JPS6163596A - Installation for production of single crystal of compound semiconductor - Google Patents

Installation for production of single crystal of compound semiconductor

Info

Publication number
JPS6163596A
JPS6163596A JP18560084A JP18560084A JPS6163596A JP S6163596 A JPS6163596 A JP S6163596A JP 18560084 A JP18560084 A JP 18560084A JP 18560084 A JP18560084 A JP 18560084A JP S6163596 A JPS6163596 A JP S6163596A
Authority
JP
Japan
Prior art keywords
crystal
single crystal
melt
raw material
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18560084A
Other languages
Japanese (ja)
Inventor
Katsutoshi Yoneya
勝利 米屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18560084A priority Critical patent/JPS6163596A/en
Publication of JPS6163596A publication Critical patent/JPS6163596A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:The part for controlling the shape of a single crystal is made of sintered aluminum nitride to prevent the part from being corroded with the starting materials for the crystal and the melt sealant whereby dimensional stability and the quality of the crystals are improved. CONSTITUTION:The unit for production of single crystals of compound semiconductors is composed of a high-pressure vessel 1, a crucible 2 containing melted starting materials 7 and liquid sealant, a part for controlling the shape of the crystal which is set on the interface between both melts 7 and 8 and has an opening 13 and a pulling-up unit 9 for the crystal. The part 12 is constituted of sintered aluminum nitride.

Description

【発明の詳細な説明】 [発明の技術分野) 本発明はLEC法による化合物半導体単結晶の製造装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an apparatus for manufacturing a compound semiconductor single crystal using the LEC method.

[発明の技術的背景とその問題点] 従来から、Ga  As 、  I n −P、 Ga
 −P等の融点における分解圧の高い化合物半導体単結
晶製造方法としてLEC法が知られている。
[Technical background of the invention and its problems] Conventionally, GaAs, In-P, Ga
The LEC method is known as a method for manufacturing compound semiconductor single crystals with high decomposition pressure at the melting point of -P, etc.

この方法を第2図を用いて説明すると、まず高圧容器1
内に配設されたるつぼ受は台3.4.5上に、結晶原料
と8203等の封止剤とを収容したるつぼ2を装着する
To explain this method using Fig. 2, first, the high pressure vessel 1
A crucible holder disposed within the crucible holder mounts the crucible 2 containing the crystal raw material and a sealant such as 8203 on the table 3.4.5.

次にるつは2を同軸的に取り囲む発熱体6によってるつ
ぼ2を加熱し、結晶原料と封止剤とを加熱溶融する。
Next, the crucible 2 is heated by a heating element 6 coaxially surrounding the crucible 2, and the crystal raw material and the sealant are heated and melted.

このとき結晶原料融液7と封止剤融液8とは密度差によ
って211状態となり、密度の大きい結晶原料融液7(
融液の密度はGa−ASで約5.7(+/C!、In−
Pで約5.0Q /cd、Ga −Pで約4.4Q /
cd>は密度の小さい封止剤融液8(融液密度はB2O
3で約1.5’l/cj)により被覆されることによっ
て結晶原料融液7の分解蒸発が抑えられる。
At this time, the crystal raw material melt 7 and the sealant melt 8 are in the 211 state due to the density difference, and the crystal raw material melt 7 (
The density of the melt is about 5.7 (+/C!, In-
About 5.0Q/cd for P, about 4.4Q/cd for Ga-P
cd> is a sealant melt 8 with a small density (melt density is B2O
3 (approximately 1.5'l/cj), decomposition and evaporation of the crystal raw material melt 7 can be suppressed.

また、このとき高圧容器1内を不活性ガスにより加熱す
ることによって結晶原料融液7の気化が抑えられる。
Further, at this time, by heating the inside of the high-pressure container 1 with an inert gas, vaporization of the crystal raw material melt 7 is suppressed.

この状態で結晶引き上げ軸9の先端に取付けた種結晶1
0を封止剤融液8を通過させて結晶原料融液7に接触さ
せ、しかる後、この引き上げ軸9を回転ざl!ながら引
き上げることにより単結晶11がiりられる。
In this state, the seed crystal 1 attached to the tip of the crystal pulling shaft 9
0 passes through the sealant melt 8 and comes into contact with the crystal raw material melt 7, and then the pulling shaft 9 is rotated! The single crystal 11 is removed by pulling it up.

このようにLEC法によれば、比較的間中な装置で化合
物半導体単結晶を引き上げることができる利点があるが
、その反面この方法で1qられた単結晶にはしばしば欠
陥が発生し、また結晶の横断面形状を正確に制御するこ
とが困難であるという欠点があった。
As described above, the LEC method has the advantage of being able to pull compound semiconductor single crystals using relatively intermediate equipment, but on the other hand, defects often occur in the single crystals grown by this method, and crystal The disadvantage is that it is difficult to accurately control the cross-sectional shape of the

これは結晶生成雰囲気が高圧とされているため熱の対流
が甚しく、放熱や融液界面の温度分布が不均一になって
結晶内の内部歪みが大きくなること、時間の経過ととも
に封止剤融液中に結晶原料融液が拡散し、結晶原料Fa
?l!ffiが封止剤融液を通して蒸発するようになり
、装置に取付けられている監視窓を曇らせ、単結晶形状
制御の障害となるためであると考えられる。
This is because the atmosphere in which the crystals are formed is under high pressure, so there is severe heat convection, which causes heat dissipation and temperature distribution at the melt interface to become uneven, increasing internal strain within the crystal. The crystal raw material melt diffuses into the melt, and the crystal raw material Fa
? l! This is believed to be because ffi evaporates through the sealant melt, clouding the monitoring window attached to the device and interfering with single crystal shape control.

このため単結晶の形状を規制するための間口を有する単
結晶形状制御部材を結晶原料融液に浮かべて、この間口
を通して単結晶を引き上げることが行われている。この
単結晶形状制御部材を使用した場合、形状制御部材は結
晶原料融液を覆い結晶原料融液からの放熱を防止する結
果、固液界面付近の熱的状態が安定し、歪みの少ない単
結晶を得ることができる。
For this reason, a single crystal shape control member having a frontage for regulating the shape of the single crystal is floated in the crystal raw material melt, and the single crystal is pulled up through this frontage. When this single crystal shape control member is used, the shape control member covers the crystal raw material melt and prevents heat radiation from the crystal raw material melt, resulting in a stable thermal state near the solid-liquid interface and a less distorted single crystal. can be obtained.

この単結晶形状制御部材には、高温耐食性や機械的強度
に優れていることが要求され、通常、シリカ、黒鉛、窒
化ケイ素等の材質で形成されている。
This single-crystal shape control member is required to have excellent high-temperature corrosion resistance and mechanical strength, and is usually made of materials such as silica, graphite, and silicon nitride.

しかしながら、これらの材質ではしばしば結晶原料融液
が汚染され、昨今の、特にQa AS単結晶のより一層
の高純度化、高品質化という要求に応えることが難しい
という難点があった。
However, with these materials, the crystal raw material melt is often contaminated, making it difficult to meet the recent demands for higher purity and higher quality, especially for Qa AS single crystals.

[発明の目的コ 本発明このような難点を解消するためなされたもので、
結晶原料融液を汚染することなく高温耐食性や機械的強
度に優れた単結晶形状制御部材を使用して高純度で高品
質の単結晶を製造することのできる化合物半導体単結晶
の製造装置を提供することを目的とする。
[Purpose of the Invention] The present invention has been made to solve these difficulties,
Provides compound semiconductor single crystal manufacturing equipment that can manufacture high purity, high quality single crystals using single crystal shape control members with excellent high temperature corrosion resistance and mechanical strength without contaminating the crystal raw material melt. The purpose is to

[発明の概要〕 すなわち本発明の化合物半導体単結晶の製造装置は、高
圧容器と、該高圧容器内に配設されて結1    品原
料融液および封止剤融液を収容するるつぼと、前記結晶
原料融液と封止剤融液との界面に配置された中央部に間
口を有する引き上げられる単結晶の形状制御部材と、前
記るつぼを取り囲んで加熱する発熱体と、前記るつぼ上
に昇降自在に配置された結晶引上げ装置とを備えた化合
物半導体単結晶の製造装置において、前記単結晶の形状
制御11部材が窒化アルミニウム系焼結体で構成されて
なることを特徴としている。
[Summary of the Invention] That is, the compound semiconductor single crystal manufacturing apparatus of the present invention comprises: a high-pressure container; a crucible disposed in the high-pressure container to accommodate a material melt and a sealant melt; a shape control member for a pulled single crystal having a frontage in the center disposed at the interface between the crystal raw material melt and the sealant melt; a heating element that surrounds and heats the crucible; and a heating element that can be raised and lowered above the crucible. In the compound semiconductor single crystal manufacturing apparatus, the single crystal shape control member 11 is made of an aluminum nitride-based sintered body.

本発明における形状制御11部材は、結晶原料融液の比
重より小さく、かつ封止剤融液の比重よりも大きい比重
を有しており、例えば次のようにして製造される。
The shape control member 11 in the present invention has a specific gravity smaller than the specific gravity of the crystal raw material melt and larger than the specific gravity of the sealant melt, and is manufactured, for example, as follows.

すなわち、窒化アルミニウムに、酸化イツトリウム等の
希土類元素の酸化物や酸化カルシウム等のアルカリ土類
金属元素の酸化物等を焼結助剤として添加し、ざらに必
要に応じて窒化ホウ素を加えて混合した後、パラフィン
等のバインダを添加し所定の形状に成形する。
That is, an oxide of a rare earth element such as yttrium oxide or an oxide of an alkaline earth metal element such as calcium oxide is added to aluminum nitride as a sintering agent, and boron nitride is added to the grains as necessary and mixed. After that, a binder such as paraffin is added and molded into a predetermined shape.

形状fli制御部材の形状は、中央部に必要とされる単
結晶の横断面形状に相当する間口部を有し、はぼるつぼ
に収まる大きさの中空円錐台類似形状とする。成形後は
脱脂し、次いで不活性雰囲気中、1700〜1900℃
に加熱して焼成することにより、均一に[5化された窒
化アルミニウム系焼結体からなる単結晶形状制御部材を
得ることができる。
The shape of the shape fli control member is a hollow truncated cone-like shape having a center portion corresponding to the required cross-sectional shape of a single crystal, and having a size that fits in a crucible. After molding, it is degreased and then heated at 1700-1900℃ in an inert atmosphere.
By heating and firing, it is possible to obtain a single-crystal shape control member made of an aluminum nitride-based sintered body that is uniformly [5].

[発明の実施例コ 次に本発明の実施例について説明する。[Embodiments of the invention] Next, examples of the present invention will be described.

実施例 窒化アルミニウムに3重量%の酸化イツトリウムを添加
混合し、第2図に示すような上下開放の中空円311台
類似形状に成形し、次いで窒素雰囲気中、1850’C
X2時間の条件で常圧焼結法により焼成して単結晶形状
制御部材12を製造した。
Example: Aluminum nitride was mixed with 3% by weight of yttrium oxide and formed into a shape similar to 311 hollow circles with open tops and bottoms as shown in Fig. 2, and then heated at 1850'C in a nitrogen atmosphere.
The single-crystal shape control member 12 was manufactured by sintering by the pressureless sintering method under the conditions of X2 hours.

次に、この単結晶形状制御部材12を、第1図に示す、
ように、高圧容器1内に配設されたるつぼ2内におぎ、
発熱体6によりるつぼ2を加熱してQaとASの結晶原
料融液7と封止剤融液8の界面に形状制御部材12を位
置させた。
Next, this single crystal shape control member 12 is shown in FIG.
As shown in FIG.
The crucible 2 was heated by the heating element 6, and the shape control member 12 was positioned at the interface between the crystal raw material melt 7 of Qa and AS and the sealant melt 8.

この状態で結晶引き上げ軸9の先端に取付けた種結晶1
0を封止剤融液8および形状制御部材12のg40部1
3に通過させて結晶原料融液7に接触させ、しかる後、
この引き上げ軸9を回転させながら引き上げることによ
って形状制御部材12の間口部13に相応する横断面形
状を有するGa△S単結晶11を得た。なお、第1図中
符号14は保温部材を示す。
In this state, the seed crystal 1 attached to the tip of the crystal pulling shaft 9
0 to g40 part 1 of sealant melt 8 and shape control member 12
3 to contact the crystal raw material melt 7, and then
By pulling up while rotating the pulling shaft 9, a GaΔS single crystal 11 having a cross-sectional shape corresponding to the opening 13 of the shape control member 12 was obtained. Note that the reference numeral 14 in FIG. 1 indicates a heat retaining member.

このようにして19られたQa−AS単結晶の不純物は
IXllXlo−l5”以下であり、窒化ケイ素製形状
制御部材を使用した場合に比べて著しく減少した。また
、この形状制御部材より固液界面付近の熱的状態が安定
した結果、単結晶は歪みの少ない良質のものであった。
The impurities in the Qa-AS single crystal prepared in this way were less than IXllXlo-15'', which was significantly reduced compared to when a shape control member made of silicon nitride was used. As a result of the stable thermal conditions in the vicinity, the single crystal was of good quality with little distortion.

[発明の効果] 以上説明したように本発明の装置にJ:れば、結晶原料
融液への汚染がなく、純度の高い化合物半導体単結晶が
得られ゛る。また、この窒化アルミニウム系焼結体から
なる単結晶形状制御部材は高温耐食性や熱衝撃性に優れ
ているので、結晶原料融液や封止剤融液からの浸食やそ
れに伴う劣化、変形が少なく、寸法安定性の良い、しか
も高品質の化合物半導体単結晶を得ることができる。
[Effects of the Invention] As explained above, by using the apparatus of the present invention, there is no contamination of the crystal raw material melt, and a highly pure compound semiconductor single crystal can be obtained. In addition, this single-crystal shape control member made of aluminum nitride-based sintered material has excellent high-temperature corrosion resistance and thermal shock resistance, so it is less likely to be eroded by the crystal raw material melt or the sealant melt, as well as the accompanying deterioration and deformation. , a compound semiconductor single crystal with good dimensional stability and high quality can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はLEC法による化合物結晶半導体の製造装置の
一実施例を概略的に示す断面図、第2図は本発明の実施
例の装置に用いる単結晶形状制御部材の斜視図である。
FIG. 1 is a cross-sectional view schematically showing an embodiment of a compound crystal semiconductor manufacturing apparatus using the LEC method, and FIG. 2 is a perspective view of a single crystal shape control member used in the apparatus of the embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)高圧容器と、該高圧容器内に配設されて結晶原料
融液および封止剤融液を収容するるつぼと、前記結晶原
料融液と封止剤融液との界面に配置された中央部に間口
を有する引き上げられる単結晶の形状制御部材と、前記
るつぼを取り囲んで加熱する発熱体と、前記るつぼ上に
昇降自在に配置された結晶引上げ装置とを備えた化合物
半導体単結晶の製造装置において、前記単結晶の形状制
御部材が窒化アルミニウム系焼結体で構成されてなるこ
とを特徴とする化合物半導体単結晶の製造装置。
(1) A high-pressure container, a crucible disposed in the high-pressure container and containing a crystal raw material melt and a sealant melt, and a crucible disposed at an interface between the crystal raw material melt and the sealant melt. Manufacture of a compound semiconductor single crystal, comprising: a shape control member for pulling a single crystal having an opening in the center; a heating element that surrounds and heats the crucible; and a crystal pulling device disposed above the crucible so as to be movable up and down. An apparatus for manufacturing a compound semiconductor single crystal, characterized in that the single crystal shape control member is made of an aluminum nitride-based sintered body.
JP18560084A 1984-09-05 1984-09-05 Installation for production of single crystal of compound semiconductor Pending JPS6163596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18560084A JPS6163596A (en) 1984-09-05 1984-09-05 Installation for production of single crystal of compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18560084A JPS6163596A (en) 1984-09-05 1984-09-05 Installation for production of single crystal of compound semiconductor

Publications (1)

Publication Number Publication Date
JPS6163596A true JPS6163596A (en) 1986-04-01

Family

ID=16173634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18560084A Pending JPS6163596A (en) 1984-09-05 1984-09-05 Installation for production of single crystal of compound semiconductor

Country Status (1)

Country Link
JP (1) JPS6163596A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5292487A (en) * 1991-04-16 1994-03-08 Sumitomo Electric Industries, Ltd. Czochralski method using a member for intercepting radiation from raw material molten solution and apparatus therefor
WO2000008238A1 (en) * 1998-08-07 2000-02-17 Nec Corporation Semiconductor crystal growing apparatus and crystal growing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850957A (en) * 1981-08-28 1983-03-25 ベンウオルト・コ−ポレ−シヨン Treatment of dog otitis externa by beta- (1-adamantyl)-alpha, alpha-dimethylamine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850957A (en) * 1981-08-28 1983-03-25 ベンウオルト・コ−ポレ−シヨン Treatment of dog otitis externa by beta- (1-adamantyl)-alpha, alpha-dimethylamine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5292487A (en) * 1991-04-16 1994-03-08 Sumitomo Electric Industries, Ltd. Czochralski method using a member for intercepting radiation from raw material molten solution and apparatus therefor
US5429067A (en) * 1991-04-16 1995-07-04 Sumitomo Electric Industries, Ltd. Czochralski method using a member for intercepting radiation from a raw material molten solution
WO2000008238A1 (en) * 1998-08-07 2000-02-17 Nec Corporation Semiconductor crystal growing apparatus and crystal growing method
US6527852B1 (en) 1998-08-07 2003-03-04 Nec Corporation Semiconductor crystal growing apparatus and crystal growing method

Similar Documents

Publication Publication Date Title
US11440849B2 (en) SiC crucible, SiC sintered body, and method of producing SiC single crystal
US8231727B2 (en) Crystal growth apparatus and method
CA2452542C (en) Method and apparatus for growing semiconductor crystals with a rigid support with carbon doping and resistivity control and thermal gradient control
EP2940196B1 (en) Method for producing n-type sic single crystal
JP4135239B2 (en) Semiconductor crystal, manufacturing method thereof and manufacturing apparatus
US7067007B2 (en) Process and device for growing single crystals
US5057287A (en) Liquid encapsulated zone melting crystal growth method and apparatus
US20030172870A1 (en) Apparatus for growing monocrystalline group II-VI and III-V compounds
JP2010030891A (en) Compound semiconductor crystal
JPS60251191A (en) Process for growing single crystal of compound having high dissociation pressure
US5007980A (en) Liquid encapsulated zone melting crystal growth method and apparatus
EP0222404A1 (en) Gallium arsenide crystals and process for growing same
JPS6163596A (en) Installation for production of single crystal of compound semiconductor
EP0104741B1 (en) Process for growing crystalline material
EP0210439A1 (en) Method for growing single crystals of dissociative compound semiconductor
US4046954A (en) Monocrystalline silicates
JP5029184B2 (en) Semiconductor crystal manufacturing method and manufacturing apparatus thereof
JPH1095699A (en) Growth of zirconium diboride single crystal
US10815586B2 (en) Gallium-arsenide-based compound semiconductor crystal and wafer group
JP2019104661A (en) METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
KR100980822B1 (en) The growing method of piezoelectric single crystal
JP3158661B2 (en) Method and apparatus for producing high dissociation pressure single crystal
KR20010017991A (en) Apparatus for improved single crystal growing furnace
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
JP3612187B2 (en) Crucible susceptor