JPH0453590B2 - - Google Patents

Info

Publication number
JPH0453590B2
JPH0453590B2 JP58209633A JP20963383A JPH0453590B2 JP H0453590 B2 JPH0453590 B2 JP H0453590B2 JP 58209633 A JP58209633 A JP 58209633A JP 20963383 A JP20963383 A JP 20963383A JP H0453590 B2 JPH0453590 B2 JP H0453590B2
Authority
JP
Japan
Prior art keywords
aegirine
pyroxene
iron
minerals
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58209633A
Other languages
Japanese (ja)
Other versions
JPS6099357A (en
Inventor
Shigeru Mukai
Nobuyuki Imanishi
Koji Kanechika
Junji Kumamoto
Juji Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP58209633A priority Critical patent/JPS6099357A/en
Publication of JPS6099357A publication Critical patent/JPS6099357A/en
Publication of JPH0453590B2 publication Critical patent/JPH0453590B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、鉄鉱物とエジリン輝石を含む低品位
鉄鉱石から、浮遊選鉱法によつて鉄鉱物を効率良
く分離・濃縮することのできる方法に関するもの
である。 低品位鉄鉱石を鉄鋼製造原料として有効に活用
する為には、鉄鉱物を分離・濃縮して鉄分含有率
を高める必要があり、例えばテーブル、サイクロ
ン、スパイラル、コーンクラシフアイア等の比重
選鉱法、低磁力磁選機や高磁力磁選機を用いる磁
力選鉱法、鉄鉱石又は脈石鉱物を浮遊させる浮遊
選鉱法等による鉄分の濃縮が行なわれている。と
ころで従来から鉄鋼製造原料して用いられている
低品位鉄鉱石中の脈石成分の殆んどは主に石英で
あつた為、上記の様な方法によつて鉄鉱物を効率
良く分離・濃縮することができた。他方鉄鉱物資
源の減少に伴つてより低品位の鉄鉱石も原料とし
て使用せざるを得ず、最近ではエジリン輝石の様
なアルカリ含有含鉄珪酸塩鉱物を含む低品位鉄鉱
石を鉄鋼製造原料して使用しようとする動きも見
受けられる。ところがこの様なエジリン輝石が未
分離のままで鉄鉱物中に混入していると、殊に高
炉装入原料あるいは直接製鉄用原料としてペレツ
ト状に成形したものでは、還元反応段階でペレツ
トが体積膨張を起こして強度が著しく劣化し、粉
化が進んで通気性が低下し高炉操業性が著しく阻
害されるという問題が生ずる。ちなみに第1図
は、焼成ペレツト中のアルカリ含有量と還元反応
時の体積膨張率(Swelling Index)の関係を示
したグラフであり、具体的には通常の鉄鉱物(ア
ルカリ未含有)に0.75重量%以下のNa20を添加
して1280℃で10分間焼成したときの焼成ペレツト
を用い、900℃、CO/N2=30/70、ガス流量1.4
/分の条件で還元反応を行なつたときの体積膨
張率を示したものである。この図からも明らかな
様にペレツト中のNa2O量が多くなる程体積膨張
率は増大するが、その増大傾向は還元率が高い程
著しく、還元率60%のときはNa2O量が0.5%で
も約400%の体積膨張を示す。更に極く少量の
Na2O量、例えば0.2%でも、還元率60%では約
100%の体積膨張率を示している。現在高炉装入
原料としての鉄鉱石ペレツトで規定されている体
積膨張率の基準は14%以下であるから、極めて僅
かのエジリン輝石の混入でも高炉装入原料として
の適正を欠くものとなる。しかもNa2O等のアル
カリ物質は還元反応時の熱で揮発し、炉壁を著し
く侵食することが確認されているので、こうした
意味からしてもアルカリ物質の混入は絶対避けな
ければならない。この様なところからこれまでア
ルカリ物質を含む鉄鉱石は高炉装入原料として殆
んど使用されなかつたが、前述の様な原料事情か
らエジリン輝石を含む低品位鉄鉱石でも使用せざ
るを得ない状況になつてきており、その為にはそ
の様な低品位鉄鉱石からエジリン輝石を可及的完
全に除去し高品位鉄鉱物として効率良く分離・濃
縮し得る技術を確率する必要がある。 本発明はこうした状況のもとで種々研究の結果
完成されたものであつて、その構成は、鉄鉱物と
エジリン輝石を含む低品位鉄鉱石を微粉砕し、ド
デシル硫酸ナトリウムを用いて溶液のPHを1以上
3未満の範囲に設定し、且つドデシル硫酸ナトリ
ウムの濃度を1.5×10-5モル/以上に設定して
鉄鉱物を浮遊させるか、オレイン酸ナトリウムを
用いて溶液のPHを3〜5又は7〜9.5の範囲に設
定し、且つオレイン酸ナトリウムの濃度を3×
10-5〜5×10-4モル/の範囲に設定して鉄鉱物
を浮遊させ、前記エジリン輝石を沈降分離すると
ころに要旨を有するものである。 本発明においてエジリン輝石とはAegirine:
Na Fe Si2O6と表わされるが、エジリン輝石と
エジリン輝石質普通輝石〔Aegirine−Augite:
(Na,Ca)(Fe3,Fe2,Mg,Al)(Si2O6)〕との
間の組成は連続的に変化しており、その成分組成
は通常第1表の範囲に含まれ、Na2Oの含有量は
11〜14.5%程度である。
The present invention relates to a method for efficiently separating and concentrating iron minerals from low-grade iron ore containing iron minerals and aegirine pyroxene by a flotation method. In order to effectively utilize low-grade iron ore as a raw material for steel manufacturing, it is necessary to separate and concentrate iron minerals to increase the iron content. For example, gravity beneficiation methods such as table, cyclone, spiral, and cone classification methods, Iron content is concentrated by a magnetic beneficiation method using a low magnetic force magnetic separator or a high magnetic force magnetic separator, a flotation method in which iron ore or gangue minerals are suspended, and the like. By the way, most of the gangue components in low-grade iron ore conventionally used as a raw material for steel production are mainly quartz, so the method described above can efficiently separate and concentrate iron minerals. We were able to. On the other hand, as iron mineral resources decrease, lower-grade iron ores have to be used as raw materials, and recently, low-grade iron ores containing alkali-containing iron-containing silicate minerals such as aegirine pyroxene are being used as raw materials for steel production. There are also movements to use it. However, if such aegirine pyroxene remains unseparated and is mixed into iron minerals, especially if it is formed into pellets as a raw material for blast furnace charging or directly as a raw material for steelmaking, the pellets will expand in volume during the reduction reaction stage. This causes a problem in that the strength is significantly deteriorated, powdering progresses, air permeability decreases, and blast furnace operability is significantly inhibited. By the way, Figure 1 is a graph showing the relationship between the alkali content in the fired pellets and the volumetric expansion coefficient (Swelling Index) during the reduction reaction. % or less of Na 2 0 was added and fired at 1280°C for 10 minutes, 900°C, CO/N 2 = 30/70, gas flow rate 1.4
The figure shows the volumetric expansion coefficient when the reduction reaction is carried out under the conditions of /min. As is clear from this figure, the volume expansion coefficient increases as the amount of Na 2 O in the pellet increases, but this increasing tendency becomes more pronounced as the reduction rate increases; when the reduction rate is 60%, the amount of Na 2 O increases. Even at 0.5%, the volume expands by approximately 400%. Furthermore, a very small amount
Even if the amount of Na 2 O is 0.2%, for example, at a reduction rate of 60%, about
It shows a volumetric expansion rate of 100%. The current standard for volumetric expansion of iron ore pellets as a raw material for blast furnace charging is 14% or less, so even a very small amount of aegirine pyroxene will make the iron ore pellets unsuitable as a raw material for blast furnace charging. Furthermore, it has been confirmed that alkaline substances such as Na 2 O volatilize due to the heat during the reduction reaction and significantly corrode the furnace walls, so from this point of view as well, mixing of alkaline substances must be avoided at all costs. For this reason, iron ore containing alkaline substances has rarely been used as a raw material for charging blast furnaces, but due to the raw material circumstances mentioned above, even low-grade iron ore containing aegirine pyroxene has no choice but to be used. To achieve this, it is necessary to establish a technology that can remove aegirine pyroxene as completely as possible from such low-grade iron ore and efficiently separate and concentrate it as a high-grade iron mineral. The present invention was completed as a result of various studies under these circumstances, and its composition consists of finely pulverizing low-grade iron ore containing iron minerals and aegirine pyroxene, and using sodium dodecyl sulfate to create a solution with a pH of is set in the range of 1 to less than 3, and the concentration of sodium dodecyl sulfate is set to 1.5 × 10 -5 mol / or more to suspend iron minerals, or the pH of the solution is adjusted to 3 to 5 using sodium oleate. Or set in the range of 7 to 9.5, and the concentration of sodium oleate is 3×
The gist is that iron minerals are suspended in a range of 10 -5 to 5 x 10 -4 mol/, and the aegirine pyroxene is sedimented and separated. In the present invention, Aegirine is Aegirine:
It is expressed as Na Fe Si 2 O 6 , but it is called Aegirine pyroxene and Aegirine-Augite.
(Na, Ca) (Fe 3 , Fe 2 , Mg, Al) (Si 2 O 6 )], and its composition is usually within the range shown in Table 1. , the content of Na 2 O is
It is about 11-14.5%.

【表】 一方鉄鉱物はヘマタイト、マグネタイトやリモ
ナイトとして含まれているが、前記エジリン輝石
はこれらの鉄鉱物及び脈石成分中に広く分散して
いるので、鉄鉱物をエジリン輝石や脈石成分から
効率良く分離・濃縮する為には、低品位鉄鉱石を
まず微粉砕しなければならず、かかる微粉砕物か
ら有効成分を分離・濃縮する方法としては浮遊選
鉱法が最適と考えられる。そこでエジリン輝石と
ヘマタイト及びリモナイトとの浮遊選鉱法による
分離可能性を調べる為、種々の捕収剤を添加して
場合における各成分の浮遊性を調べた。即ち第2
表に示す成分組成のエジリン輝石と第3表に示す
成分組成のヘマタイト及びリモナイトを使用し、
ハリモンドチユーブを用いてパルプのPH及び捕収
剤の種類を変えた場合の各鉱物粉の浮遊率を測定
した。
[Table] On the other hand, iron minerals are included as hematite, magnetite, and limonite, but the aegirine pyroxene is widely dispersed in these iron minerals and gangue components, so iron minerals can be separated from aegirine pyroxene and gangue components. In order to efficiently separate and concentrate, low-grade iron ore must first be pulverized, and the flotation method is considered to be the optimal method for separating and concentrating the active ingredients from such pulverized material. Therefore, in order to investigate the possibility of separating aegirine pyroxene from hematite and limonite by the flotation method, the flotation properties of each component were investigated by adding various scavengers. That is, the second
Using aegirine pyroxene with the composition shown in the table and hematite and limonite with the composition shown in Table 3,
Using a Halmond tube, the suspension rate of each mineral powder was measured when the pH of the pulp and the type of collecting agent were changed.

【表】【table】

【表】 その結果、捕収剤としてドデシルベンゼンスル
ホン酸ナトリウム〔C12H25C6H4SO3Na:3.4×
10-4mol/(120mg/)〕を使用した場合の各
鉱物の浮遊率とパルプPHの関係は第2図に示す通
りであり、ヘマタイト及びリモナイトはPH1〜5
の領域で高い浮遊率を示し、エジリン輝石はPH
1.5〜2付近で浮遊率が最大となる。また第3図
は捕収剤としてオレイン酸ナトリウム〔C17H33
COONa:5.3×10-4mol/(160mg/)〕を使
用した場合の各鉱物の浮遊率とパルプPHの関係を
示したもので、どの成分鉱物も低PH側と高PH側で
高い浮遊率を示し、中性領域では浮遊率が低下し
ているが、特にヘマタイトとリモナイトはPH3〜
5及びPH5〜9.5の2つの領域で高い浮遊率を示
している。更に第4図は捕収剤としてドデシル硫
酸ナトリウム〔C12H25OSO4Na:1.4×10-4mol/
(40mg/)〕を使用した場合の各鉱物の浮遊
率とパルプPHの関係を示したものである。第4図
からも明らかな様にヘマタイト及びリモナイトは
何れもPH1〜3の領域で良く浮遊するがエジリン
輝石はほとんど浮遊しない。したがつてドデシル
硫酸ナトリウムを捕収剤として使用するとPH1〜
3の範囲においてヘマタイト、リモナイトとエジ
リン輝石とを良好に分離することができる。 この様に陰イオン系捕収剤の種類によつて高浮
遊率を示すPH領域はかなり相違し、ドデシルベン
ゼンスルホン酸ナトリウムを用いた場合は、エジ
リン輝石の高浮遊率を示すPH領域がリモナイトの
鉄鉱物の高浮遊率を示すPH領域とほとんど一致し
てしまう為エジリン輝石を分離することは困難で
あると思われる。しかし脂肪族硫酸塩、芳香族硫
酸塩、脂肪酸カルボン酸塩を捕収剤として用いた
場合には前記各鉱物が高浮遊率を示すPH領域がエ
ジリン輝石の高浮遊率領域と一部で重なつている
だけなので、PH調整と濃度調整でエジリン輝石を
選択的に効率良く分離除去できる可能性があると
思われる。 そこで上記実験で得た結果を基に、最良の浮遊
率を示すPH領域において各捕収剤の濃度を種々変
えて各鉱物の浮遊性を比較した結果は第5,6図
に示す通りであり、これらの結果を前記第3〜4
図の結果と総合してみると次の様に考えることが
できる。 [1] 陰イオン捕収剤としてドデシル硫酸ナト
リウムを使用した場合は、溶液PHを1以上3未
満(より好ましくは1.5〜2.8)に設定し、且つ
捕収剤濃度を1.5×10-5モル/以上(より好
ましくは3.0×10-5モル/以上)に設定する
ことによつて、エジリン輝石を浮遊させること
なくヘマタイトやリモナイトを選択的に分離す
ることができる。 〔3〕 陰イオン捕収剤としてオレイン酸ナトリ
ウムを用いた場合は、溶液PHを3〜5又は7〜
9.5(より好ましくは4〜5又は7.5〜8.5)の範
囲に設定し、且つ捕収剤濃度を3×10-5〜5×
10-4モル/(より好ましくは5×10-5〜2×
10-4モル/)の範囲に設定することによつ
て、エジリン輝石を殆んど浮遊させることなく
ヘマタイトやリモナイトのみを選択的に浮遊さ
せることができる。 従つて上記方法に準じてエジリン輝石を浮遊さ
せることなくヘマタイトやリモナイトのみを選択
的に浮遊させれば、アルカリ成分を含まない鉄鉱
物を高収率で回収することができる。事実後記実
施例でも明らかにする様に、エジリン輝石、ヘマ
タイト、リモナイト等を含む低品位鉄鉱石の微粉
砕物を上記方法に従つて浮遊選鉱分離したとこ
ろ、アルカリ成分を殆んど含まない高品位の鉄鉱
物を高収率で分離回収し得ることが確認された。
尚浮遊選鉱処理の具体的な方法は従来例に準じて
ほぼ同様に行なえばよく、必要に応じて適量の抑
制剤(殿粉等)を併用してエジリン輝石の浮遊混
入を一層確実に防止することもできる。 本発明は以上の様に構成されるが、要はエジリ
ン輝石を含む低品位鉄鉱石の微粉砕物をドテシル
硫酸ナトリウムまたはオレイン酸ナトリウムを用
いて浮遊選鉱処理し、特に溶液PHと捕収剤の濃度
をその種類に応じて適性に調整することによつ
て、アルカリ含有含鉄珪酸塩を浮遊させることな
く鉄鉱物のみを選沢的に浮遊分離することによつ
て、アルカリ含有低品位鉄鉱石からアルカリ成分
を含まない高品位の鉄鉱物を高収率で回収し得る
ことになつた。その結果これまで製鉄原料として
あまり使用されていなかつた前述の様な低品位鉄
鉱石を工業的に実用化することが可能となり、高
品位鉄鋼石の埋蔵量の枯渇化が進行しつつある原
料事情への対応に多大な貢献をもたらすものであ
る。 実施例 1 第2表に示したエジリン輝石と第3表に示した
ヘマタイト(1)を夫々149〜210μmに微粉砕し、重
量比で1:1の割合で混合したものを試料とし、
セル容量500c.c.の小型京大式浮遊選鉱機を用いて
浮遊選鉱分離試験を行なつた。尚捕収剤としては
ドデシル硫酸ナトリウム(7.0×10-5mol/)を
使用し、パルプPHは2.55〜2.63、浮遊時間は6分
とした。2回の実験結果は第4表に示した通りり
であり、鉄分のフロス方向への分配率は何れも80
%以上と極めて高いのに対し、アルカリ成分のフ
ロス方向への分配率は15%以下の低い値を示して
いる。その結果フロス中のアルカリ成分量はごく
僅かでT.Fe量は60%以上の高品位鉄鉱物が得ら
れている。
[Table] As a result, sodium dodecylbenzenesulfonate [C 12 H 25 C 6 H 4 SO 3 Na: 3.4 ×
10 -4 mol/(120mg/)] The relationship between the floating rate of each mineral and the pulp PH is shown in Figure 2, and hematite and limonite have a pH of 1 to 5.
Aegirine pyroxene shows a high flotation rate in the region of PH
The floating rate reaches its maximum around 1.5 to 2. Figure 3 also shows sodium oleate [C 17 H 33
This graph shows the relationship between the suspension rate of each mineral and the pulp PH when COONa: 5.3×10 -4 mol/(160mg/)] is used. All component minerals have high suspension rates on the low and high PH sides. , and the floating rate decreases in the neutral region, especially for hematite and limonite at pH 3~
5 and PH5 to 9.5. Furthermore, Figure 4 shows sodium dodecyl sulfate [C 12 H 25 OSO 4 Na: 1.4×10 -4 mol/
(40mg/)] shows the relationship between the floating rate of each mineral and the pulp PH. As is clear from Figure 4, both hematite and limonite float well in the pH range of 1 to 3, but aegirine pyroxene hardly floats. Therefore, if sodium dodecyl sulfate is used as a collector, the pH will be 1~
Within the range of 3, hematite, limonite and aegirine pyroxene can be well separated. In this way, the PH range that shows a high buoyancy rate varies considerably depending on the type of anionic scavenger, and when sodium dodecylbenzenesulfonate is used, the PH range that shows a high buoyancy rate for aegirine pyroxene is different from that of limonite. It seems difficult to separate aegirine pyroxene because it almost coincides with the PH region where iron minerals have a high susceptibility. However, when aliphatic sulfates, aromatic sulfates, and fatty acid carboxylates are used as collectors, the PH range in which each mineral has a high buoyancy rate partially overlaps with the high buoyancy rate range of aegirine pyroxene. Therefore, it seems possible to selectively and efficiently separate and remove aegirine pyroxene by adjusting the pH and concentration. Based on the results obtained in the above experiment, we compared the buoyancy of each mineral by varying the concentration of each scavenger in the PH range that shows the best buoyancy. The results are shown in Figures 5 and 6. , these results are shown in the third to fourth sections above.
When combined with the results shown in the figure, the following conclusions can be drawn. [1] When sodium dodecyl sulfate is used as an anion collector, the solution pH is set to 1 or more and less than 3 (more preferably 1.5 to 2.8), and the collector concentration is 1.5 × 10 -5 mol / By setting the amount above (more preferably 3.0×10 −5 mol/or above), hematite and limonite can be selectively separated without causing aegirine pyroxene to float. [3] When using sodium oleate as an anion collector, adjust the solution pH to 3-5 or 7-5.
9.5 (more preferably 4 to 5 or 7.5 to 8.5), and the collector concentration is set to 3 x 10 -5 to 5 x
10 -4 mol/(more preferably 5 x 10 -5 to 2 x
By setting the amount in the range of 10 −4 mol/), only hematite and limonite can be selectively suspended without suspending most of the aegirine pyroxene. Therefore, if only hematite and limonite are selectively suspended without suspending aegirine pyroxene according to the above method, iron minerals containing no alkaline components can be recovered at a high yield. In fact, as will be clarified in the examples below, when finely ground low-grade iron ore containing aegirine pyroxene, hematite, limonite, etc. was separated by flotation according to the above method, high-grade iron ore containing almost no alkaline components was obtained. It was confirmed that iron minerals could be separated and recovered with high yield.
The specific method of flotation treatment can be carried out in almost the same manner as in conventional methods, and if necessary, an appropriate amount of inhibitor (starch, etc.) may be used in combination to more reliably prevent the floating contamination of aegirine pyroxene. You can also do that. The present invention is constructed as described above, but the point is that finely ground low-grade iron ore containing aegirine pyroxene is subjected to flotation treatment using sodium dotecyl sulfate or sodium oleate, and in particular, the solution PH and collection agent are By appropriately adjusting the concentration depending on the type of iron ore, only iron minerals can be selectively floated and separated without floating alkali-containing iron silicates. It has become possible to recover high-grade iron minerals containing no components at a high yield. As a result, it has become possible to commercialize the aforementioned low-grade iron ore, which has not been used much as a raw material for steelmaking until now, and the raw material situation is such that reserves of high-grade iron ore are being depleted. This will make a significant contribution to the response to the Example 1 Aegirine pyroxene shown in Table 2 and hematite (1) shown in Table 3 were finely ground to 149 to 210 μm, and mixed at a weight ratio of 1:1 as a sample.
A flotation separation test was conducted using a small Kyoto University type flotation machine with a cell capacity of 500 c.c. Note that sodium dodecyl sulfate (7.0×10 −5 mol/) was used as a collecting agent, the pulp pH was 2.55 to 2.63, and the floating time was 6 minutes. The results of the two experiments are shown in Table 4, and the distribution ratio of iron in the direction of the floss was 80 in both cases.
%, which is extremely high, whereas the distribution ratio of alkaline components in the direction of the floss is low, less than 15%. As a result, high-grade iron minerals with a T.Fe content of over 60% were obtained with a very small amount of alkaline components in the floss.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鉄鉱物中のNa2O量と体積膨張率の関
係を示すグラフ、第2〜4図はパルプPHと浮遊率
の関係を示すグラフ、第5,6図は捕収剤の濃度
と浮遊率の関係を示すグラフである。
Figure 1 is a graph showing the relationship between the amount of Na 2 O in iron minerals and the coefficient of volume expansion, Figures 2 to 4 are graphs showing the relationship between pulp PH and floating rate, and Figures 5 and 6 are graphs showing the relationship between the concentration of collecting agent. It is a graph showing the relationship between and floating rate.

Claims (1)

【特許請求の範囲】[Claims] 1 鉄鉱物とエジリン輝石を含む低品位鉄鉱石を
微粉砕し、ドデシル硫酸ナトリウムを用いて溶液
のPHを1以上3未満の範囲に設定し、且つドデシ
ル硫酸ナトリウムの濃度を1.5×10-5モル/以
上に設定して鉄鉱物を浮遊させるか、オレイン酸
ナトリウムを用いて溶液のPHを3〜5又は7〜
9.5の範囲に設定し、且つオレイン酸ナトリウム
の濃度を3×10-5〜5×10-4モル/の範囲に設
定して鉄鉱物を浮遊させ、前記エジリン輝石を沈
降分離することを特徴とする鉄鉱物の浮遊選鉱
法。
1. Finely grind low-grade iron ore containing iron minerals and aegirine pyroxene, set the pH of the solution to a range of 1 or more and less than 3 using sodium dodecyl sulfate, and set the concentration of sodium dodecyl sulfate to 1.5 × 10 -5 mol. / or above to suspend iron minerals, or use sodium oleate to adjust the pH of the solution to 3-5 or 7-
9.5, and the concentration of sodium oleate is set in the range of 3 x 10 -5 to 5 x 10 -4 mol/ to suspend the iron mineral, and the aegirine pyroxene is sedimented and separated. Flotation method for iron minerals.
JP58209633A 1983-11-07 1983-11-07 Floatation of iron ore Granted JPS6099357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58209633A JPS6099357A (en) 1983-11-07 1983-11-07 Floatation of iron ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58209633A JPS6099357A (en) 1983-11-07 1983-11-07 Floatation of iron ore

Publications (2)

Publication Number Publication Date
JPS6099357A JPS6099357A (en) 1985-06-03
JPH0453590B2 true JPH0453590B2 (en) 1992-08-27

Family

ID=16576020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58209633A Granted JPS6099357A (en) 1983-11-07 1983-11-07 Floatation of iron ore

Country Status (1)

Country Link
JP (1) JPS6099357A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5736828B2 (en) * 2011-02-21 2015-06-17 Jfeスチール株式会社 Method for separating and recovering SiC from used refractories
JP2014524823A (en) * 2011-04-13 2014-09-25 ビーエーエスエフ ソシエタス・ヨーロピア Diamine compounds and their use for reverse flotation of silicates from iron ore

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115647A (en) * 1980-02-18 1981-09-10 Dowa Mining Co Ltd Floatation method for hematite
JPS58156358A (en) * 1982-03-15 1983-09-17 Kobe Steel Ltd Flotation of low-grade heatite ore

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115647A (en) * 1980-02-18 1981-09-10 Dowa Mining Co Ltd Floatation method for hematite
JPS58156358A (en) * 1982-03-15 1983-09-17 Kobe Steel Ltd Flotation of low-grade heatite ore

Also Published As

Publication number Publication date
JPS6099357A (en) 1985-06-03

Similar Documents

Publication Publication Date Title
Houot Beneficiation of iron ore by flotation—review of industrial and potential applications
CN107199120B (en) A kind of beneficiation method containing magnetic iron ore, the high-sulfur magnetic iron ore of pyrite
CN106676281B (en) A kind of technique of Copper making liquid slag ore phase reconstruction Recovering Copper, iron
CN106391319B (en) A method of improving Skarn Cu molybdenum ore copper-cobalt ore molybdenum concentrate grade
CN102091673B (en) Low-grade fluorite silicon reduction mineral processing process
CN105597946A (en) Comprehensive recovery method for tungsten accompanying fluorite resources
CN104673995A (en) Method for combined recovery and sulfur removal of pyrite and magnetite
CN111298982B (en) High-efficiency collecting agent for copper and gold in copper smelting slag by pyrometallurgy and application of high-efficiency collecting agent
CN110076005B (en) Titanium-containing mineral flotation silicate gangue mineral inhibitor and application thereof
RU1834713C (en) Method of ferruginous ore concentration by reverse flotation
US4697744A (en) Process for the production of iron oxide fine powder
JPH0453590B2 (en)
US3944414A (en) Treatment of anode slime from copper electrolysis
JPS60150856A (en) Flotation method of iron ore
CN101948960B (en) Method for recovering lead from iron-containing lead smelting slag
CN115106190B (en) Beneficiation method for high-sulfur gold-containing mixed copper ore
CN103691566A (en) Method for performing flotation separation on garnet from magnetic separation brown iron ore concentrate
CN114950724B (en) Mineral separation method for recovering valuable components of complex scheelite at normal temperature
CN112844818B (en) Beneficiation separation method for copper-zinc sulfide ore
JPH08325650A (en) Floatation method of converter slag
CN103071597A (en) Preparation method of high-purity copper sulfide
RU2130808C1 (en) Method of concentration of copper-containing slags
CN103657860B (en) The method of reverse flotation enrichment zinc silicate mineral in acid condition
CN113798052A (en) Use method of micro-fine particle iron mineral strong magnetic separation bridging agglomerating agent
US2765988A (en) Reduction of iron ores