JPS6041876B2 - Manufacturing method of insulated gate field effect transistor - Google Patents

Manufacturing method of insulated gate field effect transistor

Info

Publication number
JPS6041876B2
JPS6041876B2 JP54162677A JP16267779A JPS6041876B2 JP S6041876 B2 JPS6041876 B2 JP S6041876B2 JP 54162677 A JP54162677 A JP 54162677A JP 16267779 A JP16267779 A JP 16267779A JP S6041876 B2 JPS6041876 B2 JP S6041876B2
Authority
JP
Japan
Prior art keywords
region
substrate
drain
conductivity type
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54162677A
Other languages
Japanese (ja)
Other versions
JPS5585073A (en
Inventor
功 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP54162677A priority Critical patent/JPS6041876B2/en
Publication of JPS5585073A publication Critical patent/JPS5585073A/en
Publication of JPS6041876B2 publication Critical patent/JPS6041876B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、高出力の絶縁ゲート型電界効果トランジス
タ(以下、MOSFETと記す)の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a high-output insulated gate field effect transistor (hereinafter referred to as MOSFET).

従来、MOSFETの出力、とりわけ、電流を増ている
。図において、1はドレーン基板、2はチャネル基板、
3はドレーン領域、4はソース領域、5はゲート電極、
6はゲート用シリコン酸化膜、7、8、9はそれぞれソ
ース、ドレーンおよびゲートの取り出し電極、10は保
護絶縁膜である。この構造の特徴は、ドレーン領域3の
電極取り出しが、ドレーン基板1を介して、その裏面か
ら行なわれていることであり、電流が装置の表面か”ら
裏面へと流せることである。
Traditionally, the output of MOSFETs, in particular the current, has been increased. In the figure, 1 is a drain substrate, 2 is a channel substrate,
3 is a drain region, 4 is a source region, 5 is a gate electrode,
6 is a silicon oxide film for a gate; 7, 8, and 9 are source, drain, and gate extraction electrodes, respectively; and 10 is a protective insulating film. A feature of this structure is that the electrode of the drain region 3 is taken out from the back surface of the drain substrate 1, and current can flow from the front surface to the back surface of the device.

その結果、装置の同一表面上に、ソース電極およびドレ
ーン電極が配置されている通常のMOSFETに比べ、
電流の取り出しが容易で、同一チップサイズにおいては
、有効なチャネル面積(幅)が大きくでき、大電流の素
子として適している。さらに、改良された構造の素子と
して、第2図に示すように、第1図に示した素子のチャ
ネル基板2とドレーン基板1との間に、ドレーン基板1
と同一導電型の低濃度不純物層11を設けるものが提案
された。
As a result, compared to a normal MOSFET where the source and drain electrodes are placed on the same surface of the device,
Current can be easily taken out, and the effective channel area (width) can be increased with the same chip size, making it suitable as a large current device. Furthermore, as an element with an improved structure, as shown in FIG.
It has been proposed to provide a low concentration impurity layer 11 of the same conductivity type.

これは、ドレーン領域3の深さが集積度などにより限定
された場合、ソース領域4とドレーン基板1とのパンチ
スルー耐圧を向上さるために有効である。− 一しかし
、上記のような構造のMOSFETでは2、3および1
1の領域は、通常エピタキシャル気相成長により形成さ
れた層(Ep層)であり、とくに、2のEp層とドレー
ン基板1または低不純物濃度層11との境界にドレーン
電界が集中する構造であるため、ドレーン耐圧の歩留り
が低い欠点を有していた。
This is effective for improving the punch-through breakdown voltage between the source region 4 and the drain substrate 1 when the depth of the drain region 3 is limited due to the degree of integration or the like. - 1 However, in MOSFETs with the above structure, 2, 3 and 1
The region 1 is a layer (Ep layer) usually formed by epitaxial vapor growth, and has a structure in which the drain electric field is particularly concentrated at the boundary between the Ep layer 2 and the drain substrate 1 or the low impurity concentration layer 11. Therefore, the yield of drain breakdown voltage was low.

この原因は、Ep層形成時、とくに、その形成初期に結
晶欠陥が発生しやすいためである。そのため、チップ面
積が大きくなるにつれ、また、二層Epのように、Ep
成長の回数が増えるにつれて、その歩留りは顕著に低下
する傾向にある。以上述べたように、第1図および第2
図に示したようなMOSFETにおいては、耐圧歩留り
が低いという欠点を有していた。この発明の目的は、上
記のような欠点を除去することにあり、耐圧歩留りの良
好なMOSFETの製造方法を提供することである。
The reason for this is that crystal defects are likely to occur during the formation of the Ep layer, particularly at the initial stage of its formation. Therefore, as the chip area increases, the Ep
As the number of growth increases, the yield tends to decrease significantly. As mentioned above, Figures 1 and 2
The MOSFET shown in the figure has a drawback of low voltage yield. An object of the present invention is to eliminate the above-mentioned drawbacks, and to provide a method for manufacturing a MOSFET with good voltage resistance yield.

上記の目的を達成するために、チャネル領域がイオン打
込み、もしくは拡散によつてドレーン基板の表面近傍に
形成され、かつ該基板の一部がドレーン領域として該基
板表面まで延びて存在するMOSFETの製造方法を提
案する。
In order to achieve the above object, a MOSFET is manufactured in which a channel region is formed near the surface of a drain substrate by ion implantation or diffusion, and a portion of the substrate extends to the surface of the substrate as a drain region. Suggest a method.

以下、本発明を実施例を用いて詳細に説明する。Hereinafter, the present invention will be explained in detail using examples.

第3図に、本発明によつて得られるMOSFETの一実
施例の断面図を示す。
FIG. 3 shows a cross-sectional view of an embodiment of a MOSFET obtained by the present invention.

ドレーン基板1は、たとえば、P型で、アクセプタ不純
物濃度NAがl×1015cm4であり、チャネル基板
2は、N型で、ドナー不純物濃度NDが3刈015cm
−3、その厚さが10μmである。
For example, the drain substrate 1 is of P type and has an acceptor impurity concentration NA of 1×1015 cm4, and the channel substrate 2 is of N type and has a donor impurity concentration ND of 3015 cm4.
-3, its thickness is 10 μm.

ドレーン領域3は、P型で、表面の不純物濃度NAが1
01′7cm−3、深さが1.5μmであり、1のドレ
ーン基.板と基板表面て接続され、裏面電極8から取り
出されている。ソース領域4は、P型で不純物濃度NA
が1019cm−3以上で、表面ソース電極7から取り
出されている。5はゲート電極、6はゲート用絶縁膜、
9はゲート電極5の取り出し電極であ.る。
The drain region 3 is of P type and has a surface impurity concentration NA of 1.
01'7 cm-3, 1.5 μm deep, and 1 drain group. The plate is connected to the surface of the substrate, and taken out from the back electrode 8. The source region 4 is P type and has an impurity concentration NA
is 1019 cm-3 or more and is taken out from the surface source electrode 7. 5 is a gate electrode, 6 is an insulating film for gate,
9 is an extraction electrode of the gate electrode 5. Ru.

以上の構造で、2のチャネル領域および3のドレーン領
域が、イオン打込み、拡散、もしくはこれらの組合わせ
によつて形成され、E,成長を用いていない点が重要で
ある。
In the above structure, it is important that the channel region 2 and the drain region 3 are formed by ion implantation, diffusion, or a combination thereof, and do not use E-growth.

その結果、チツプサ・イズ5?口で、耐圧100■、電
流10AのパワーMOSFETが、50%以上の歩留り
で製作できるようになつた。なお、従来のEp成長を用
いてMOFETの耐圧歩留りは、10%程度てあつた。
さらに、第3図の構造において、ドレーン領域3の表面
の不純物濃度NAの値が1017C77!−3以下であ
ることは、MOSFETの高耐圧化に役立つている。つ
ぎに、この発明による他の実施例によつて得られをMO
SEFTを第4図を用いて説明する。これは、第3図の
ドレーン基板1のかわりに、高濃度ドレーン基板1とそ
の上に形成した低不純物濃度層11とを有する基板を用
い、低不純物濃度層11中に、第3図の場合と同様な方
法でチヤlネル基板2、ドレーン領域3およびソース領
域4を形成したものである。ここで、ドレーン基板1は
、たとえば、P型で、不純物濃度NAが5×1018c
jn−3、低不純物濃度層11は、P型で、不純物濃度
NAが1015cTt−3である。この場合、低不純.
物濃度層11はEpであつても、チャネル基板2と低不
純物濃度層11との境界は、イオン打込み、拡散、もし
くはこれらの組合せによつて形成された接合であるため
、結晶欠陥が少なく、ドレーン耐圧の歩留りは、改善さ
れ、実験によると第2図に示した2層Epの構造に比べ
、第3図の場合と同様に格段に向上した。つぎに、この
発明の実施例によるNチャネル型MOSFETの製造工
程を第5図A−1を用いて説明する。
As a result, Chippsa is 5? It has now become possible to manufacture power MOSFETs with a withstand voltage of 100 µm and a current of 10 A with a yield of over 50%. Note that the breakdown voltage yield of MOFET using conventional Ep growth was about 10%.
Furthermore, in the structure of FIG. 3, the value of the impurity concentration NA on the surface of the drain region 3 is 1017C77! -3 or less is useful for increasing the breakdown voltage of the MOSFET. Next, the MO obtained by another embodiment according to the present invention
SEFT will be explained using FIG. 4. In this case, instead of the drain substrate 1 shown in FIG. 3, a substrate having a high concentration drain substrate 1 and a low impurity concentration layer 11 formed thereon is used, and in the low impurity concentration layer 11, the drain substrate 1 shown in FIG. A channel substrate 2, a drain region 3, and a source region 4 are formed in the same manner as in FIG. Here, the drain substrate 1 is, for example, of P type and has an impurity concentration NA of 5×10 18c.
jn-3, the low impurity concentration layer 11 is of P type and has an impurity concentration NA of 1015cTt-3. In this case, low impurity.
Even if the impurity concentration layer 11 is Ep, the boundary between the channel substrate 2 and the low impurity concentration layer 11 is a junction formed by ion implantation, diffusion, or a combination thereof, so there are few crystal defects. The yield of drain breakdown voltage was improved, and according to experiments, it was significantly improved compared to the two-layer Ep structure shown in FIG. 2, as in the case of FIG. 3. Next, the manufacturing process of an N-channel MOSFET according to an embodiment of the present invention will be explained using FIG. 5A-1.

アクセプタ不純物濃度NAが1015cm−3のP型シ
リコン基板1の表面上に、熱酸化膜17を約6000A
の厚さに形成し(図A)、基板1のチャネル基板形成領
域上の熱酸化膜17を選択的に除去した後、りんイオン
12を試料に照射する。
A thermal oxide film 17 is deposited at approximately 6000 Å on the surface of a P-type silicon substrate 1 with an acceptor impurity concentration NA of 1015 cm-3.
After selectively removing the thermal oxide film 17 on the channel substrate formation region of the substrate 1 (FIG. A), the sample is irradiated with phosphorus ions 12.

このイオンの打込みエネルギEは50ke■、打込み量
NDTは5×1013cm−3であつた。イオン打込み
後、加湿酸素中、1200′C、3時間熱処理した。そ
の結果、チャネル基板2となるN型ドープ層が8μmの
深さで形成された。このとき、チャネル基板2上に再び
薄い熱酸化膜17″が形成される(図B)。つぎに、熱
酸化膜17″の所定部分を選択的に除去し、この窓を通
して、1050′Cで、POCl3による高濃度のリン
拡散を行ない、基板コンタクト用の高不純物濃度領域1
3を形成した。このときも窓部には薄い酸化膜が形成さ
れる(図C)。ついで、表面の酸化膜を所定の部分を残
して選択に除去した後、熱酸化して厚さ約1000Aの
ゲート絶縁用酸化膜6を形成する。このとき、酸化膜の
残存していた部分19は厚くなる。その上に多結晶シリ
コン膜5″を約5000Aの厚さに形成し(図D)、こ
のときシリコン膜5″を選択的に除去してゲート電極5
を形成した後、ほう素イオン14を試料に照射する。こ
のイオンのエネルギEはKevl打込み量NDTは4×
1012c1n−3とした。この結果、MOSFETの
高耐圧化に役立つ低不純物濃度のドレーン領域3がゲー
ト電極5の間に、また、同様濃度の領域4″が高不純物
濃度領域13の周囲に形成される(図E)。引き続き、
その上にCVD(化学蒸着)法により、約4000Aの
厚さのシリコン酸化膜16を形成し、領域4″上の酸化
膜16を選択的に除去し、これを窓としてほう素拡散を
行ない、ソース領域4を、表面の不純物濃度NAが10
19crft−3以上、深さが1.5μmに形成した(
図F)。つぎに、CVD法により、リンのモル濃度比が
4モル%のリンガラス膜10を約9000人の厚さに全
面上に形成し、1050゜Cの窒素中で、5時間熱処理
し後、電極コンタクト用穴をエッチングであけた(図G
)。しかる後、全面にアルミニウムを真空蒸着により、
約1.5μmの厚さに被着後、エッチングにより、ソー
ス電極7およびゲート取り出し電極(図示せす)を形成
した(図H)。以上の工程を終つた基板1の裏面を厚さ
100PTLエッチングで除去した後、金を真空蒸着に
より2000Aの厚さに形成し、400℃でアロイして
、ドレーン5電極8を形成した(図1)。本工程中、(
図C)で示したN型の高不純物濃度領域13は必ずしも
必要ではないが、この領域の設置は、ソース領域4と、
基板1とのオーミック接続をはかるために有効であり、
その結果、基板1とソース領域とが電J気的に完全に接
続されるため、MOSFETの特性の安定性が非常に向
上した。さらに、本発明によるPチャンネル型 MOSFETの他の製造工程を第6図A−Dに示す。
The ion implantation energy E was 50 ke and the implantation amount NDT was 5 x 1013 cm-3. After ion implantation, heat treatment was performed at 1200'C for 3 hours in humidified oxygen. As a result, an N-type doped layer that would become the channel substrate 2 was formed with a depth of 8 μm. At this time, a thin thermal oxide film 17'' is again formed on the channel substrate 2 (Figure B).Next, a predetermined portion of the thermal oxide film 17'' is selectively removed, and the film is heated at 1050'C through this window. , high impurity concentration region 1 for substrate contact is performed by performing high concentration phosphorus diffusion using POCl3.
3 was formed. At this time as well, a thin oxide film is formed on the window portion (Figure C). Next, the oxide film on the surface is selectively removed leaving a predetermined portion, and then thermally oxidized to form a gate insulating oxide film 6 with a thickness of about 1000 Å. At this time, the remaining portion 19 of the oxide film becomes thicker. A polycrystalline silicon film 5'' is formed thereon to a thickness of approximately 5000A (Figure D), and at this time, the silicon film 5'' is selectively removed to form a gate electrode 5.
After forming, the sample is irradiated with boron ions 14. The energy E of this ion is Kevl implantation amount NDT is 4×
1012c1n-3. As a result, a drain region 3 with a low impurity concentration, which is useful for increasing the breakdown voltage of the MOSFET, is formed between the gate electrodes 5, and a region 4'' with a similar concentration is formed around the high impurity concentration region 13 (FIG. E). continuation,
A silicon oxide film 16 with a thickness of about 4000 A is formed thereon by CVD (chemical vapor deposition), the oxide film 16 on the region 4'' is selectively removed, and boron is diffused using this as a window. The source region 4 has a surface impurity concentration NA of 10
19crft-3 or more and a depth of 1.5 μm (
Figure F). Next, a phosphorus glass film 10 with a phosphorus molar concentration ratio of 4 mol % is formed on the entire surface to a thickness of approximately 9,000 mm using the CVD method, and after heat treatment in nitrogen at 1,050° C. for 5 hours, the electrode is heated. Holes for contacts were etched (Figure G)
). After that, aluminum is vacuum-deposited on the entire surface.
After depositing to a thickness of about 1.5 μm, a source electrode 7 and a gate lead-out electrode (not shown) were formed by etching (Figure H). After completing the above steps, the back surface of the substrate 1 was removed by etching to a thickness of 100 PTL, and then gold was formed to a thickness of 2000 A by vacuum evaporation and alloyed at 400° C. to form the drain 5 electrode 8 (Fig. 1 ). During this process, (
Although the N-type high impurity concentration region 13 shown in FIG.
It is effective for establishing an ohmic connection with the board 1,
As a result, the substrate 1 and the source region are completely electrically connected, and the stability of the MOSFET characteristics is greatly improved. Furthermore, other manufacturing steps for the P-channel MOSFET according to the present invention are shown in FIGS. 6A-D.

ドナー不純物濃度NDが2×1015cm−3のN型シ
リコン基板1の一表面上に熱酸化膜17を約6000A
の厚さに形成し、所定部分を残して選択的に除去した後
、ほう素イオン12を試料に照射する。
A thermal oxide film 17 is formed on one surface of an N-type silicon substrate 1 with a donor impurity concentration ND of 2×10 15 cm −3 at a thickness of approximately 6000 Å.
After selectively removing a predetermined portion leaving a predetermined portion, the sample is irradiated with boron ions 12.

このイオンの打込みエネルギEは100keV1打込4
み量NDTは約1013cm−3であつた。イオン打込
み後、乾燥酸素中で1200℃、16時間の熱処理をし
た。その砥果、チャンネル基板2となるP型ドープ層が
6μmの深さに形成された(図A)。つぎに、酸化膜を
選択的に除去して熱酸化し、厚さ約1300Aのゲート
絶縁用酸化膜18を形成する。酸化膜の残存していた部
分19はそれたけ厚くなる。さらに、酸化膜の上に多結
晶シリコン膜5″を約5000Aの厚さに形成し(図B
)、このシリコン膜5″を選択的に除去してゲート電極
5を形成した後、りんイオン14を試料に照射する。こ
のイオンの打込みエネルギEは50keV1打込み量N
。T2×1014crf1−3とした。その結果、低不
純物濃度lのドレーン領域3と領域4″とが形成される
(図C)。つぎに、試料全面上にCVD法により約40
00Aの厚さにシリコン酸化膜16を形成し、シリコン
酸化膜16および18に領域4″の中央部表面に達する
窓をあけ、ほう素拡散より、チャネル基板2に達するN
型の高不純物濃度領域13が形成する。このとき、領域
13上に薄い酸化膜が形成される(図D)。ついで、酸
化膜18をエッチングにより除去して、試料全面上にC
VD法によりシリコン酸化膜16を被覆した後、酸化膜
16に領域4″に通する窓を開け、この窓を通してりん
を拡散してソース領域4を形成する(図E)。ついで、
試料表面の酸化膜をエッチングで除去した後、試料表面
を軽く酸化し、全面にりんガラス膜10を被着し、りん
ガラス膜10およびその下の酸化膜に高不純物領域13
およびソース領域4およびゲート電極に達する窓を開け
(図F)、試料全面にアルミニウムを真空蒸着した後、
エッチングによリソース電極7およびゲート取出し電極
(図示せず)を形成し、ついで、基板1の表面をエッチ
ングした後、真空蒸着によりドレーン取出し電極8を形
成した(図G)。このようにして、第5図1と同様な構
造のMOSFETが得られる。さらに、この発明は、前
述の実施例のしに限定されず、本発明の技術的思想から
逸脱しない範囲において、種々変更可能であることは勿
論である。以上説明したところから明らかなように、こ
の発明によれば、特性の良好なMOSFETが高歩留り
で製作できる。
The implantation energy E of this ion is 100keV1 implantation 4
The amount NDT was about 1013 cm-3. After ion implantation, heat treatment was performed at 1200° C. for 16 hours in dry oxygen. As a result, a P-type doped layer, which will become the channel substrate 2, was formed to a depth of 6 μm (Figure A). Next, the oxide film is selectively removed and thermally oxidized to form a gate insulating oxide film 18 having a thickness of about 1300 Å. The remaining portion 19 of the oxide film becomes that much thicker. Furthermore, a polycrystalline silicon film 5'' is formed to a thickness of approximately 5000A on the oxide film (Figure B).
), this silicon film 5'' is selectively removed to form the gate electrode 5, and then the sample is irradiated with phosphorus ions 14.The ion implantation energy E is 50 keV1 the implantation amount N
. It was set as T2×1014crf1-3. As a result, drain region 3 and region 4'' with low impurity concentration l are formed (Figure C).
A silicon oxide film 16 is formed to a thickness of 00A, a window is formed in the silicon oxide films 16 and 18 that reaches the surface of the central part of the region 4'', and N reaches the channel substrate 2 by boron diffusion.
A type high impurity concentration region 13 is formed. At this time, a thin oxide film is formed on region 13 (FIG. D). Next, the oxide film 18 is removed by etching, and C is deposited on the entire surface of the sample.
After covering the silicon oxide film 16 by the VD method, a window is opened in the oxide film 16 that passes through the region 4'', and phosphorus is diffused through this window to form the source region 4 (Figure E).
After removing the oxide film on the sample surface by etching, the sample surface is lightly oxidized, a phosphorus glass film 10 is deposited on the entire surface, and a high impurity region 13 is formed on the phosphorus glass film 10 and the oxide film below it.
After opening a window reaching the source region 4 and the gate electrode (Figure F) and vacuum-depositing aluminum over the entire surface of the sample,
A resource electrode 7 and a gate lead-out electrode (not shown) were formed by etching, and then, after etching the surface of the substrate 1, a drain lead-out electrode 8 was formed by vacuum deposition (Figure G). In this way, a MOSFET having a structure similar to that shown in FIG. 5 is obtained. Furthermore, the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made without departing from the technical idea of the present invention. As is clear from the above explanation, according to the present invention, MOSFETs with good characteristics can be manufactured at a high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、従来のMOSFETの断面図、
第3図および第4図は、この発明によるMOSFETの
断面図、第5図および第6図は、この発明によるMOS
FETの製造工程を示す断面図である。 図において、1・・・・・・ドレーン基板、2・・・・
・・チャネル基板、3・・・・・・ドレーン領域、4・
・・・・・ソース領域、5・・・・・・ゲート電極、6
・・・・・・ゲート用シリコン酸化膜、7,8,9・・
・・・・取出し電極、10・・・・・・保護絶縁膜、1
1・・・・・・低不純物濃度層、12,14・・・・イ
オンビーム、13・・・・・・高不純物濃度領域、16
,17,18・・・・・シリコン酸化膜。
FIGS. 1 and 2 are cross-sectional views of conventional MOSFETs,
3 and 4 are cross-sectional views of a MOSFET according to the present invention, and FIGS. 5 and 6 are cross-sectional views of a MOSFET according to the present invention.
FIG. 3 is a cross-sectional view showing the manufacturing process of the FET. In the figure, 1... drain substrate, 2...
...Channel substrate, 3...Drain region, 4.
...Source region, 5...Gate electrode, 6
...Silicon oxide film for gate, 7, 8, 9...
...Extraction electrode, 10...Protective insulating film, 1
1...Low impurity concentration layer, 12, 14...Ion beam, 13...High impurity concentration region, 16
, 17, 18... Silicon oxide film.

Claims (1)

【特許請求の範囲】 1 次の各工程を有することを特徴とする絶縁ゲート型
電界効果トランジスタの製造方法。 (i)第1導電型の半導体基体の所定の表面領域に第2
導電型の半導体領域を形成する工程、(ii)前記第2
導電型の半導体領域の表面の所定位置に絶縁膜を介して
ゲート電極を形成する工程、(iii)前記ゲート電極
をマスクとして、前記第1導電型の半導体基体の表面領
域と前記第2導電型の半導体領域の表面領域にまたがつ
て、イオン打込み法により、第1導電型の第1の不純物
領域を形成する工程、(iv)前記第2導電型の半導体
領域内に第1導電型の第2の不純物領域を形成する工程
、(v)前記第2の不純物領域上にソース電極(または
ドレーン電極)を形成す工程、(vi)前記半導体基体
の裏面にドレーン電極(またはソース電極)を形成する
工程。
[Scope of Claims] 1. A method for manufacturing an insulated gate field effect transistor, comprising the following steps. (i) a second conductivity type in a predetermined surface area of the semiconductor substrate of the first conductivity type;
forming a conductive type semiconductor region, (ii) the second
(iii) forming a gate electrode at a predetermined position on the surface of the semiconductor region of the conductivity type via an insulating film; (iii) using the gate electrode as a mask, the surface region of the semiconductor substrate of the first conductivity type and the second conductivity type; (iv) forming a first impurity region of the first conductivity type in the semiconductor region of the second conductivity type by ion implantation across the surface region of the semiconductor region; (v) forming a source electrode (or drain electrode) on the second impurity region; (vi) forming a drain electrode (or source electrode) on the back surface of the semiconductor substrate. The process of doing.
JP54162677A 1979-12-17 1979-12-17 Manufacturing method of insulated gate field effect transistor Expired JPS6041876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54162677A JPS6041876B2 (en) 1979-12-17 1979-12-17 Manufacturing method of insulated gate field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54162677A JPS6041876B2 (en) 1979-12-17 1979-12-17 Manufacturing method of insulated gate field effect transistor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP50009713A Division JPS5185381A (en) 1975-01-24 1975-01-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP61167925A Division JPS6211276A (en) 1986-07-18 1986-07-18 Manufacture of semiconductor device
JP61167924A Division JPS6211275A (en) 1986-07-18 1986-07-18 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5585073A JPS5585073A (en) 1980-06-26
JPS6041876B2 true JPS6041876B2 (en) 1985-09-19

Family

ID=15759185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54162677A Expired JPS6041876B2 (en) 1979-12-17 1979-12-17 Manufacturing method of insulated gate field effect transistor

Country Status (1)

Country Link
JP (1) JPS6041876B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553462A (en) * 1978-10-13 1980-04-18 Int Rectifier Corp Mosfet element
US5191396B1 (en) * 1978-10-13 1995-12-26 Int Rectifier Corp High power mosfet with low on-resistance and high breakdown voltage
IT1154298B (en) * 1981-02-23 1987-01-21 Motorola Inc IMPROVEMENT IN MOS POWER TRANSISTORS
US5869371A (en) * 1995-06-07 1999-02-09 Stmicroelectronics, Inc. Structure and process for reducing the on-resistance of mos-gated power devices
JP2002246595A (en) * 2001-02-19 2002-08-30 Shindengen Electric Mfg Co Ltd Transistor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840814A (en) * 1971-09-25 1973-06-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840814A (en) * 1971-09-25 1973-06-15

Also Published As

Publication number Publication date
JPS5585073A (en) 1980-06-26

Similar Documents

Publication Publication Date Title
JPS6336147B2 (en)
JPH0523055B2 (en)
JPH0640582B2 (en) Method for manufacturing insulating gate field effect transistor
US20080073746A1 (en) Semiconductor device
JPS62203380A (en) Semiconductor device and manufacture of the same
JPS6237551B2 (en)
US4351099A (en) Method of making FET utilizing shadow masking and diffusion from a doped oxide
JPH11288949A (en) Power semiconductor device using semi-insulating polysilicon (sipos) and its manufacture
JPS634683A (en) Field-effect transistor
TW202209442A (en) Silicon carbide MOSFET device and manufacturing method thereof
JPS598374A (en) Insulated gate field-effect transistor
JPS6041876B2 (en) Manufacturing method of insulated gate field effect transistor
JP2629995B2 (en) Thin film transistor
JPH0558257B2 (en)
JP4401453B2 (en) Method of manufacturing power semiconductor device using semi-insulating polysilicon (SIPOS) film
JP3498431B2 (en) Method for manufacturing semiconductor device
JPS6135710B2 (en)
GB2074374A (en) Method of making field effect transistors
JPS5987871A (en) Insulated gate field effect semiconductor device
JPS63227059A (en) Semiconductor device and manufacture thereof
JP3031282B2 (en) Semiconductor device
JP2001036071A (en) Manufacture for semiconductor device
JPS6211276A (en) Manufacture of semiconductor device
JPS6211275A (en) Semiconductor device
JPS6384162A (en) Manufacture of semiconductor device