low yield ratio
JPS62202052A (en) * 1986-02-28 1987-09-05 Sumitomo Metal Ind Ltd Steel material for chain having high strength and high fracture toughness
JP2007188978A (en) * 2006-01-11 2007-07-26 Nitto Denko Corp Wiring circuit board and its manufacturing method
JP2019127636A (en) * 2018-01-26 2019-08-01 日本製鉄株式会社 Mooring chain steel and mooring chain
JP2021001366A (en) * 2019-06-21 2021-01-07 日本製鉄株式会社 Mooring chain and vessel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202053A (en) * 1986-02-28 1987-09-05 Sumitomo Metal Ind Ltd Steel material for chain having low yield ratio
JPS62202052A (en) * 1986-02-28 1987-09-05 Sumitomo Metal Ind Ltd Steel material for chain having high strength and high fracture toughness
JP2007188978A (en) * 2006-01-11 2007-07-26 Nitto Denko Corp Wiring circuit board and its manufacturing method
JP2019127636A (en) * 2018-01-26 2019-08-01 日本製鉄株式会社 Mooring chain steel and mooring chain
JP2021001366A (en) * 2019-06-21 2021-01-07 日本製鉄株式会社 Mooring chain and vessel

Similar Documents

Publication Publication Date Title
JP4903918B1 (en) Ultra high strength welded joint and manufacturing method thereof
KR101629129B1 (en) Base material for high-toughness clad steel plate and method for producing said clad steel plate
KR20070091368A (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
JP2007177327A (en) Thick steel plate having excellent toughness and reduced softening in weld heat-affected zone
JP2006241551A (en) Thick steel plate having excellent weldability and low temperature toughness
CN110385545B (en) Welding wire steel for manual argon arc welding
JPS59159970A (en) Steel material for chain with high strength and toughness
KR100847174B1 (en) High tension steel sheet having superior low temperature toughness in weld heat-affected zone
JPS6089551A (en) Chain steel having high strength and toughness
JPS59159972A (en) Steel material for chain with high strength and toughness
JPS6352090B2 (en)
JP2688312B2 (en) High strength and high toughness steel plate
JP3617591B2 (en) TIG welding method and TIG welding material
JPS59159969A (en) Steel material for chain with high strength and toughness
JPH11189840A (en) High strength steel plate for line pipe, excellent in hydrogen induced cracking resistance, and its production
JP2930772B2 (en) High manganese ultra-high strength steel with excellent toughness of weld heat affected zone
JPS62202052A (en) Steel material for chain having high strength and high fracture toughness
JP6589536B2 (en) Manufacturing method of welded joint
JPS61104056A (en) High-strength and high-toughness low-carbon cr-mo steel plate having excellent creep-resisting property as well as superior resistance to weld crack and erosion
JP2743765B2 (en) Cr-Mo steel plate for pressure vessel and method for producing the same
JPS62202053A (en) Steel material for chain having low yield ratio
JPS58157594A (en) Method for welding high strength steel materials
JPH0586438A (en) Structure steel for low temperature use
JPS63317623A (en) Production of wear resisting steel plate having excellent delayed cracking resistance
JPS6086244A (en) High strength and high toughness chain grade steel material