JPS60150856A - Flotation method of iron ore - Google Patents
Flotation method of iron oreInfo
- Publication number
- JPS60150856A JPS60150856A JP59005272A JP527284A JPS60150856A JP S60150856 A JPS60150856 A JP S60150856A JP 59005272 A JP59005272 A JP 59005272A JP 527284 A JP527284 A JP 527284A JP S60150856 A JPS60150856 A JP S60150856A
- Authority
- JP
- Japan
- Prior art keywords
- iron
- contg
- alkali
- mineral
- minerals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、鉄鉱物とアルカリ含有含鉄珪酸塩鉱物を含む
低品位鉄鉱石から、浮遊選鉱法によって鉄鉱物を効率良
く分離・濃縮することのできる方法に関するものである
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for efficiently separating and concentrating iron minerals from low-grade iron ore containing iron minerals and alkali-containing iron-containing silicate minerals by flotation.
低品位鉄鉱石を鉄鋼製造原料として有効に活用する為に
は、鉄鉱物を分離・濃縮して鉄分含有率を高める必要が
あシ、例えばテーブル、サイクロン、スパイラル、コー
ンクラシファイア等の比重選鉱法、低磁力磁選機や高磁
力磁選機を用いる磁力選鉱法、鉄鉱石又は脈石鉱物を浮
遊させる浮遊選鉱法等による鉄分の濃縮が行なわれてい
る。ところで従来から鉄鋼製造原料として用いられてい
る低品位鉄鉱石中の脈石成分の殆んどは主に石英であっ
た為、上記の様な方法によって鉄鉱物を効率良く分離・
濃縮することができた。他方鉄鉱物資源の減少に伴って
よシ低品位の鉄鉱石も原料として使用せざるを得す、最
近ではニジリン輝石の様なアルカリ含有含鉄珪酸塩鉱物
を含む低品位鉄鉱石を鉄鋼製造原料として使用しようと
する動きも見受けられる。ところがこの様なアルカリ含
有鉱物が未分離のままで鉄鉱物中に混入していると、殊
に高炉装入原料あるいは直接製鉄用原料としてベレット
状に成形したものでは、還元反応段階でベレットが体積
膨張を起こして強度が著しく劣化し、粉化が進んで通気
性が低下し高炉操業性が著しく阻害されるという問題が
生ずる。ちなみに第1図は、焼成ベレット中のアルカリ
含有量と還元反応時の体積膨張率(SwaltingI
ndex)の関係を示したグラフであシ、具体的には通
常の鉄鉱物(アルカリ未含有)に0,75重量%以下の
Nap Oを添加し1280℃で10分間焼成したとき
の焼成ペレットを用い、900℃、CO/N2−30/
70、ガス流量1.41/分の条件で還元反応を行なっ
たときの体積膨張率を示したものである。この図からも
明らかな様にペレット中のNa、0量が多くなる程体積
膨張率は増大するが、その増大傾向は還元率が高い程著
しく、還元率60チのときはNa2O量が0.55Jで
も約400%の体積膨張を示す。更に極く少量のNa、
O量、例えば0.2チでも、還元率60チでは約100
%の体積膨張率を示している。現在高炉装入原料として
の鉄鉱石ペレットで規定されている体積膨張率の基準は
14条以下であるから、極めて僅かの・アルカリ含有鉱
物の混入でも高炉装入原料としての適正を欠くものとな
7る。In order to effectively utilize low-grade iron ore as a raw material for steel manufacturing, it is necessary to separate and concentrate iron minerals to increase the iron content. For example, gravity beneficiation methods such as table, cyclone, spiral, and cone classifiers, Iron content is concentrated by a magnetic beneficiation method using a low magnetic force magnetic separator or a high magnetic force magnetic separator, a flotation method in which iron ore or gangue minerals are suspended, and the like. By the way, most of the gangue components in low-grade iron ore conventionally used as a raw material for steel manufacturing are mainly quartz, so the method described above makes it possible to efficiently separate and separate iron minerals.
I was able to concentrate it. On the other hand, with the decline in iron mineral resources, it is necessary to use low-grade iron ore as a raw material.Recently, low-grade iron ore containing alkali-containing iron-containing silicate minerals such as pyroxene has been used as a raw material for steel production. There are also movements to use it. However, if such alkali-containing minerals remain unseparated and are mixed into iron minerals, especially when they are formed into pellets as raw materials for blast furnace charging or directly as raw materials for steelmaking, the volume of the pellets decreases during the reduction reaction stage. This causes problems such as expansion, resulting in a significant deterioration in strength, progressing to pulverization, decreased air permeability, and significant impediment to blast furnace operability. Incidentally, Figure 1 shows the relationship between the alkali content in the fired pellets and the volumetric expansion coefficient (SwaltingI) during the reduction reaction.
This is a graph showing the relationship between Nap O (ndex), specifically, the fired pellets obtained by adding 0.75% by weight or less of Nap O to ordinary iron minerals (no alkali) and firing at 1280°C for 10 minutes. 900℃, CO/N2-30/
70, which shows the volume expansion coefficient when the reduction reaction was carried out at a gas flow rate of 1.41/min. As is clear from this figure, the volume expansion coefficient increases as the amount of Na2O in the pellet increases, but this increasing tendency becomes more pronounced as the reduction rate increases, and when the reduction rate is 60%, the amount of Na2O is 0. Even at 55J, the volume expansion is approximately 400%. Furthermore, a very small amount of Na,
Even if the amount of O is 0.2 inches, for example, the reduction rate is about 100 inches.
% volumetric expansion rate. The current standard for volumetric expansion of iron ore pellets as blast furnace charging raw material is 14 or less, so even the presence of even a very small amount of alkali-containing minerals will make them unsuitable as blast furnace charging raw material. 7ru.
しかもNa2O等のアルカリ物質は還元反応時の熱で揮
発し、炉壁を著しく侵食することが確認されているので
、こうした意味からしてもアルカリ物質の混入は絶対避
けなければならガい。この様なところからこれまでアル
カリ物質を含む鉄鉱石は高炉装入原料上して殆んど使用
されなかったが、前述の様な原料事情からアルカリ含有
含鉄珪酸塩鉱物を含む低品位鉄鉱石でも使用せざるを得
ない状況になってきておシ、その為にはその様々低品位
鉄鉱石からアルカリ含有含鉄珪酸塩鉱物を可及的完全に
除去し高品位鉄鉱物として効率良く分離・濃縮し得る技
術を確立する必要がある。Furthermore, it has been confirmed that alkaline substances such as Na2O are volatilized by the heat during the reduction reaction and significantly corrode the furnace walls, so from this point of view as well, mixing of alkaline substances must be avoided at all costs. For this reason, iron ore containing alkali substances has rarely been used as a raw material for charging blast furnaces, but due to the raw material circumstances described above, even low-grade iron ore containing alkali-containing iron-containing silicate minerals has been used. For this reason, it is necessary to remove alkali-containing iron-containing silicate minerals from various low-grade iron ores as completely as possible, and efficiently separate and concentrate them as high-grade iron ores. It is necessary to establish the technology to obtain it.
本発明はとうした状況のもとて種々研究の結果完成され
たものであって、その構成は、鉄鉱物とアルカリ含有含
鉄珪酸塩鉱物を含む低品位鉱物を微粉砕し、捕収剤とし
てアミン系捕収剤を、又抑制剤として殿粉を使用し、パ
ルプpHを7〜11.2の範囲にしてアルカリ含有含鉄
珪酸塩鉱物を浮遊させると共に鉄鉱物を沈降分離すると
ころに要旨を有するものである。The present invention was completed as a result of various studies under such circumstances, and its composition consists of finely pulverizing low-grade minerals containing iron minerals and alkali-containing iron-containing silicate minerals, and using amines as a collector. The main feature is that alkali-containing iron-containing silicate minerals are suspended while the iron minerals are sedimented and separated by using a system collecting agent and starch as an inhibitor to adjust the pH of the pulp to a range of 7 to 11.2. It is.
本発明においてアルカリ含有含鉄珪酸塩鉱物とは主とし
てアルカリ輝石、特にニジリン輝石cb−g1rlne
:Na Fe Si、06)を言うが、ニジリン輝石と
ニジリン輝石質普通輝石(Aeg(rine Augi
te:(Na+Ca)(Fe”+Fe”tMg+AI)
(Si、0.):]との間の組成は連続的に変化してお
シ、その成分組成は通常第工表の@囲に含まれ、Na、
0の含有量は11〜14゜5%程度である。In the present invention, the alkali-containing iron silicate mineral is mainly alkali pyroxene, especially pyroxene cb-g1rlne.
: Na Fe Si, 06), but it is also called Aeg (line Augi pyroxene) and Aeg (line Augi pyroxene)
te: (Na+Ca) (Fe"+Fe"tMg+AI)
(Si, 0.):] The composition between Na,
The content of 0 is about 11-14°5%.
一方鉄鉱物はヘマイト、マグネタイトやりモナイトとし
て含まれているが、前記ニジリン輝石はこれらの鉄鉱物
及び脈石成分中に広く分散しているので、鉄鉱物をニジ
リン輝石や脈石成分から効率良く分離・濃縮する為には
、低品位鉄鉱石をまず微粉砕しなければならず、かかる
微粉砕物から有効成分を分離・濃縮する方法としては浮
遊選鉱法が最適と考えられる。そ辷でニジリン輝石をヘ
マタイト及びリモナイトから浮遊選鉱によって分離でき
る可能性の有無を調べる為、種々の捕収剤を使用し且つ
パルプpHを種々変えた場合における各成分の浮遊性を
明らかにすべく基礎実験を行なった。即ち第2表に示す
成分組成のニジリン輝石と第3表に示す成分組成のへマ
タイト及びリモナイトを使用し、ハリモンドチュープを
用いてパルプのpH及び捕収剤の種類を変えた場合の各
鉱物粉の浮遊率を調べた。尚ニジリン輝石中には第2表
からも明らかな様にS02が約50チ以上を占めておシ
、石英の浮遊挙動と同様の浮遊性を示すものと推擦され
ることから、本実験ではアミン系捕収剤を用いてアルカ
リ側で浮遊テストを行なった。On the other hand, iron minerals are contained in the form of hemite, magnetite, and monite, but the pyroxene mentioned above is widely dispersed in these iron minerals and gangue components, so iron minerals can be efficiently separated from pyroxene and gangue components. - In order to concentrate, low-grade iron ore must first be pulverized, and the flotation method is considered to be the optimal method for separating and concentrating the active ingredients from such pulverized material. In order to investigate the possibility of separating pyroxene from hematite and limonite by flotation, we investigated the flotation properties of each component when using various scavengers and varying the pulp pH. We conducted basic experiments. In other words, each mineral is obtained by using pyroxene with the composition shown in Table 2 and hematite and limonite with the composition shown in Table 3, and by changing the pH of the pulp and the type of collector using a Halmond tube. The floating rate of the powder was investigated. As is clear from Table 2, S02 occupies approximately 50 or more parts of pyroxene, and it is assumed that it exhibits floating behavior similar to that of quartz, so in this experiment A flotation test was conducted on the alkaline side using an amine collector.
第3表 へマタイト及びリモナイト
その結果、捕取剤としてアミン系捕取剤を選択し、且つ
p Hを7〜11.2の範囲に設定してやれば、少なく
ともニジリン輝石を良く浮遊させ得るととが確認された
。しかしその様な条件下においては同時にヘマタイトや
りモナイトも良く浮遊する為、ニジリン輝石を分離除去
するという本来の目的を達成することはできない。従っ
てニジリン輝石のみをフロス側又はシンク側へ分離除去
することのできる技術を確立しなければならない。そこ
でニジリン輝石、ヘマタイト(1)及び脈石成分の大部
分を占める石英(α−8f02)を対象とし、捕取剤と
してドデシルアンモニウムクロライド(CI21H26
NHsC1:以下DACと略記)を用い、pHを高レベ
ルの浮遊性が得られる9〜9.5の範囲に設定し、捕取
剤濃度を変えたときの各鉱物の浮遊率を調べた。その結
果は第2図に示す通りであシ、低濃度側では石英がよく
浮遊し、DAC濃度を高めていくとヘマタイト(1)と
ニジリン輝石が浮遊し、更に濃度を高めていくと最後に
リモナイトが浮遊する。この結果からも明らかな様に石
英とリモナイトは捕取剤濃度を調整することによってニ
ジリン輝石から分離することが可能であるが、ヘマタイ
トについては最適捕取剤濃度もニジリン輝石のそれと重
なっている為、両者を効率良く分離することはできない
。こうした傾向は、DACに限らず他のアミン系捕取剤
、例えばアルキルアミン塩、アルキルトリメチルアンモ
ニウムクロリド、ジアルキルジメチルアンモニウムクロ
リド、アルキルピリジニウムハロゲニド、アルキルジメ
チルベンジルアンモニウムクロリド等についてもほぼ同
様であることが確認された。Table 3 Hematite and Limonite As a result, if an amine-based scavenger is selected as the scavenger and the pH is set in the range of 7 to 11.2, at least pyroxene can be suspended well. confirmed. However, under such conditions, hematite and monite also float well, making it impossible to achieve the original purpose of separating and removing pyroxene. Therefore, it is necessary to establish a technology that can separate and remove only pyroxene to the floss side or the sink side. Therefore, we targeted pyroxene, hematite (1), and quartz (α-8f02), which accounts for most of the gangue components, and used dodecylammonium chloride (CI21H26) as a scavenger.
Using NHsC1 (hereinafter abbreviated as DAC), the pH was set in the range of 9 to 9.5 where a high level of buoyancy was obtained, and the buoyancy rate of each mineral was investigated when the concentration of the scavenger was changed. The results are as shown in Figure 2. At low concentrations, quartz floats well, as the DAC concentration increases, hematite (1) and pyroxene float, and as the concentration further increases, finally Limonite floats. As is clear from this result, quartz and limonite can be separated from pyroxene by adjusting the scavenger concentration, but for hematite, the optimal scavenger concentration also overlaps with that of pyroxene. , it is not possible to efficiently separate the two. This tendency is similar not only to DAC but also to other amine-based scavengers such as alkylamine salts, alkyltrimethylammonium chlorides, dialkyldimethylammonium chlorides, alkylpyridinium halides, and alkyldimethylbenzylammonium chlorides. confirmed.
そこで抑制剤によってヘマタイトの分離を抑制してやれ
ばニジリン輝石のみを浮遊分離することができるのでは
ないかと考え、抑制剤として殿粉を用いて実験を進めた
。即ち試料鉱石として鉄鉱物及びニジリン輝石を含む複
雑鉱石(T−Fe:26.10チ、粒度ニア4μm全通
)を使用し、MS型浮遊機(容量200CC)を用いて
浮選実験を行なった。Therefore, we thought that if we suppressed the separation of hematite with an inhibitor, it would be possible to float and separate only the pyroxene, so we proceeded with experiments using starch as an inhibitor. That is, a complex ore containing iron minerals and pyroxene (T-Fe: 26.10 cm, particle size near 4 μm throughout) was used as a sample ore, and a flotation experiment was conducted using an MS type flotation machine (capacity 200 cc). .
但しpHはニジリン輝石が良く浮遊する約11に設定し
、捕取剤(アルキルジアミンアセテートを使用)濃度は
0〜27.6rng/l、抑制剤(殿粉)濃度は5〜5
0ff1g/ノ(100〜1000g/)ンore)の
範囲で変えた。結果は第3図に示した通シであり、抑制
剤として適量の殿粉を併用すると鉄鉱物の浮遊が抑制さ
れ、シンク中の鉄分濃度を40部以上に高めることがで
きる。又第3図からも明らかな様に捕取剤の好ましい濃
度は6.9〜2o、smrt/1の範囲であシ、また別
途性なった実験で確認した殿粉の好ましい濃度範囲は7
.5〜75rng/l(鉱石1トン当シ100〜100
0 gに相当)であった。However, the pH was set to about 11, which allows the pyroxene to float well, the concentration of the scavenger (alkyl diamine acetate) was 0 to 27.6 rng/l, and the concentration of the inhibitor (starch) was 5 to 5.
It was varied in the range of 0ff1g/(100 to 1000g/). The results are as shown in Figure 3, and when an appropriate amount of starch is used as an inhibitor, floating of iron minerals can be suppressed and the iron concentration in the sink can be increased to 40 parts or more. Also, as is clear from Figure 3, the preferred concentration of the scavenger is in the range of 6.9 to 2o, smrt/1, and the preferred concentration range of starch, which was confirmed in a separate experiment, is 7.
.. 5 to 75 rng/l (100 to 100 rng/l per ton of ore)
(equivalent to 0 g).
又第4表は捕取剤としてDACを、抑制剤として殿粉を
使用し、京大式小型浮選機(セル容量:500CC)を
用いて複雑鉱石の浮選試験を行なった結果を示したもの
である。Table 4 also shows the results of a flotation test for complex ores using a Kyoto University-style compact flotation machine (cell capacity: 500CC) using DAC as a scavenger and starch as an inhibitor. It is something.
第4表からも明らかな様に、抑制剤を併用しなかった場
合に得られるシンクのT−Feは58.56 %、重量
割合8.56チで、Fe分配率は12.95優と極端に
低いのに対し、適量の殿粉を併用するとシンクのT−F
eは59.24%、重量割合は59.21チとなり、F
eの実収率は88.77%に激増している。As is clear from Table 4, the T-Fe of the sink obtained when no inhibitor was used was 58.56%, the weight ratio was 8.56%, and the Fe distribution ratio was extremely extreme at 12.95%. However, when combined with an appropriate amount of starch, the T-F of the sink is low.
e is 59.24%, the weight ratio is 59.21 inches, and F
The actual yield of e has increased dramatically to 88.77%.
本発明は以上の様に構成されるが、要はニジリン輝石の
様なアルカリ含有含鉄珪酸塩を含む低品位鉄鉱石の微粉
砕物を、アミン系捕収剤と共に抑制剤として殿粉を用い
て浮選することによって、アルカリ含有含鉄珪酸塩のみ
を選択的に浮遊させてシンク側に高品位の鉄鉱石を濃縮
して回収することができる。その結果これまで製鉄原料
としてあまり使用されていなかった前述の様な低品位鉱
石を工業的に実用化することが可能となシ、高品位鉄鉱
石の埋蔵量の枯渇化が進行しつつある原料事情への対応
に多大な貢献をもたらすものである。The present invention is constructed as described above, but the point is that finely ground low-grade iron ore containing an alkali-containing iron-containing silicate such as pyroxene is used together with an amine-based collector and starch as an inhibitor. By flotation, only alkali-containing iron-containing silicates are selectively floated, and high-grade iron ore can be concentrated and recovered on the sink side. As a result, it has become possible to commercialize the aforementioned low-grade ore, which has not been used much as a raw material for iron production, and the reserves of high-grade iron ore are becoming increasingly depleted. This will make a significant contribution to responding to the current situation.
第1図は鉄鉱物中のNet :O量と体積膨張率の関係
を示すグラフ、第2図は各種鉱物の浮遊率と捕収剤濃度
の関係を示すグラフ、第3図は複雑鉱石粉を浮選試料と
する捕収剤濃度とシンク中のFe濃度の関係を示すグラ
フである。
出願人 株式会社神戸製鋼所Figure 1 is a graph showing the relationship between the amount of Net:O in iron minerals and the coefficient of volume expansion, Figure 2 is a graph showing the relationship between the suspension rate of various minerals and the concentration of the collector, and Figure 3 is a graph showing the relationship between the volumetric expansion coefficient and the amount of Net:O in iron minerals. It is a graph showing the relationship between the concentration of a collecting agent used as a flotation sample and the Fe concentration in a sink. Applicant Kobe Steel, Ltd.
Claims (1)
石を微粉砕し、捕収剤としてアミン系捕収剤を、又抑制
剤として殿粉を使用し、パルプpHを7〜11.2の範
囲にしてアルカリ含有含鉄珪酸塩鉱物を浮遊させると共
に鉄鉱物を沈降分離することを特徴とする鉄鉱物の浮遊
選鉱方法。Low-grade iron ore containing iron minerals and alkali-containing iron-containing silicate minerals is finely pulverized, and an amine-based collector is used as a collector, and starch is used as an inhibitor, and the pulp pH is adjusted to 7 to 11.2. A method for flotation of iron minerals, which comprises suspending alkali-containing iron-containing silicate minerals and separating the iron minerals by sedimentation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59005272A JPS60150856A (en) | 1984-01-14 | 1984-01-14 | Flotation method of iron ore |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59005272A JPS60150856A (en) | 1984-01-14 | 1984-01-14 | Flotation method of iron ore |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60150856A true JPS60150856A (en) | 1985-08-08 |
Family
ID=11606592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59005272A Pending JPS60150856A (en) | 1984-01-14 | 1984-01-14 | Flotation method of iron ore |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60150856A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014524823A (en) * | 2011-04-13 | 2014-09-25 | ビーエーエスエフ ソシエタス・ヨーロピア | Diamine compounds and their use for reverse flotation of silicates from iron ore |
WO2014208504A1 (en) * | 2013-06-27 | 2014-12-31 | 株式会社神戸製鋼所 | Production method for low-sulfur iron ore |
CN105195334A (en) * | 2015-10-30 | 2015-12-30 | 中国地质科学院矿产综合利用研究所 | Magnesium-rich silicate mineral flotation inhibitor and preparation method and application thereof |
CN106824544A (en) * | 2017-01-16 | 2017-06-13 | 北京矿冶研究总院 | Hematite reverse flotation inhibitor and use method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58156358A (en) * | 1982-03-15 | 1983-09-17 | Kobe Steel Ltd | Flotation of low-grade heatite ore |
JPS58159856A (en) * | 1982-03-15 | 1983-09-22 | Kobe Steel Ltd | Treatment for enriching iron in low-grade iron ore |
-
1984
- 1984-01-14 JP JP59005272A patent/JPS60150856A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58156358A (en) * | 1982-03-15 | 1983-09-17 | Kobe Steel Ltd | Flotation of low-grade heatite ore |
JPS58159856A (en) * | 1982-03-15 | 1983-09-22 | Kobe Steel Ltd | Treatment for enriching iron in low-grade iron ore |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014524823A (en) * | 2011-04-13 | 2014-09-25 | ビーエーエスエフ ソシエタス・ヨーロピア | Diamine compounds and their use for reverse flotation of silicates from iron ore |
WO2014208504A1 (en) * | 2013-06-27 | 2014-12-31 | 株式会社神戸製鋼所 | Production method for low-sulfur iron ore |
JP2015010246A (en) * | 2013-06-27 | 2015-01-19 | 株式会社神戸製鋼所 | Production method of low sulfur iron ore |
CN105324497A (en) * | 2013-06-27 | 2016-02-10 | 株式会社神户制钢所 | Production method for low-sulfur iron ore |
US10596578B2 (en) | 2013-06-27 | 2020-03-24 | Kobe Steel, Ltd. | Production method for low-sulfur iron ore |
CN105195334A (en) * | 2015-10-30 | 2015-12-30 | 中国地质科学院矿产综合利用研究所 | Magnesium-rich silicate mineral flotation inhibitor and preparation method and application thereof |
CN105195334B (en) * | 2015-10-30 | 2017-09-12 | 中国地质科学院矿产综合利用研究所 | Magnesium-rich silicate mineral flotation inhibitor and preparation method and application thereof |
CN106824544A (en) * | 2017-01-16 | 2017-06-13 | 北京矿冶研究总院 | Hematite reverse flotation inhibitor and use method thereof |
CN106824544B (en) * | 2017-01-16 | 2019-02-05 | 北京矿冶研究总院 | Hematite reverse flotation inhibitor and use method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2309611C (en) | Method for upgrading iron ore utilizing multiple magnetic separators | |
CN107199120B (en) | A kind of beneficiation method containing magnetic iron ore, the high-sulfur magnetic iron ore of pyrite | |
CN105597946A (en) | Comprehensive recovery method for tungsten accompanying fluorite resources | |
CN111841826B (en) | Beneficiation method for high-calcium carbonate type low-grade scheelite | |
WO1993007967A1 (en) | Coal cleaning process | |
CN111298982B (en) | High-efficiency collecting agent for copper and gold in copper smelting slag by pyrometallurgy and application of high-efficiency collecting agent | |
CN104673995A (en) | Method for combined recovery and sulfur removal of pyrite and magnetite | |
US4697744A (en) | Process for the production of iron oxide fine powder | |
RU1834713C (en) | Method of ferruginous ore concentration by reverse flotation | |
JPS60150856A (en) | Flotation method of iron ore | |
CN103691566B (en) | One garnet method of FLOTATION SEPARATION from the brown iron ore concentrate of magnetic separation | |
RU2370316C1 (en) | Method for arranging pulp for flotation of magnetic fraction from concentrates of sulphide copper-nickel ores containing ferromagnetic minerals of iron and precious metals | |
Sparks et al. | Beneficiation of a phosphoriferous iron ore by agglomeration methods | |
AU667635B2 (en) | Process for the recovery of silver by flotation from the residue from the wet extraction of zinc | |
JPH0453590B2 (en) | ||
JPH08325650A (en) | Floatation method of converter slag | |
CN111715408B (en) | Flotation reagent for flotation of fluorite in scheelite and flotation method thereof | |
RU2130808C1 (en) | Method of concentration of copper-containing slags | |
CN112657668A (en) | Process for recovering black and white mica from iron ore iron-dressing tailings | |
CN112844818A (en) | Beneficiation separation method for copper-zinc sulfide ore | |
CN212370376U (en) | Separation system for gold and copper flotation bulk concentrates | |
CN212856157U (en) | Contain iron of carrying of sulphur magnetite concentrate and fall sulphur system | |
CN114589002B (en) | Beneficiation separation method for copper-zinc sulfide ore with high copper-zinc ratio | |
US3441401A (en) | Method of removing fatty acid coating from hematite concentrate | |
KR20180099242A (en) | Method for controllng and sellecting clay absorpted to metallic minerals' surface |