JPS6163057A - Manufacture of misfet - Google Patents

Manufacture of misfet

Info

Publication number
JPS6163057A
JPS6163057A JP59183698A JP18369884A JPS6163057A JP S6163057 A JPS6163057 A JP S6163057A JP 59183698 A JP59183698 A JP 59183698A JP 18369884 A JP18369884 A JP 18369884A JP S6163057 A JPS6163057 A JP S6163057A
Authority
JP
Japan
Prior art keywords
regions
source
drain
film
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59183698A
Other languages
Japanese (ja)
Inventor
Ban Nakajima
中島 蕃
Kenji Miura
三浦 賢次
Akifumi Sotani
杣谷 聡文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59183698A priority Critical patent/JPS6163057A/en
Publication of JPS6163057A publication Critical patent/JPS6163057A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region

Abstract

PURPOSE:To make an FET with no shortcircuit between electrodes and substrate while reducing parasitic resistance and capacity in source and drain regions by a method wherein these regions constituting a MISFET are encircled by insulating film to be buried in a semiconductor substrate at specific gap. CONSTITUTION:N type regions 2' and 21' are diffusion-formed at the ends of source and drain regions 11 to be formed on the surface layer of a P type Si substrate 1. Next recessions with specified depth and dimension exposing the regions 2' and 21' are made in the substrate 1 to bury N type conductors therein respectively as a source region and a drain region 11. Later a gate electrode 4 is mounted between the regions 2' and 21' through the intermediary of a gate film 51 and then field insulating films 7 covering the regions 11 and interlayer insulating film 5 covering overall surface are provided with openings to mount electrodes 7 and 6 on respective regions 11. Through these procedures, depletion layers 3' and 31' may be formed below the regions 2' and 21' to reduce the mutual conductance.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はソース・ドレイン領域の抵抗を低減し、かつソ
ース・ドレイン領域を半導体基板間の容量を低減し、及
びアルミニウム電極と半導体基板間の短絡防止を図った
MI8FET及びその製造方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention reduces the resistance of source/drain regions, reduces the capacitance between the source/drain regions and a semiconductor substrate, and reduces the capacitance between an aluminum electrode and a semiconductor substrate. The present invention relates to an MI8FET designed to prevent short circuits and a method of manufacturing the same.

(従来技術) 従来の構造について第5図を用いて説明する。(Conventional technology) The conventional structure will be explained using FIG. 5.

νりとして、nチャネルMO8FETについて説明する
が、pチャネルMO8FETについては以下に述べる導
電層のn形をp形に、p形をn形におきかえて考えれば
良い。第5図はチャネル方向のUrrkiを示している
。従来、ソース・ドレイン領域はp形半導体基板1に、
ゲート電極4をマスクにして砒素またはリンをイオン注
入してn形のソース領域2とドレイン領域21を形成し
ていた。MOSFETのチャネル長りを短かくし、かつ
短チヤネル効果を小さくするには、n形層の領域2,2
1の深さくxj)を浅くするとともに、チャネルが形成
される基板表面近傍はポロンのチャネルドープにより濃
度を高くする必要がある。
For example, an n-channel MO8FET will be explained, but a p-channel MO8FET can be considered by replacing the n-type with the p-type and the p-type with the n-type of the conductive layer described below. FIG. 5 shows the Urrki in the channel direction. Conventionally, source/drain regions are formed in a p-type semiconductor substrate 1,
Using the gate electrode 4 as a mask, arsenic or phosphorus is ion-implanted to form an n-type source region 2 and drain region 21. In order to shorten the channel length of the MOSFET and reduce the short channel effect, regions 2 and 2 of the n-type layer
It is necessary to make the depth xj) shallow and to increase the concentration near the substrate surface where the channel is formed by doping the channel with poron.

(発明が解決しようとする問題点) 以上のような構成においては次のような問題を引き起こ
す。まず、n形層の領域2,21を浅くすると、(1)
n形層のシート抵抗が大きくなるため、ソース端及びド
レイン端からアルミニウム電極6までの間の寄生抵抗R
が大きくなシ、MO81+’ETの相互コンダクタンス
(gm)が低下する。(2)アルミニウム電極6とシリ
コンの反応によ)、アルミニウムとシリコンとの反応部
8が基板に達し、アルミニウム電極6と基板lが短絡す
るという問題が生じる。また、基板表面近傍のボロン濃
度を上げると、n形ソース領域2及びn形ドレイン領域
21と基板間にそれぞれ形成される空乏層3,31の幅
が減少し、窒乏層容ψC,、a、が大きくなるという問
題が生じる。なお、第r図で5は眉間絶縁膜。
(Problems to be Solved by the Invention) The above configuration causes the following problems. First, if the regions 2 and 21 of the n-type layer are made shallow, (1)
Since the sheet resistance of the n-type layer increases, the parasitic resistance R between the source and drain ends to the aluminum electrode 6 increases.
When is large, the mutual conductance (gm) of MO81+'ET decreases. (2) Due to the reaction between the aluminum electrode 6 and silicon), the reaction portion 8 of aluminum and silicon reaches the substrate, causing a problem that the aluminum electrode 6 and the substrate l are short-circuited. Furthermore, when the boron concentration near the substrate surface is increased, the widths of the depletion layers 3 and 31 formed between the n-type source region 2 and n-type drain region 21 and the substrate, respectively, decrease, and the nitrogen depletion layer capacity ψC, , a , becomes large. In Figure R, 5 is the insulating film between the eyebrows.

7はフィールド絶縁膜、51はゲート酸化膜である。7 is a field insulating film, and 51 is a gate oxide film.

(問題点を解決するための手段) 本発明はこれらの問題を解決するために提案されたもの
で、ソース端及びドレイン端の一部を除いて、ソース・
ドレイン領域を絶縁体で取シ囲み。
(Means for Solving the Problems) The present invention was proposed to solve these problems.
Surround the drain region with an insulator.

基板内に卯込むことを特徴とし、その目的はソース・ド
レイン寄生抵抗を低減すること、ソース・ドレイン寄生
容量を低減すること、及びアルミニウムの基板への突抜
けを防止することにある。
It is characterized by being buried in the substrate, and its purpose is to reduce source/drain parasitic resistance, reduce source/drain parasitic capacitance, and prevent aluminum from penetrating into the substrate.

上記の目的を達成するため、本発明は主たるソース・ド
レイン領域が、半導体基板に埋込まれた導電体により形
成されており、かつソース端近傍及びドレイン端近傍を
除く該導電体と半導体基板の間に絶縁体が形成されて−
ることを特徴とするM工、9FETを発明の要旨とする
ものである。
In order to achieve the above object, the present invention provides that the main source/drain regions are formed of a conductor embedded in a semiconductor substrate, and that the conductor and the semiconductor substrate, except for the vicinity of the source end and the drain end, are formed by a conductor embedded in a semiconductor substrate. An insulator is formed between -
The gist of the invention is an M-type 9FET characterized by the following characteristics.

さらに本発明16.M1378丁のソース・ドレイン領
域が形成される半導体基板表面をエツチングして凹部を
形成する工程と、該凹部の表面に絶縁体を形成する工程
と、チャネルのソース端近傍及びドレイン端近傍の該絶
縁体を除去する工程と、該凹部を導電体で埋込む工程と
を有することを特徴とするM工5FETの製造方法を発
明の要旨とするものである。
Furthermore, the present invention 16. A step of etching the surface of the semiconductor substrate where the source/drain regions of M1378 are formed to form a recess, a step of forming an insulator on the surface of the recess, and a step of forming the insulator near the source end and the drain end of the channel. The gist of the invention is a method for manufacturing an M-type 5FET, which is characterized by comprising a step of removing the body and a step of filling the recess with a conductor.

次に本発明の詳細な説明する。なお実施例は一つの例示
であって、本発明の精神を逸脱しない範囲で、種々の変
更あるいは改良を行いうろことは云うまでもない。
Next, the present invention will be explained in detail. It should be noted that the embodiments are merely illustrative, and it goes without saying that various changes and improvements may be made without departing from the spirit of the present invention.

本発明の実施例をnチャネルMO8FETを対象に第1
図〜第4図を用いて詳細に説明する。
The first embodiment of the present invention is applied to an n-channel MO8FET.
This will be explained in detail using FIGS.

(実施例1) 第1図は本発明の第1の実施例でちって、図にかいて1
はp形半導体基板、2′および21′はそれぞれソース
端及びドレイン端近傍のn形層、3′および31’はソ
ース端およびドレイン端(支)形成された空乏層、4は
ゲート電極、5は眉間絶縁膜、6はアルミニウム電極、
7はフィールド絶縁膜、9はソース及びドレイン領域と
基板間に形成された絶縁膜、10はソース端近傍及びド
レイン端近傍の絶縁膜9に開けられた窓、121N込ま
れた導電体である。すなわち図においてp形半導体基板
l内にソース領域及びドレイン領域をっつむように絶縁
膜9が形成され、夫々の絶縁膜9内に導電体11が形成
されてお11両絶縁膜9の互に対向する側の上部に窓i
oが設けられ、この窓の部分にn形層2’、21’が形
成されており、これらのn形層2’、21’を訃おって
ゲート酸化M5Nが形成されている。さらにこのゲート
酸化膜の中央上蔀にゲート電極4が形成されている。前
記のゲート電極及びソース・ドレイン領域をおおって層
間絶fiM5が形成されてbる。アルミニウム2極6は
夫々ソース・ドレイン領域に対する引出端子である。こ
のような構造になっているから、凹部の深さXjを増し
、導電体11の抵抗率を小さくすることによIF生抵抗
R′を小さくでき、ま、た絶縁膜9の厚さを厚くするこ
とによりソース・ドレインの寄生容量をj\さくできる
。アルミニウム電極と基板との短絡は絶縁膜9が形成さ
れているので生じない。
(Embodiment 1) Figure 1 shows the first embodiment of the present invention.
are p-type semiconductor substrates, 2' and 21' are n-type layers near the source and drain ends, respectively, 3' and 31' are depletion layers formed at the source and drain ends (supports), 4 is a gate electrode, and 5 is an insulating film between the eyebrows, 6 is an aluminum electrode,
7 is a field insulating film, 9 is an insulating film formed between the source and drain regions and the substrate, 10 is a window opened in the insulating film 9 near the source end and the drain end, and a conductor filled with 121N. That is, in the figure, an insulating film 9 is formed in a p-type semiconductor substrate l so as to sandwich a source region and a drain region, a conductor 11 is formed in each insulating film 9, and the two insulating films 9 are opposite to each other. There is a window at the top of the side
n-type layers 2', 21' are formed in this window portion, and gate oxide M5N is formed by removing these n-type layers 2', 21'. Further, a gate electrode 4 is formed on the center upper edge of this gate oxide film. An interlayer fiM5 is formed covering the gate electrode and source/drain regions. The aluminum two poles 6 are lead terminals for the source and drain regions, respectively. With this structure, the IF raw resistance R' can be reduced by increasing the depth Xj of the recess and reducing the resistivity of the conductor 11, and by increasing the thickness of the insulating film 9. By doing so, the parasitic capacitance of the source and drain can be reduced. A short circuit between the aluminum electrode and the substrate does not occur because the insulating film 9 is formed.

(実施?!12) 第2図は本発明の第2の実施例である。チャネルドープ
層12を除いて各層の番号は第1図と同じであるので説
明は省略する。チャネルドープ層12をチャネルの中央
部のみに形成すると、MO8F]1fiT特性はこのチ
ャネルドープ層の幅L′により決まり、ソース・ドレイ
ン間の距離にほとんど依存しないので、チャネル長が長
くても相互コンダクタンスを大きくできる。また、ソー
ス端及びドレイン端近傍の基板濃度が低いので、ドレイ
ン耐圧も改善される。チャネルドープは深いイオン注入
と浅いイオン注入を組み合わせて行ってあっても良いの
は言うまでもない。
(Implementation?! 12) FIG. 2 shows a second embodiment of the present invention. Except for the channel doped layer 12, the numbering of each layer is the same as in FIG. 1, so a description thereof will be omitted. When the channel doped layer 12 is formed only in the center of the channel, the MO8F]1fiT characteristics are determined by the width L' of this channel doped layer and are almost independent of the distance between the source and drain, so even if the channel length is long, the transconductance remains constant. can be made larger. Further, since the substrate concentration near the source end and drain end is low, the drain breakdown voltage is also improved. It goes without saying that channel doping may be performed by a combination of deep ion implantation and shallow ion implantation.

(実施例3) 次に本発明のMO8F1!!Tを実現する製造方法の実
施例について第3図(h)〜(Q、)により説明する。
(Example 3) Next, MO8F1 of the present invention! ! An example of a manufacturing method for realizing T will be described with reference to FIGS. 3(h) to (Q,).

p形シリコン基板表面に300X〜toooXのパッド
酸化膜40 、100OX〜2oooXのシリコン窒化
膜41 、1000〜2000 Aのリン硅酸ガラス膜
(以後PS()膜という)42からなる積層膜Aを形成
し、バタンニングされたレジスト膜43をマスクに該積
層膜Aをエツチングして除去する。エツチングをCF4
ガスとH,ガスを用いた反応性イオンエツチング法(以
後RIM法という)により行うとサイドエツチングのな
い加工ができる。その後、チャネルストップ用のポロン
イオン注入によりボロン濃度の高い領域44を基板表面
に形成する(第3図A)。その後レジスト膜43を除去
し、通常の選択酸化法によりロ000 A −1,2μ
m厚さのフィールド絶縁膜7を形成する。フィールド絶
縁膜7の下にはチャネルストップ領域44′が形成され
ている(第3図B)。
A laminated film A consisting of a pad oxide film 40 of 300X to toooX, a silicon nitride film 41 of 100OX to 200X, and a phosphosilicate glass film (hereinafter referred to as PS() film) 42 of 1000 to 2000 A is formed on the surface of a p-type silicon substrate. Then, using the stamped resist film 43 as a mask, the laminated film A is etched and removed. CF4 etching
Processing without side etching can be achieved by a reactive ion etching method (hereinafter referred to as RIM method) using gas, H, and gas. Thereafter, a region 44 with a high boron concentration is formed on the substrate surface by implanting boron ions for channel stop (FIG. 3A). Thereafter, the resist film 43 is removed and a RO000A-1,2μ
A field insulating film 7 having a thickness of m is formed. A channel stop region 44' is formed under the field insulating film 7 (FIG. 3B).

次にゲート電極より片側で約0.2μ細めにパタノニン
グされたレジスト腕4a’をマスクに、活性゛ 領域上
に残っている積re!i膜Aをエツチング除去し、更に
露出したシリコン基板をaCノ、ガスを用いたRIE法
により約0.3μmエツチングして凹部45を形成する
(第3図C)。
Next, using the resist arm 4a' patterned to be about 0.2μ thinner on one side than the gate electrode as a mask, the product remaining on the active region is measured. The i-film A is removed by etching, and the exposed silicon substrate is further etched by about 0.3 μm by RIE using aC gas to form a recess 45 (FIG. 3C).

次に、レジスト膜43′を除去し、凹部のシリコン表面
層に熱酸化により約30OAのシリコン酸化膜46を形
成し、その上に更に化学的気相成長法(以後CVD法と
いう)によりリコン酸化膜47を形成する(第3図D)
Next, the resist film 43' is removed, and a silicon oxide film 46 of approximately 30 OA is formed on the silicon surface layer of the recess by thermal oxidation, and then silicon oxide is further formed on the silicon oxide film 46 by chemical vapor deposition (hereinafter referred to as CVD method). Forming a film 47 (FIG. 3D)
.

その後、MO8FICTのチャネルが形成される側の側
面を被覆するようにバタンニングされたレジスト膜43
″を形成し、これをマスクに、CF4ガスを用いた等方
向プラズマエツチング法によりシリコン窒化膜47をエ
ツチングする(第3図E)。
After that, a resist film 43 is battened to cover the side surface of the MO8FICT on which the channel will be formed.
Using this as a mask, the silicon nitride film 47 is etched by an isodirectional plasma etching method using CF4 gas (FIG. 3E).

次に、レジスト膜43′を除去し、RIE法により凹部
の底部及び積層膜Aの表面のシリコン窒化膜47を除去
する(第3図F)。この状態での平面図を第3図Gに示
す。レジスト膜43′に被覆されていた凹部のチャネル
方向に平行な側面にもシリコン窒化膜47が残っている
Next, the resist film 43' is removed, and the silicon nitride film 47 on the bottom of the recess and the surface of the laminated film A is removed by RIE (FIG. 3F). A plan view in this state is shown in FIG. 3G. The silicon nitride film 47 also remains on the side surfaces parallel to the channel direction of the recess that were covered with the resist film 43'.

次に、積層膜A及び凹部の側面に残ったシリコン酸化膜
46及びシリコン窒化膜47及びフィールド絶縁族7を
マスクにシリコン基板を前述のRIE法により更にエツ
チングし、約0.6μm深さの凹部45′を形成する(
第3図H)。
Next, the silicon substrate is further etched by the RIE method described above using the silicon oxide film 46, silicon nitride film 47, and field insulating group 7 remaining on the side surfaces of the laminated film A and the recess as masks, and the recess is approximately 0.6 μm deep. form 45' (
Figure 3H).

次に、シリコン窒化膜47により被覆されていない凹部
のシリコン表面に熱酸化によfi 2000〜3000
ムのシリコン酸化膜48を形成する( a! 3図工)
Next, the silicon surface of the concave portion that is not covered with the silicon nitride film 47 is thermally oxidized at a fi of 2000 to 3000.
Form a silicon oxide film 48 (a! 3)
.

その後、160 Cj −180’Cの熱リン酸溶液に
よりシリコン窒化膜47をエツチングし、次いでPS(
)膜42を弗酸系溶液でエツチングする。このときシリ
コン酸化膜46も同時にエツチングする(第3図J)。
Thereafter, the silicon nitride film 47 is etched with a hot phosphoric acid solution of 160 Cj -180'C, and then PS (
) Etching the film 42 with a hydrofluoric acid solution. At this time, the silicon oxide film 46 is also etched at the same time (FIG. 3J).

次に、リンが約2 X 10”7cm”のC度で添加さ
れた多結晶シリコン膜をCVD法により形成し、エッチ
バック法により凹部にのみ多結晶シリコンf、H、s 
9を残す。凹部にシリコン膜を坩!込む手法としてはこ
の他バイアススパッタ法を用いても良い。また凹部にシ
リコン膜を堀込んでからリンの添加を行っても良い。更
に、リンのかわりに砒素が添加してめっても良い。埋込
まれたシリコン膜からリンを熱拡散させ、n形層2’、
21’を形成する(第3図K)。
Next, a polycrystalline silicon film doped with phosphorus at a degree of C of approximately 2 x 10"7cm" is formed by CVD, and polycrystalline silicon f, H, s is added only in the concave portions by an etch-back method.
Leave 9. Apply silicone film to the recess! In addition to this, a bias sputtering method may be used as a method for depositing the film. Alternatively, phosphorus may be added after a silicon film is dug into the recess. Furthermore, arsenic may be added instead of phosphorus. Phosphorus is thermally diffused from the embedded silicon film to form an n-type layer 2',
21' (Fig. 3K).

次に、シリコン膜49の上K、熱酸化により、1500
〜2500^のシリコン酸化膜50を形成する(第3図
L)。
Next, the upper surface of the silicon film 49 is thermally oxidized to a temperature of 1500 K.
A silicon oxide film 50 of ~2500^ is formed (FIG. 3L).

続いて、前述の熱リン酸によりシリコン窒化膜41をエ
ツチングし、更に弗酸系溶液によりパッド酸化膜40を
エツチングする。そして、ゲート酸化膜451を形成し
、ボロンのイオン注入を行ってチャネルドープ層52を
形成する(第3図M)。
Subsequently, the silicon nitride film 41 is etched using the aforementioned hot phosphoric acid, and the pad oxide film 40 is further etched using a hydrofluoric acid solution. Then, a gate oxide film 451 is formed, and boron ions are implanted to form a channel doped layer 52 (FIG. 3M).

その後、通常の方法によりゲート酸化膜51゜ゲート電
極4.層間絶縁膜5を形成し、コンタクトホールを形成
した後−、アルミニウム電極6を形成する(第3図N)
Thereafter, the gate oxide film 51° gate electrode 4. After forming the interlayer insulating film 5 and forming the contact holes, an aluminum electrode 6 is formed (FIG. 3N).
.

(実施例4) チャネル領域の中央部にのみチャネルドープ層を形成す
る製造方法の実施例について次に説明する。
(Example 4) Next, an example of a manufacturing method in which a channel doped layer is formed only in the center of the channel region will be described.

実施ylJ3で述べた第3図(現のあと、WF、ガスを
用いて、各結晶シリコン膜49の上に、タングステン#
53を約5000λ選択成長する(第4図A)。
After the process shown in FIG. 3 described in implementation ylJ3, tungsten #1 is deposited on each crystalline silicon film 49 using WF and gas.
53 to approximately 5000λ (FIG. 4A).

その後、CVD法によfi PSG膜を形成し、OF4
ガスとH2ガスを用いたRIE法によりpsaBをエッ
チパックし、タングステン膜53の側面領域にのみP8
G膜42′を残す。そして、PSG膜42′をマスクに
ボロンイオン注入を行い、チャネル領域の中央部にのみ
チャネルドープ層12を形成する。ポロンイオン壮大は
、注入エネルギーをかえて数回行っても良い(第4図B
)。
After that, a fi PSG film is formed by CVD method, and OF4
PSAB is etch-packed by RIE using gas and H2 gas, and P8 is applied only to the side area of the tungsten film 53.
The G film 42' is left. Boron ions are then implanted using the PSG film 42' as a mask to form the channel doped layer 12 only in the center of the channel region. Poron ion magnificence may be performed several times by changing the implantation energy (Fig. 4B)
).

この後、PBCk膜42’を弗酸系溶液によりエツチン
グし、更にタングステン853を硫酸と過酸化水素水の
混合溶成でエツチングする。これ以降の工程は、実施例
3で述べた第3図(L)以降と同じであるので省略する
Thereafter, the PBCk film 42' is etched using a hydrofluoric acid solution, and the tungsten 853 is further etched using a mixed solution of sulfuric acid and hydrogen peroxide. The subsequent steps are the same as those described in Example 3 from FIG. 3(L) onwards, and will therefore be omitted.

(発明の効果) 以上説明したように本発明によれば、主たるソース・ド
レイン領域が絶縁体により取り囲まれて半導体基板に深
く埋込まれているので、ソース・ドレインの寄生抵抗及
び寄生容量が小さく、かつアルミニウム電極と半導体基
板との短終が生じないので、高速で高信頼のMOBFE
Tが実現できるという利点がある。
(Effects of the Invention) As explained above, according to the present invention, the main source/drain regions are surrounded by an insulator and deeply buried in the semiconductor substrate, so that the parasitic resistance and capacitance of the source/drain are small. , and there is no short termination between the aluminum electrode and the semiconductor substrate, making it a high-speed and highly reliable MOBFE.
It has the advantage that T can be realized.

また、チャネルドープ層をチャネル領域の中央部にのみ
形成することにより、従来のMOBFETのようにゲー
ト長とソース・ドレインの接合深さにより実効チャネル
長が規定されることはなく、チャネルドープ層の高濃度
領域の幅により実効チャネル長が規定されるので、ゆる
いバタンルールを用いても高利得のMOBFETを実現
できる。また、この場合、ドレイン近傍の基板濃度は低
いのでドレイン耐圧も向上し、ホットエレクトロンによ
るMOBFETの安定性劣化が生じにくいという利点も
有する。
In addition, by forming the channel doped layer only in the center of the channel region, the effective channel length is not defined by the gate length and source/drain junction depth as in conventional MOBFETs, and the channel doped layer is Since the effective channel length is determined by the width of the high concentration region, a high gain MOBFET can be realized even if a loose batten rule is used. Further, in this case, since the substrate concentration near the drain is low, the drain breakdown voltage is also improved, and there is also an advantage that the stability of the MOBFET is less likely to deteriorate due to hot electrons.

上記の説明はMO8F3CTについて述べたが広くM工
5FETにも適用できる“ことは云うまでもない。
Although the above explanation is about MO8F3CT, it goes without saying that it can be broadly applied to M5FET as well.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施Vすの断面図、第2図は第2
実施?lJの断面図、第3図は第3実施例の断面図、第
4図は第4実施例の断面図、第5図は従来のMOBFE
Tのチャネル方向の断面図を示す。
FIG. 1 is a sectional view of a first embodiment of the present invention, and FIG. 2 is a cross-sectional view of a second embodiment of the present invention.
implementation? 3 is a sectional view of the third embodiment, FIG. 4 is a sectional view of the fourth embodiment, and FIG. 5 is a conventional MOBFE.
A cross-sectional view of T in the channel direction is shown.

Claims (4)

【特許請求の範囲】[Claims] (1)主たるソース・ドレイン領域が、半導体基板に埋
込まれた導電体により形成されており、かつソース端近
傍及びドレイン端近傍を除く該導電体と半導体基板の間
に絶縁体が形成されていることを特徴とするMISIF
ET。
(1) The main source/drain regions are formed by a conductor embedded in a semiconductor substrate, and an insulator is formed between the conductor and the semiconductor substrate except near the source end and drain end. MISIF characterized by
E.T.
(2)チャネル領域の中央部にのみチャネルドープ層が
形成されていることを特徴とする特許請求の範囲第1項
のMISFET。
(2) The MISFET according to claim 1, wherein a channel doped layer is formed only in the center of the channel region.
(3)MISFETのソース・ドレイン領域が形成され
る半導体基板表面をエッチングして凹部を形成する工程
と、該凹部の表面に絶縁体を形成する工程と、チャネル
のソース端近傍及びドレイン端近傍の該絶縁体を除去す
る工程と、該凹部を導電体で埋込む工程とを有すること
を特徴とするMISFETの製造方法。
(3) A step of etching the surface of the semiconductor substrate where the source/drain regions of the MISFET will be formed to form a recess, a step of forming an insulator on the surface of the recess, and a step of forming a recess near the source end and a drain end of the channel. A method for manufacturing a MISFET, comprising the steps of removing the insulator and filling the recess with a conductor.
(4)MISFETのソース・ドレイン領域が形成され
る半導体基板表面をエッチングして凹部を形成する工程
と、該凹部の表面に絶縁体を形成する工程と、チャネル
のソース端近傍及びドレイン端近傍の該絶縁体を除去す
る工程と、該凹部を導電体で埋込む工程と、該導電体上
にのみ選択的に第1の薄膜を形成する工程と、該薄膜の
側面部にのみチャネルドープをする間隔を残して第2の
薄膜を形成する工程と、該第1及び第2の薄膜をマスク
としてチャネルドープを行う工程とを具備することを特
徴とする特許請求の範囲第3項のMISFETの製造方
法。
(4) A step of etching the surface of the semiconductor substrate where the source/drain regions of the MISFET will be formed to form a recess, a step of forming an insulator on the surface of the recess, and a step of forming a recess near the source end and a drain end of the channel. a step of removing the insulator; a step of filling the recess with a conductor; a step of selectively forming a first thin film only on the conductor; and channel doping only on the side surfaces of the thin film. Manufacturing a MISFET according to claim 3, comprising the steps of forming a second thin film leaving a gap, and performing channel doping using the first and second thin films as masks. Method.
JP59183698A 1984-09-04 1984-09-04 Manufacture of misfet Pending JPS6163057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59183698A JPS6163057A (en) 1984-09-04 1984-09-04 Manufacture of misfet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59183698A JPS6163057A (en) 1984-09-04 1984-09-04 Manufacture of misfet

Publications (1)

Publication Number Publication Date
JPS6163057A true JPS6163057A (en) 1986-04-01

Family

ID=16140376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59183698A Pending JPS6163057A (en) 1984-09-04 1984-09-04 Manufacture of misfet

Country Status (1)

Country Link
JP (1) JPS6163057A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147359A (en) * 1986-08-11 1988-06-20 テキサス インスツルメンツ インコーポレイテツド Semiconductor integrated circuit and manufacture of the same
WO1997048135A1 (en) * 1996-06-14 1997-12-18 Commissariat A L'energie Atomique Quantum well mos transistor and methods for making same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147359A (en) * 1986-08-11 1988-06-20 テキサス インスツルメンツ インコーポレイテツド Semiconductor integrated circuit and manufacture of the same
WO1997048135A1 (en) * 1996-06-14 1997-12-18 Commissariat A L'energie Atomique Quantum well mos transistor and methods for making same
FR2749977A1 (en) * 1996-06-14 1997-12-19 Commissariat Energie Atomique QUANTUM WELL MOS TRANSISTOR AND METHODS OF MANUFACTURE THEREOF

Similar Documents

Publication Publication Date Title
US5231038A (en) Method of producing field effect transistor
JP2969341B2 (en) MOS field effect transistor device and method of manufacturing the same
KR100289474B1 (en) Method for manufacturing a DMOS transistor
JPS6126261A (en) Vertical mosfet and manufacture thereof
JPS6163057A (en) Manufacture of misfet
JPH0415619B2 (en)
JPS5923476B2 (en) Manufacturing method of semiconductor device
JPS62285468A (en) Manufacture of ldd field-effect transistor
JPS6246570A (en) Vertical type semiconductor device and manufacture thereof
JPS63305566A (en) Semiconductor device and manufacture thereof
JPH0298939A (en) Manufacture of semiconductor device
JPS6041876B2 (en) Manufacturing method of insulated gate field effect transistor
JPS62245671A (en) Manufacture of semiconductor integrated circuit device
JPH03163832A (en) Semiconductor device
JPH0571191B2 (en)
JPS6193641A (en) Semiconductor device
JPH01191476A (en) Semiconductor device
JPS61187273A (en) Semiconductor device
JP3260485B2 (en) Method for manufacturing semiconductor device
JPS60105268A (en) Semiconductor device and manufacture thereof
JPS63114174A (en) Manufacture of semiconductor device
JPS61156772A (en) Manufacture of field-effect transistor
JPH04241465A (en) Manufacture of field effect type semiconductor device
JPS63244884A (en) Semiconductor device and manufacture thereof
JPS625657A (en) Semiconductor integrated circuit device