JPS6159182B2 - - Google Patents

Info

Publication number
JPS6159182B2
JPS6159182B2 JP57041451A JP4145182A JPS6159182B2 JP S6159182 B2 JPS6159182 B2 JP S6159182B2 JP 57041451 A JP57041451 A JP 57041451A JP 4145182 A JP4145182 A JP 4145182A JP S6159182 B2 JPS6159182 B2 JP S6159182B2
Authority
JP
Japan
Prior art keywords
grade
iron
ore
low
flotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57041451A
Other languages
Japanese (ja)
Other versions
JPS58159856A (en
Inventor
Shigeru Mukai
Isao Fujita
Nobuyuki Imanishi
Koji Kanechika
Fukusaburo Yamamoto
Junji Kumamoto
Juji Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP57041451A priority Critical patent/JPS58159856A/en
Publication of JPS58159856A publication Critical patent/JPS58159856A/en
Publication of JPS6159182B2 publication Critical patent/JPS6159182B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、石英その他の脈石鉱物を多種類含有
する低品位鉄鉱石を浮遊選鉱法によつて富鉱化処
理する方法に関するものである。 鉄鉱石は非鉄金属鉱物に比べて安価であり且つ
比較的大規模な富鉱に恵まれていたので、従来は
格別の選鉱を要することなくそのまま製鉄原料と
して用いられてきた。しかし富鉱の埋蔵量が減少
するにつれて低品位鉄鉱石でも利用せざるを得な
い状況が生じており、例えば磁選によつて比較的
容易に鉄品位を高め得る鉱床(マグネタイト鉱物
等)については優先的に開発が進められている。 また鉄鉱石の枯渇に対処すると共に国内資源の
有効利用を推進する為、埋蔵量の豊富な低品位ヘ
ムタイト鉱物を有効利用しようという気運も高ま
つてきている。 ところで低品位鉄鉱石の中でも鉄鉱物の粒度が
比較的粗いもの(2〜3mm程度以上)では、水
洗、重選、比重選鉱の様な比較的単純な選鉱法で
も鉄品位の向上を図ることができるが、低品位ヘ
マタイト鉱石の様にヘマタイト粒度が小さいもの
(通常0.1〜0.2mmφ以下)では、鉱石を微粉砕し
なければ単体に分離することができず、粉砕後の
選鉱も容易でないが、現在では浮遊選鉱法によつ
て一応その目的を達成している。低品位ヘマタイ
ト鉱石の浮遊選鉱に当つては、ヘマタイトをフロ
ス側に濃縮する方法とシンク側に濃縮する方法の
いずれかを行なうことになるが、初期の頃は捕収
剤として脂肪酸又はその塩を用いる前者の方法が
主流を占めていた。しかしこの方法は選択性に難
があり、十分な鉄品位向上効果を相ることができ
なかつた。これに対し後者の方法では脂肪族アミ
ン等の捕収剤を使用することによつて選択性を向
上することができ、比較的高品位の精鉱を得るこ
とができるので、現在は後者の方法が主流になつ
ている。この場合、抑制剤として澱粉を併用する
ことによつて鉄品位を更に高める技術も確立され
ている。 しかしながら上記の様な最新の浮遊選鉱技術を
駆使したとしても、低品位のヘマタイト鉱石から
鉄品位の高い鉱物を効率良く分離することは容易
でなく、現状では鉄含有率がせいぜい60重量%程
度、最も好ましいものでも62〜63重量%程度が限
度であり、これ以上鉄品位を高めようとすると、
生産性を無視して選鉱時間を延長するか選鉱を数
回に亘つて繰り返す必要があり、それに伴つて実
収率も極端に低下する。 本発明者等は上記の様な事情に着目し、低品位
ヘマタイト鉱物の様な低品位鉄鉱石から実操業規
模で高品位鉱精鉱を効率良く分離し得る様な富鉱
化処理法の開発を期して研究を進めてきた。本発
明はかかる研究の結果完成されたものであつて、
その構成は、石英及びその他の脈石鉱物を多種類
含有する低品位鉄鉱石を浮遊選鉱法によつて富鉱
化処理するに当り、捕収剤として不飽和脂肪酸を
重合して得られるダイマー酸及び/又はその塩と
脂肪族アミンを使用するところに要旨が存在す
る。 以下本発明の完成に至る研究経緯に沿つて本発
明の構成及び作用効果を詳細に説明する。 まず本発明者等は、公知の浮遊選鉱法における
問題点を明らかにする目的で、第1表に示す化学
組成の低品位ヘマタイト鉱石〔X線回析によつて
固定された鉱物はヘマタイト、螢石、石英、エジ
リン(NaFeSi2O6)、燐灰石、重晶石等〕を74μ
m以下に粉砕し、公知の捕収剤を夫々単独で使用
すると共に抑制剤として澱粉を用いて浮遊選鉱を
行なつたところ、第2表の結果を得た。
The present invention relates to a method for enriching low-grade iron ore containing many types of quartz and other gangue minerals by flotation. Iron ore is cheaper than non-ferrous metal minerals and has been blessed with a relatively large amount of rich ore, so it has conventionally been used as a raw material for iron manufacturing without the need for special beneficiation. However, as rich ore reserves decrease, a situation has arisen in which even low-grade iron ore has to be used. For example, ore deposits (such as magnetite minerals) whose iron quality can be relatively easily increased through magnetic separation are given priority. development is progressing. In addition, in order to cope with the depletion of iron ore and promote the effective use of domestic resources, there is a growing momentum to effectively utilize low-grade hemtite minerals, which have abundant reserves. By the way, among low-grade iron ores, when the grain size of the iron ore is relatively coarse (approximately 2 to 3 mm or more), it is possible to improve the iron grade using relatively simple beneficiation methods such as water washing, heavy selection, and gravity beneficiation. However, in the case of low-grade hematite ores, which have small hematite particle sizes (usually less than 0.1 to 0.2 mmφ), it is not possible to separate the ore into individual pieces unless the ore is pulverized, and it is not easy to sort the ore after pulverization. At present, this objective has been achieved to some extent through the flotation method. In flotation of low-grade hematite ore, either the method of concentrating the hematite on the froth side or the method of concentrating it on the sink side is carried out, but in the early stages fatty acids or their salts were used as a scavenger. The former method used was the mainstream. However, this method has difficulty in selectivity and cannot achieve a sufficient effect of improving iron quality. On the other hand, the latter method can improve selectivity by using a scavenger such as an aliphatic amine and can obtain relatively high-grade concentrate, so the latter method is currently used. is becoming mainstream. In this case, a technique has also been established to further increase the iron quality by using starch as an inhibitor. However, even if the latest flotation technology as mentioned above is used, it is not easy to efficiently separate high-iron minerals from low-grade hematite ore, and currently the iron content is only about 60% by weight. Even the most preferable one has a limit of about 62 to 63% by weight, and if you try to increase the iron quality any further,
It is necessary to extend the ore beneficiation time or repeat the ore beneficiation several times, ignoring productivity, and as a result, the actual yield is extremely reduced. The present inventors focused on the above-mentioned circumstances and developed a mineral enrichment processing method that can efficiently separate high-grade ore concentrate from low-grade iron ore such as low-grade hematite minerals on an actual operational scale. We have been conducting research with this in mind. The present invention was completed as a result of such research, and
Its composition is dimer acid obtained by polymerizing unsaturated fatty acids as a scavenger when mineralizing low-grade iron ore containing many types of quartz and other gangue minerals by flotation. The gist lies in the use of aliphatic amines and/or salts thereof. The structure and effects of the present invention will be explained in detail below along with the research history leading to the completion of the present invention. First, in order to clarify the problems in the known flotation method, the present inventors investigated low-grade hematite ore with the chemical composition shown in Table 1 [minerals fixed by X-ray diffraction are hematite, firefly stone, quartz, aegirine (NaFeSi 2 O 6 ), apatite, barite, etc.] at 74μ
When the particles were crushed to a size of less than m and flotation was carried out using a known collector alone and starch as an inhibitor, the results shown in Table 2 were obtained.

【表】【table】

【表】 第2表の結果からも明らかな様に、いずれの場
合も鉄品位が50%程度以下の富鉱が得られるにす
ぎない。但し上記の原料鉱石は鉄品位が極端に低
く(30%以下)、浮遊選鉱用の原料としては不適
当と思われるので、前処理によつて鉄品位をある
程度高めることを目的として高磁力磁選法につい
て検討した。即ち第1表に示した成分組成の原料
鉱石を粒径105μm以下又は44μm以下に粉砕
し、空心磁場の磁束密度を3000〜9000ガウスの範
囲で変化させた場合の磁選効果を調べた(尚エレ
メントとしては1/4″エキスパンドメタルを使
用)、結果を第3表に示す。
[Table] As is clear from the results in Table 2, rich ore with an iron grade of less than 50% can be obtained in all cases. However, the above raw material ore has an extremely low iron content (30% or less) and is considered unsuitable as a raw material for flotation, so high-magnetic magnetic separation is used to increase the iron content to some extent through pretreatment. We considered this. That is, the raw material ore having the composition shown in Table 1 was pulverized to a particle size of 105 μm or less or 44 μm or less, and the magnetic separation effect was investigated when the magnetic flux density of the air-core magnetic field was varied in the range of 3000 to 9000 Gauss (the element 1/4'' expanded metal was used), and the results are shown in Table 3.

【表】 第3表からも明らかな様に、高磁力磁選は極低
品位のものを中品位程度まで高める方法としては
極めて有効である。しかし高磁力磁選のみで高品
位の富鉱を得ることは容易でない。ちなみに第1
図は、上記と同様の方法で高磁力磁選を1回或い
は2回繰り返した場合の鉄分の実収率と鉄品位
(Fe含有率)の関係を示したものであり、鉄分の
実収率を高めると鉄品位が低下し、鉄品位を高め
ると実収率は極端に低下する。また実収率を60%
程度に抑えた場合でも鉄品位は60%程度が限界で
あり、高磁力磁選のみで鉄品位を60%以上に高め
ることは極めて困難である。 これらの結果より、低品位鉄鉱石の富鉱化処理
を行なうに当つては、予め高磁力磁選等を利用し
てある程度まで鉄品位を高めておき、次いで浮遊
選鉱法によつて高品位の精鉱を得る方法が有効で
あると考えられる。 そこで第4表に示す高磁力磁選による粗精鉱を
対象とし、捕収剤として前記追試で最も好結果を
得た脂肪族アミン(牛脂ジアミンアセテート)及
び本発明者等が予備実験で捕収剤としての性能を
初めて確認した。不飽和脂肪酸を重合して得られ
るダイマー酸又はその塩〔特にバーサダイム(商
標:ヘンケル日本株式会社製)〕を夫々単独で使
用した場合の浮遊選鉱効果を調べた。
[Table] As is clear from Table 3, high-magnetic magnetic separation is extremely effective as a method of raising extremely low-grade materials to medium-grade materials. However, it is not easy to obtain high-grade rich ore through high-magnetic separation alone. By the way, the first
The figure shows the relationship between the actual iron yield and iron grade (Fe content) when high magnetic force magnetic separation is repeated once or twice using the same method as above. If the iron grade is lowered and the iron grade is increased, the actual yield will be extremely reduced. Also, the actual yield rate is 60%
Even if it is suppressed to a certain degree, the iron quality is limited to about 60%, and it is extremely difficult to increase the iron quality to more than 60% using only high-magnetic separation. Based on these results, when processing low-grade iron ore to enrich it, it is necessary to increase the iron quality to a certain level by using high-magnetic magnetic separation, etc., and then to convert high-grade refined iron ore by flotation. The method of obtaining ore is considered to be effective. Therefore, we targeted the crude concentrate obtained by high-magnetic magnetic separation as shown in Table 4, and used the aliphatic amine (beef tallow diamine acetate) that obtained the best results in the supplementary experiment as a collector and the collector in a preliminary experiment. This was the first time we confirmed its performance. The flotation effect was investigated when dimer acids or their salts obtained by polymerizing unsaturated fatty acids (particularly Versadime (trademark: manufactured by Henkel Japan Co., Ltd.)) were used alone.

【表】 尚この実験ではMS型浮遊選鉱機(インペラー
回転数2140rpm、容量200c.c.)を使用し、パルプ
濃度7.5%、浮選時間5分とする他、抑制剤とし
て適量の澱粉、起泡剤として適量のパイン油を併
用し、パルプのPHはHCl又はNaOHにより10〜
11.5に調整した。尚パルプのPHは、下記の予備実
験結果に基づいて定めたものである。即ち第2図
は捕収剤としてバーサダイムを使用し、パルプの
PHを8〜12の範囲で変化させたときのシンクの鉄
品位に与える影響を示した実験グラフであり、PH
10〜11.5付近で鉄品位の最も高い精鉱を得ること
ができる。 結果を第5表に示す。
[Table] In this experiment, an MS-type flotation machine (impeller rotation speed 2140 rpm, capacity 200 c.c.) was used, and the pulp concentration was 7.5% and the flotation time was 5 minutes. Using an appropriate amount of pine oil as a foaming agent, the pH of the pulp is adjusted to 10~10 with HCl or NaOH.
Adjusted to 11.5. The PH of the pulp was determined based on the following preliminary experimental results. In other words, Fig. 2 shows the use of Versadime as a collecting agent to collect pulp.
This is an experimental graph showing the effect on the iron quality of the sink when the pH is changed in the range of 8 to 12.
Concentrates with the highest iron grade can be obtained around 10 to 11.5. The results are shown in Table 5.

【表】 第5表からも明らかな様に、捕収剤として脂肪
族アミン又はバーサダイムを使用することによつ
て、精鉱の鉄品位を61〜62%程度まで高めること
ができる。しかしながら本発明者等の当面の目標
である〓65%程度以上の鉄品位〓を得るには至ら
なかつた。 上記の様な結果が得られた理由は必ずしも明ら
かではないが、その理由の1つとして、脂肪族
アミンは前記追試結果からも明らかな様に脈石鉱
物中の石英に対しては高い選択性を有している
が、他の脈石鉱物に対する選択性は必ずしも十分
とは言えないこと、従つて本例の様に石英以外
の脈石鉱物を多種類含有するものでは石英以外の
脈石鉱物の分離が不十分であることから鉄品位の
向上が阻害されること、が考えられる。 ところでバーサダイムは、以下の実験からも明
らかな様に石英に対する選択性は必ずしも十分と
は言えないが、螢石等他の脈石鉱物に対しては高
い選択性を示すことが確認された。 即ち前記第4表に示した化学組成の粗精鉱を使
用し、パルプPHを10.5〜11.3に保持し抑制剤とし
て澱粉(22.5mg/)を添加すると共に、バーサ
ダイムの添加量を種々変更して浮遊選鉱を行な
い、夫々についてシンク中のFe、SiO2及び螢石
由来のFの含有率を調べたところ、第3図の結果
が得られた。第3図からも明らかな様に、バーサ
ダイムはSiO2(即ち石英)の選択除去には殆ん
ど寄与しないが、石英以外の脈石鉱物(殊に螢
石)に対する選択除去効果は極めて優れている。 これらの結果から、捕収剤としてバーサダイム
と脂肪族アミンを併用し、バーサダイムによつて
石英以外の脈石鉱物を、また脂肪族アミンによつ
て石英を夫々除去すれば、鉄品位を効果的に高め
ることができると考えられる。そこで上記浮遊選
鉱でバーサダイム(使用量は22.5mg/)を用い
て得たシンク分を使用し、捕収剤として脂肪族ア
ミン(添加量:1〜20mg/)、抑制剤として澱
粉(添加量:22.5mg/)を用いパルプPHを10.5
〜11.3に調整して浮遊選鉱を行なつた。結果を第
4図に示す。 第4図からも明らかな様に、捕収剤としてバー
サダイムを用いて得たシンク分中に含まれる石英
が脂肪族アミンによつて除去される為、最終シン
ク分中の鉄含有率は65%程度まで高まる。 尚上記では、まずバーサダイムにより石英以外
の脈石成分を除去し、次いで脂肪族アミンにより
石英を除去する手順を採用したが、その逆の手順
を採用しても結果は殆んど同じであり、また場合
によつては両捕収剤を同時に添加して石英及びそ
の他の脈石成分を一気に除去することも可能であ
る。但し各捕収剤の機能を最大限有効に生かす為
には、各捕収剤を個別に添加する逐次浮遊選鉱法
の方が好ましい。 尚石英を浮遊させる浮遊選鉱においては、
CaCl2等の可溶性Ca塩を活性剤として適量添加す
ることにより石英の浮遊を一段と容易になし得る
ことが確認されており、本発明においても石英の
除去段階で可溶性Ca塩を併用することは極めて
効果的である。 また原料鉱石の鉄含有率が極端に低い場合は、
冒頭で説明した如く浮遊選鉱法のみで鉄品位を高
めることは操業上及び経済的に不利であるので、
極低品位鉱石については高磁力磁選等の予備処理
によつて鉄品位を40%程度以上に高めた後本発明
の富鉱化処理をするのがよく、原料鉱石の鉄品位
が40〜50%程度のものであれば直接本発明の富鉱
化処理を行なえばよい。例えば第5図は比較的鉄
品位の高い原料鉱石に適用される富鉱化処理のフ
ローシート、第6図は極低品位の原料鉱石に適用
される富鉱化処理のフローシートを示したもので
ある。但し本発明はこれらのフローシートによつ
て制限を受けるものではなく、前・後記の趣旨に
適合し得る範囲で適当に変更して実施することも
勿論可能である。 本発明は概略以上の様に構成されており、捕収
剤として不飽和脂肪酸を重合して得られるダイマ
ー酸及び/又はその塩と脂肪族アミンを併用する
ことによつて、石英の他種類の脈石鉱物を含む低
品位鉄鉱石からでも、鉄品位の高い精鉱を効率良
く得ることができることになつた。従つて高品位
鉄鉱石の枯渇により低品位鉄鉱石の活用が不可避
の状況にある現在及び将来における本発明の実用
的価値は極めて大きい。 次に実施例を示す。 実施例 脈石鉱物として石英、螢石、エジリン、重晶
石、角閃石等を含み、鉄品位が26.60%である低
品位ヘマタイト鉱石を粒径44μm以下に粉砕し、
高磁力磁選機を用いて予備選鉱を行ない(空心磁
場の磁束密度:5000ガウス)、鉄品位が54.58%の
粗精鉱を得た。この粗精鉱を用い、第1段の浮遊
選鉱には捕収剤としてバーサダイム(比較の為オ
レイン酸ソーダ又は脂肪族スルホネートも使
用)、抑制剤として澱粉を使用し、第2段目は捕
収剤として脂肪族アミン(牛脂ジアミンアセテー
ト)、抑制剤として澱粉を使用し、逐次浮遊選鉱
を行なつた。 結果は第6表に示す通りであり、脂肪族アミン
を他の公知の捕収剤と組合せて使用しても鉄品位
が65%以上の精鉱を得ることはできないが、脂肪
族アミンとバーサダイムを組合せて使用すると、
鉄品位が65%程度以上の精鉱を安定して得ること
ができる。
[Table] As is clear from Table 5, by using aliphatic amine or Versadime as a collector, the iron grade of the concentrate can be increased to about 61 to 62%. However, it was not possible to achieve an iron quality of about 65% or higher, which is the current goal of the present inventors. The reason why the above results were obtained is not necessarily clear, but one reason is that aliphatic amines have high selectivity for quartz in gangue minerals, as is clear from the above additional test results. However, the selectivity for other gangue minerals cannot necessarily be said to be sufficient, and therefore, in cases where many kinds of gangue minerals other than quartz are contained, as in this example, It is thought that improvement of iron quality is hindered due to insufficient separation of iron. By the way, as is clear from the following experiment, Versadime does not necessarily have sufficient selectivity for quartz, but it has been confirmed that it exhibits high selectivity for other gangue minerals such as fluorite. That is, using crude concentrate having the chemical composition shown in Table 4 above, maintaining the pulp PH at 10.5 to 11.3, adding starch (22.5 mg/) as an inhibitor, and varying the amount of Versadime added. When flotation was carried out and the contents of Fe, SiO 2 and F derived from fluorite in the sink were investigated, the results shown in Figure 3 were obtained. As is clear from Figure 3, Versadime hardly contributes to the selective removal of SiO 2 (i.e. quartz), but it has an extremely excellent selective removal effect on gangue minerals other than quartz (especially fluorite). There is. From these results, we found that by using Versadime and aliphatic amine in combination as scavengers, and removing gangue minerals other than quartz with Versadime and removing quartz with aliphatic amine, the iron grade can be effectively reduced. It is thought that it can be improved. Therefore, we used the sink fraction obtained by using Versadime (amount used: 22.5 mg/) in the above flotation process, aliphatic amine (amount added: 1 to 20 mg/) as a scavenger, and starch (amount added: Pulp PH is 10.5 using 22.5mg/)
Flotation was carried out with the adjustment to ~11.3. The results are shown in Figure 4. As is clear from Figure 4, the iron content in the final sink fraction is 65% because the quartz contained in the sink fraction obtained using Versadime as a collection agent is removed by the aliphatic amine. increase to a certain extent. In addition, in the above, a procedure was adopted in which gangue components other than quartz were first removed using Versadigm, and then quartz was removed using an aliphatic amine, but the results are almost the same even if the reverse procedure is adopted, In some cases, it is also possible to add both collectors at the same time to remove quartz and other gangue components at once. However, in order to utilize the functions of each scavenger to the maximum extent possible, a sequential flotation method in which each scavenger is added individually is preferable. In flotation to suspend quartz,
It has been confirmed that the suspension of quartz can be made easier by adding an appropriate amount of soluble Ca salt such as CaCl 2 as an activator, and in the present invention, it is extremely difficult to use soluble Ca salt in combination at the quartz removal stage. Effective. In addition, if the iron content of the raw ore is extremely low,
As explained at the beginning, it is operationally and economically disadvantageous to increase the iron quality by flotation alone.
For extremely low-grade ores, it is best to increase the iron grade to about 40% or more through preliminary treatment such as high-magnetic separation, and then perform the mineral enrichment treatment of the present invention, so that the iron grade of the raw ore is 40 to 50%. If the mineral is of a certain extent, the mineral enrichment treatment of the present invention may be directly performed. For example, Figure 5 shows a flow sheet for mineral enrichment processing applied to raw material ores with a relatively high iron content, and Figure 6 shows a flow sheet for mineral enrichment processing applied to raw material ores with extremely low iron grades. It is. However, the present invention is not limited by these flow sheets, and it is of course possible to carry out the present invention with appropriate changes within the scope that can comply with the spirit described above and below. The present invention is roughly constructed as described above, and by using dimer acid and/or its salt obtained by polymerizing unsaturated fatty acids and an aliphatic amine together as a scavenger, it is possible to remove quartz from other types of quartz. It has become possible to efficiently obtain high-grade iron concentrate even from low-grade iron ore containing gangue minerals. Therefore, the practical value of the present invention is extremely great now and in the future, when the depletion of high-grade iron ore makes it inevitable to utilize low-grade iron ore. Next, examples will be shown. Example A low-grade hematite ore containing quartz, fluorite, aegirine, barite, amphibole, etc. as gangue minerals and having an iron content of 26.60% was crushed to a particle size of 44 μm or less,
Preliminary ore beneficiation was performed using a high-magnetic magnetic separator (magnetic flux density of air-core magnetic field: 5000 Gauss), and crude concentrate with an iron grade of 54.58% was obtained. Using this coarse concentrate, the first stage of flotation uses Versadime as a collection agent (sodium oleate or aliphatic sulfonate is also used for comparison), starch as a suppressor, and the second stage collects Sequential flotation was performed using an aliphatic amine (tallow diamine acetate) as an agent and starch as an inhibitor. The results are shown in Table 6. Even if aliphatic amine is used in combination with other known collectors, it is not possible to obtain concentrate with an iron content of 65% or more, but aliphatic amine and Versadime When used in combination,
It is possible to stably obtain concentrate with an iron grade of approximately 65% or higher.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高磁力磁選法を採用したときの鉄分実
収率と精鉱の鉄品位の関係を示すグラフ、第2図
はパルプのPHと鉄品位の関係を示すグラフ、第3
図はバーサダイムの添加量とシンク中のFe、
SiO2及びFの含有率の関係を示すグラフ、第4
図はバーサダイムを用いて第1段浮遊選鉱を行な
つた後の第2段浮遊選鉱における脂肪族アミンの
添加量とシンク中のFe、SiO2及びFの含有率と
の関係を示すグラフ、第5,6図は本発明の富鉱
化処理法を例示するフローシートである。
Figure 1 is a graph showing the relationship between actual iron yield and iron grade of concentrate when high magnetic force magnetic separation method is adopted, Figure 2 is a graph showing the relationship between pulp PH and iron grade, and Figure 3 is a graph showing the relationship between pulp PH and iron grade.
The figure shows the amount of Versadime added, Fe in the sink,
Graph showing the relationship between SiO 2 and F content, 4th
The figure is a graph showing the relationship between the amount of aliphatic amine added and the content of Fe, SiO 2 and F in the sink in the second stage flotation after the first stage flotation using Versadime. Figures 5 and 6 are flow sheets illustrating the mineral enrichment treatment method of the present invention.

Claims (1)

【特許請求の範囲】 1 石英及びその他の脈石鉱物を含有する低品位
鉄鉱石を浮遊選鉱法によつて富鉱化処理するに当
り、捕収剤として不飽和脂肪酸を重合して得られ
るダイマー酸及び/又はその塩と脂肪族アミンを
使用することを特徴とする低品位鉄鉱石の富鉱化
処理法。 2 特許請求の範囲第1項において、抑制剤とし
て澱粉を併用する富鉱化処理法。 3 特許請求の範囲第1又は2項において、パル
プのPHを9.5〜11.5に保持して行なう富鉱化処理
法。 4 特許請求の範囲第1〜3項のいずれかにおい
て、活性剤として可溶性Ca塩を併用する富鉱化
処理法。 5 特許請求の範囲第1〜4項のいずれかにおい
て、鉄品位が40〜50重量%である低品位鉄鉱石を
使用する富鉱化処理法。 6 特許請求の範囲第5項において、磁選により
鉄品位を高めた低品位鉄鉱石を使用する富鉱化処
理法。
[Claims] 1. A dimer obtained by polymerizing unsaturated fatty acids as a scavenger when mineralizing low-grade iron ore containing quartz and other gangue minerals by flotation. A method for mineral enrichment processing of low-grade iron ore, characterized by using an acid and/or a salt thereof and an aliphatic amine. 2. The mineralization treatment method according to claim 1, in which starch is also used as an inhibitor. 3. The mineralization treatment method according to claim 1 or 2, which is carried out by maintaining the PH of the pulp at 9.5 to 11.5. 4. The mineralization enrichment method according to any one of claims 1 to 3, in which a soluble Ca salt is used as an activator. 5. The mineral enrichment processing method according to any one of claims 1 to 4, using low-grade iron ore having an iron grade of 40 to 50% by weight. 6. The mineral enrichment processing method according to claim 5, which uses low-grade iron ore whose iron quality has been increased by magnetic separation.
JP57041451A 1982-03-15 1982-03-15 Treatment for enriching iron in low-grade iron ore Granted JPS58159856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57041451A JPS58159856A (en) 1982-03-15 1982-03-15 Treatment for enriching iron in low-grade iron ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57041451A JPS58159856A (en) 1982-03-15 1982-03-15 Treatment for enriching iron in low-grade iron ore

Publications (2)

Publication Number Publication Date
JPS58159856A JPS58159856A (en) 1983-09-22
JPS6159182B2 true JPS6159182B2 (en) 1986-12-15

Family

ID=12608738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57041451A Granted JPS58159856A (en) 1982-03-15 1982-03-15 Treatment for enriching iron in low-grade iron ore

Country Status (1)

Country Link
JP (1) JPS58159856A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150856A (en) * 1984-01-14 1985-08-08 Kobe Steel Ltd Flotation method of iron ore
CN106807558A (en) * 2017-02-15 2017-06-09 西安天宙矿业科技开发有限责任公司 A kind of beneficiation method
CN109046747A (en) * 2018-08-10 2018-12-21 江苏凯达石英股份有限公司 The technique that composite algorithm prepares glass sand
CN109174473B (en) * 2018-09-28 2020-06-09 杨建� Fine ore dressing flotation machine

Also Published As

Publication number Publication date
JPS58159856A (en) 1983-09-22

Similar Documents

Publication Publication Date Title
Houot Beneficiation of iron ore by flotation—review of industrial and potential applications
CN101884951B (en) Combined mineral dressing technology of fine grain and micro grain cassiterite
JPS60197253A (en) Beneficiation of complicated sulfide ore
US20130032004A1 (en) Ore beneficiation
CN102909125B (en) Recleaning process for section of strong magnetic tailings in mixed lean iron ores
WO1992022381A1 (en) Process for improving the concentration of non-magnetic high specific gravity minerals
JPH04227077A (en) Froth fluatation method for silica or silica gangue
US4301973A (en) Beneficiation of iron ore
US3960715A (en) Cationic froth flotation process
JPH0487648A (en) Method for refining molybdenum ore
CN100444964C (en) Benefication of magnetite-haematite acid mixed mine
CN110586332A (en) Method for recovering sulfur and iron from polymetallic ore containing complex copper, sulfur and iron and containing easy-to-float silicate gangue
CN110813517A (en) Beneficiation method for recycling wolframite from tailings
CN108714482B (en) Hematite dressing process
JPS6159182B2 (en)
US4808301A (en) Flotation depressants
CN106378256B (en) A kind of upgrading drop silicon method of the poor ferromagnetic concentrate of mixed type
US3710934A (en) Concentration of spodumene using flotation
US4565625A (en) Beneficiation of phosphate ores containing surface activated silica
CN112742606B (en) Novel pyrrhotite composite activation agent and application thereof
CN112718231B (en) Mineral separation method of molybdenite of magnesium-rich mineral
CN114918036A (en) Sorting method for directionally enriching mica and efficiently separating lepidolite from muscovite
US3097162A (en) Method for concentrating aluminum silicates and zircon from beach sand
JP6009999B2 (en) Method for producing low sulfur-containing iron ore
KR900008927B1 (en) Process and method for separating noniron ores