JPS58159856A - Treatment for enriching iron in low-grade iron ore - Google Patents

Treatment for enriching iron in low-grade iron ore

Info

Publication number
JPS58159856A
JPS58159856A JP57041451A JP4145182A JPS58159856A JP S58159856 A JPS58159856 A JP S58159856A JP 57041451 A JP57041451 A JP 57041451A JP 4145182 A JP4145182 A JP 4145182A JP S58159856 A JPS58159856 A JP S58159856A
Authority
JP
Japan
Prior art keywords
grade
iron
ore
low
iron ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57041451A
Other languages
Japanese (ja)
Other versions
JPS6159182B2 (en
Inventor
Shigeru Mukai
向井 滋
Isao Fujita
藤田 勇雄
Nobuyuki Imanishi
今西 信之
Koji Kanechika
金近 孝二
Fukusaburo Yamamoto
山本 福三郎
Junji Kumamoto
隈元 純二
Yuji Morita
雄二 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP57041451A priority Critical patent/JPS58159856A/en
Publication of JPS58159856A publication Critical patent/JPS58159856A/en
Publication of JPS6159182B2 publication Critical patent/JPS6159182B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To enrich ore and to efficiently selecting out concentrate high-grade ore in floatation separation of low-grade iron ore, by using a combination of a specified dimer acid and an aliphatic amine as a collector. CONSTITUTION:Low grade iron ore, such as hematite contg. quartz and veinstone is crushed, and when needed, treated with a magnetic separator. This raw concentrate is treated by floatation using a dimer acid or its salt obtd. by dimerizing an unsatd. aliphatic acid as a collector in the first step, and again treated by floatation using an aliphatic amine as a collector in the second step. In addition, when needed, a controller, such as starch is used, and a proper soluble Ca salt is used as an activator. This process permits enriching low grade iron ore having 40-50wt% iron grade, and obtaining concentrate high in iron grade efficiently.

Description

【発明の詳細な説明】 本発明は、石英上0@の脈石鉱物を参種輌含有する低品
位鉄鉱石を浮遊選鉱法によりて富鉱化処増する方法KM
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention describes a method for mineralizing and enriching low-grade iron ore containing 0@ of gangue minerals on quartz by a flotation method.
It is something to do.

鉄鉱石は非鉄金属鉱物に比べてI&価であり且つ比較的
大規模な1鉱Kl[壇れてい九〇で、従来は格別の選鉱
を要することなくそのttsv鉄原料として用いられて
自九。しかし冨鉱の埋蔵量が減少するにつれて低品位鉄
鉱石でも利用せざるを得ない伏況が生じておシ、例えば
磁選によって比較的容易に鉄品位を高め得る鉱床(マグ
ネタイト鉱物等)Kついては優先的に開発が進められて
いる。
Iron ore has a higher I value than non-ferrous metal minerals, and is a relatively large-scale ore, 90 Kl, and has traditionally been used as a ttsv iron raw material without the need for special beneficiation. However, as the reserves of iron ore decrease, a situation arises in which even low-grade iron ore has to be used. development is progressing.

また鉄鉱石の枯4に対処すると共に国内資源の有効利用
を推進する為、埋蔵量の豊富な低品位ヘムタイト鉱物を
有効利用しようという貿運も高オってきている。
In addition, in order to cope with the shortage of iron ore and promote the effective use of domestic resources, trade is increasing to effectively utilize low-grade hemtite minerals, which have abundant reserves.

ところで低品位鉄鉱石の中でも鉄鉱物O粒M廖比較的粗
いもの(14111度以上)では、水洗、菖遥、比重I
ll絋O鉱な比較的単純な選鉱法でも鋏品位の向上を図
ることができるー、低品位へマタイト鉱石の様にヘマタ
イト粒度が小11%/hもO(遥常0.1〜0.2■φ
以下)では、鉱石を轍粉砕しなければ単体に分離するこ
とがで龜ず、粉砕後の選鉱も容易でな−か、現在では浮
遊選鉱法によって一応その目的を達成している。低品位
へマタイト鉱石の浮遊選鉱に当っては、ヘマタイトをア
ース側に濃縮する方法とVンタ側<S纏する方*0いず
れかを行なうことになるが、初期O頃は捕a剤として脂
肪酸又はその福を)@いる前者の方法−支流を占めてい
た。しかしこの方法は選択性に−があp1十分な鉄品位
同上効果を相ることができなかった。これに対し後者の
方法では脂肪族アミン等の補収剤を使均す為ことKよっ
て選択性を向上することができ、比較的高品祉の精鉱を
得ることができるので、現在は後者の方法が主流になっ
ている。この場合、抑制剤として澱粉を併用することK
よって鉄品位を更に高める技術も確立されている。
By the way, among low-grade iron ores, iron minerals with relatively coarse grains (more than 14111 degrees) are washed with water, have a specific gravity of I
It is possible to improve the shearing grade even with a relatively simple beneficiation method, as in low-grade hematite ore, where the hematite particle size is as small as 11%/h (almost 0.1 to 0.0%). 2■φ
In the case of (below), it is difficult to separate the ore into individual pieces without crushing it in a rut, and it is also easy to concentrate the ore after crushing.Currently, this purpose has been achieved by the flotation method. In flotation of low-grade hematite ore, either the method of concentrating the hematite on the earth side or the method of wrapping it on the Vnta side *0 is carried out, but at the initial stage O, fatty acids are used as a trapping agent. Or its fortune) @ the former method - occupied a tributary. However, this method was unable to combine the selectivity with the effect of sufficient iron content. On the other hand, the latter method uses scavenging agents such as aliphatic amines, which improves selectivity and yields relatively high-quality concentrate; therefore, the latter method is currently used. method has become mainstream. In this case, starch may also be used as an inhibitor.
Therefore, technology has been established to further improve the iron quality.

しかしながら上記の槍な最新の浮遊選鉱技術を駆使した
としても、低品位のへマメイト鉱石から一品位の高い鉱
物を効率良(分離することは容易でな(、JJl蚊では
鉄含有率がせいぜい60重量嚢樹膚、最も好オしいもの
でも62〜68重量III柵度が@度であp、これ以上
鉄品位を高めようとすると、生産性を無視してiII砿
時開時間長するか選鉱をlk回に亘って繰り返す必要が
あシ、千れに伴って実収率も他端に低下する。
However, even if we make full use of the latest flotation technology mentioned above, it is difficult to efficiently separate high-grade minerals from low-grade hemamate ore. The most preferable weight bag tree is 62 to 68 weight III steel, and if you try to increase the iron quality any further, you will have to ignore productivity and lengthen the opening time of III steel or beneficiation. It is necessary to repeat lk times, and the actual yield also decreases as the number of times increases.

本発明者等は上記の様な事情圧着目し、低品位ヘマタイ
ト鉱物の様な低品位鉄鉱石から実操業規模で高品位鉱輌
鉱を効率良く分離し得る様な冨鉱化処f11法の開発を
期して研究tsめてきた。本発明はかかる研究の結果完
成されたものであって。
The present inventors have focused on the above-mentioned circumstances, and have developed a rich mineralization process f11 method that can efficiently separate high-grade iron ore from low-grade iron ore such as low-grade hematite mineral on an actual operational scale. We have been conducting research in anticipation of development. The present invention was completed as a result of such research.

その構成は、石英及びその他の脈石鉱物を◆at類含有
する低品位鉄鉱石を浮遊選鉱法によって1鉱化処理する
に尚p1捕収剤として不飽和脂肪酸を       、
重合して得られるダイマー醗及び/又はその樵とし、空
0磁場O磁束密度をa、oao〜s、o o oガウス
の範囲で変化させた場合O磁選効果を調べ−k(崗エレ
メントとしてはlA1工aFXパントメIkを使用)、
結果を@1表に示す。
Its composition is that low-grade iron ore containing quartz and other gangue minerals is mineralized by the flotation method, and unsaturated fatty acids are added as a P1 collector.
Using the dimer powder obtained by polymerization and/or its wood, the O magnetic selection effect was investigated when the air zero magnetic field O magnetic flux density was varied in the range of a, oao to s, o o o Gauss -k (as a magnetic element, (Using lA1 Engineering aFX Pantome Ik),
The results are shown in Table @1.

@8表からも明らかな橡に、高磁力amは―低品位のも
のを中品位程度まで高める方法としては極めて有効であ
る。しかし高磁力磁選Oみで高品位の1鉱を得ることは
容墨でない、ちtみに第1図は、上記とv4様の方法で
高磁力磁選をtill戚いはgtanb返しえ場合O鉄
分O賽収率と鉄品位(F・含有率)の関係を示し良もの
であp、鉄分の実収率を高めると鉄品位が低下し、鉄品
位を高めると実収率は極端に低下する。ま九賽収率を6
0優m度に抑えた場合でも鉄品位は60−程度が限界で
あシ、lIM磁力磁選のみで鉄品位を60優以上KII
iliめることは極めて内鍵である。
As is clear from Table 8, high magnetic force AM is extremely effective as a method of raising low-grade materials to medium-grade ones. However, it is impossible to obtain high-grade ore by high-magnetic magnetic separation, and Fig. 1 shows that if high-magnetic magnetic separation is carried out using the above method and v4-like method, the iron content is The relationship between O yield and iron grade (F content) is good.If the actual yield of iron is increased, the iron grade will decrease, and if the iron content is increased, the actual yield will be extremely reduced. The nine dice yield is 6
Even if the iron grade is kept to 0, the limit is about 60, but with lIM magnetic separation alone, the iron grade can be raised to 60 or more.
It is very important to be able to write down.

これらの結果よ)、低品位鉄鉱石の1鉱化処理を行なう
に当っては、予め高磁力磁選等を利用しである程度まで
鉄品位を高めておき、次いで浮遊選鉱法によって高品位
ON鉱を侮る方法が有効であると考えられる。
According to these results), when mineralizing low-grade iron ore, the iron grade is raised to a certain level by using high-force magnetic separation, etc., and then high-grade ON ore is extracted by flotation. It is thought that the method of making light of it is effective.

そこで第4表に示す高磁力磁選による粗精鉱を対象とし
、捕収剤として前記追試で最も好結果をIl九脂肪族ア
截ン(牛脂シアミンアセテート)IILび本発明者等が
予備実験で捕収剤としての性能を初めて確認した。不飽
和脂肪酸を重合して得られるダイマー酸又はその箇〔特
にバーサダイム(OJ標:へンケル日本株式会社製)〕
を夫々単独で使     1:用し九場合の浮遊選鉱効
果を調べ友。
Therefore, the present inventors conducted a preliminary experiment using IIL9 aliphatic acetate (beef tallow cyamine acetate) as a collecting agent, which obtained the best results in the supplementary test as a collector, targeting the crude concentrate obtained by high-magnetic magnetic separation as shown in Table 4. The performance as a collection agent was confirmed for the first time. Dimer acid or its derivatives obtained by polymerizing unsaturated fatty acids [especially Versadime (OJ mark: manufactured by Henkel Japan Co., Ltd.)]
We investigated the flotation effect when using 1 and 9, respectively.

覆えないこと、■従つで本例O様に石英以外の脈石鉱物
を多種類含有するものでは石英以外の脈石鉱物の分離が
不十分であることから鉄品位の向上が阻害されること、
が考えられる。
■Therefore, if the material contains multiple types of gangue minerals other than quartz, as shown in Example O, the separation of gangue minerals other than quartz will be insufficient, which will impede the improvement of iron quality. ,
is possible.

ところでバーサダイムは、以下の実験からも明らかな様
に石英に対する選択性は必ずしも十分とはぎえないが、
螢石等他の脈石鉱物に対しては高い選択性を示すことが
wigされえ。
By the way, Versadime does not necessarily have sufficient selectivity for quartz, as is clear from the experiments below.
It has been shown that it exhibits high selectivity for other gangue minerals such as fluorite.

即ち前記第4表に示した化学M成の粗精鉱を使用し、パ
ルプpHを1O05〜11.31に保持し抑制剤として
厳粉(22,5〜//)を添加すると共に1バーサダイ
ムの添加倉を橋々変更して浮遊選鉱を行ない、夫々につ
いてVフタ中のF・、Sing及び螢石由来OFの含有
率を−べたところ、第8図の結果が慢られた。第8図か
らも明らかな様K、バーサダイムはS i O2(即ち
石英)の選択除去には殆んど寄与しないが、石英以外O
脈石11殊に螢石)に対する選択除去効果は極めて優れ
ている。
That is, using the crude concentrate with the chemical composition shown in Table 4 above, maintaining the pulp pH at 1O05 to 11.31, adding ryokuko (22.5 to //) as an inhibitor, and adding 1 Versa Dim. When flotation was carried out by changing the additive warehouse and the contents of F, Sing and OF derived from fluorite in the V-lids were measured, the results shown in Fig. 8 were obtained. As is clear from Figure 8, Versadime hardly contributes to the selective removal of S i O2 (i.e. quartz), but
The selective removal effect on gangue (especially fluorite) is extremely excellent.

これらの結果から、補収剤としてバーサメイムトハー肪
族アミンを併用し、パーサダイムによって石英以外の脈
石鉱物を、また脂肪族アミンによって石英を夫々除去す
れば、鉄品位を効果的に高めることかで龜ると考えられ
る。そこで上記浮遊選鉱でバーサダイム(使用音は22
.5my/l )を用いて傅たVンク分を使用し、掴収
鋼として脂肪族アミン(添加量:l〜20〃畔/l)、
抑制剤として澱粉(添加t:22J岬//)を用いパル
プpHを105〜11.8に調整して浮遊選鉱を行なっ
た。
From these results, it is possible to effectively improve iron quality by using Versame Muthar aliphatic amine as a scavenger, removing gangue minerals other than quartz with Persadime, and removing quartz with aliphatic amine. It is thought that it will be slow. Therefore, with the above flotation, Versa Dime (the sound used is 22
.. 5my/l) was used, and aliphatic amine (addition amount: l~20〃/l) was used as the gripping steel.
Flotation was performed by adjusting the pulp pH to 105 to 11.8 using starch (addition t: 22J Misaki//) as an inhibitor.

結果を第4図に示す。The results are shown in Figure 4.

第4図1からも明らかな様に、抽収剤としてバーサダイ
ムを用いて得たVンタ分中に含まれる石英が脂肪族アミ
ンによって除去される為、1/に終Vンク分中の鉄含有
率は651程度まで高まる。
As is clear from Fig. 4, since the quartz contained in the V-nuc fraction obtained using Versadime as an extractant is removed by the aliphatic amine, the iron content in the final V-nuc fraction is reduced to 1/2. The rate increases to around 651.

崗上記では、まずバーサダイムによ〕石英以外CNjf
、石成分を除去し、次いで脂肪族ア識ンによ)石英を除
去する手順を採用したが、その逆の手順、、□、74.
□hl−E 1ijl (:Tあ9、オえ、8   :
によっては両抽収剤を同時に添加して石英及びその他の
脈石取分を一電に除去することもiJ #iである。但
し各桶収剤の機能を最大限有効に生かす為には、各抽収
剤を個別に添加する逐次浮遊選鉱法の方が好オしい。
In the above, first of all, by Versa Dime] CNjf other than quartz
, the procedure of removing the stone component and then removing the quartz (by aliphatic atom) was adopted, but the reverse procedure was adopted, □, 74.
□hl-E 1ijl (:Ta9,oe,8:
In some cases, both extractants may be added at the same time to remove quartz and other gangue fractions at once. However, in order to make maximum use of the function of each extractor, it is preferable to use a sequential flotation method in which each extractant is added individually.

同石英を浮遊させる浮遊j1鉱にお−では、CNCl3
等の可溶性(a樵を活性剤として遥量添加することによ
シ石英の浮遊を一段と容易KtL彊ることが確認されて
シシ、本発明において4石英0除去段階で可溶性Ca樵
を併用することは極めて効果的である。
In the floating j1 ore that suspends the same quartz, CNCl3
It has been confirmed that the suspension of quartz is made easier by adding a large amount of soluble Ca as an activator, and in the present invention, soluble Ca is used in conjunction with the quartz removal step. is extremely effective.

筐た原料鉱石0#含有*が極端に低い場合は、−鶏で峡
明した如く浮遊選鉱法のみで鉄品位を高めることは操業
上及び経済的に不利であるので、極低品位鉱石にりいて
は高磁カーー等0予w処増によって鉄品位を40qII
程度以上に高めた後本発明の冨鉱化処場をするのがよく
、原料鉱石の鉄品位が40〜60憾程度のものであれば
[誉本発四の1絋化処理を行なえばよい。例えばHh図
は比較的鉄品位のIIIい原料鉱石Kl#I用される冨
鉱化処珈の7O−V−)、第6図は極低品位の原料鉱石
に通用される冨鉱化%場の70−F−)を示し九もので
ある。但し本発明はこれらのフロー&−)によって制@
を受けるものではな(、前・後記の趣旨に虐合し得る範
囲で1当に変更して実施すること4勿論可能である。
If the 0# content* of the raw material ore is extremely low, it is operationally and economically disadvantageous to increase the iron grade by flotation alone, as was demonstrated in the chicken, so extremely low-grade ore is The iron quality has been increased to 40qII by increasing the processing of high-magnetic cars, etc.
It is better to carry out the iron-rich treatment of the present invention after increasing the iron content to a certain level, and if the raw material ore has an iron grade of about 40 to 60, it is sufficient to carry out the . For example, the Hh diagram shows the rich mineralization rate (7O-V-) used for relatively iron-grade III raw material ore Kl#I, and Figure 6 shows the rich mineralization % field that is used for extremely low-grade raw material ore. 70-F-). However, the present invention is controlled by these flows &-).
(Of course, it is possible to change it to 1 and implement it to the extent that it violates the purpose of the above and below).

本発明は概略以上の様にsll成されてお勤、捕収剤と
して不飽和脂肪酸を重合して傳られるダイマー酸及び/
又はその樵と脂肪族アミンを併用することKよって、石
英の他多植類の脈石鉱物を含む低品位鉄鉱石からでも、
鉄品位の高い精鉱を効率良く得ることができることにな
った。従って高品位鉄鉱石の枯渇により低品位鉄鉱石の
活p@が不可避の状況にある現在及び将来における本@
鵠の実用的価値は極めて大きい。
The present invention is generally constructed as described above, and uses dimer acid and/or
Or, by using the wood and aliphatic amine in combination, even from low-grade iron ore containing quartz and other polyphyte gangue minerals,
It became possible to efficiently obtain concentrate with high iron quality. Therefore, due to the depletion of high-grade iron ore, active p@ of low-grade iron ore is unavoidable now and in the future.
The practical value of the mouse is extremely great.

次に実施例を示す。Next, examples will be shown.

実施例 脈石鉱物として石英、螢石、ニジリン、菖晶石、角閃石
等を含み、鉄品位が26.60優である低品位へマタイ
ト鉱石を粒径44μm以下に粉砕し、高磁力磁選機を用
いて予備選鉱を行ない(空・D磁場の磁束密Ji:50
00ガウス)、鉄品位が4図はバーサ〆イふを用いて第
1段浮遊選鉱を行なった後の第2段浮遊選鉱における脂
肪族アミンの添加量とVアク中の?・、Sing及びy
の含有率との関係を示すグラフ、第5.6図は本発明の
冨鉱化処坤法を例示するフローS/−)である。
Example: A low-grade hematite ore containing quartz, fluorite, nijilin, orchidite, amphibole, etc. as gangue minerals and having an iron grade of 26.60 or higher is crushed to a particle size of 44 μm or less, and then processed using a high-magnetic magnetic separator. (Magnetic flux density Ji of empty/D magnetic field: 50
00 Gauss), and the iron grade is 4. The figure shows the amount of aliphatic amine added in the second stage flotation after the first stage flotation using Versatile and the amount of aliphatic amine in the V-ac.・, Sing and y
Figure 5.6 is a flowchart showing the relationship between the content of and the content rate of S/-) illustrating the rich mineralization treatment method of the present invention.

出願人  株式会社神戸製鋼所 鉄分の実収率(%) 6  7  8  9  10 11  12バルブの
pH 第3図 パーサダイム添加量C’19.’e) ; 第4図 脂肪族アミン添加量(’19.’e) 第5図
Applicant: Kobe Steel, Ltd. Actual iron yield (%) 6 7 8 9 10 11 12 pH of bulb Figure 3 Persadime addition amount C'19. 'e) ; Figure 4 Addition amount of aliphatic amine ('19.'e) Figure 5

Claims (1)

【特許請求の範囲】 (1)石英及びその他IMlt石鉱物を含有する低品位
鉄鉱石を浮ris鉱法によって冨鉱化処場するに当ヤ、
捕収剤として不簡和脂肪鐙を重合して得られるダイマー
酸及び/又はその壇と脂肪族アミンを使用する仁とを特
徴とする低品位鉄鉱石の冨鉱化処春法。 (り特許請求の範囲第1項において、抑制剤として澱粉
を併用する冨鉱化処理法。 (3)特許請求の範囲第1又は2項において、パルプの
pHを9.6〜11.6に保持して行なう冨鉱化処珈法
。 (41特許請求の範囲第t−a項のいずれかにおいて、
活性剤として可溶性(、a壜を併用する冨鉱化処場法。 (6)特許請求の範囲第1〜4項のいずれかにおいて、
鉄品位が40〜50菖量憾である低品位鉄鉱石を使用す
為冨鉱化処埴法。 (6)特許請求の範囲第す項において、磁選によ〉鉄品
位を轟めえ低品位鉄鉱石を使崩すゐ冨鉱化処城法。
[Scope of Claims] (1) In processing low-grade iron ore containing quartz and other IMltite minerals into a rich mineralization process by the float ore method,
A method for mineralizing low-grade iron ore, which is characterized by using dimer acid and/or its base obtained by polymerizing a fusible fatty stirrup as a scavenger and an aliphatic amine. (In claim 1, the mineralization treatment method uses starch as an inhibitor. (3) In claim 1 or 2, the pH of the pulp is adjusted to 9.6 to 11.6. A rich mineralization treatment method that is carried out by holding the mineral.
A rich mineralization treatment plant method that uses a soluble bottle as an activator. (6) In any one of claims 1 to 4,
The rich mineralization processing method uses low-grade iron ore with an iron grade of 40 to 50. (6) In claim 1, there is provided a method for mineralization and processing that uses magnetic separation to increase the iron grade and use up low-grade iron ore.
JP57041451A 1982-03-15 1982-03-15 Treatment for enriching iron in low-grade iron ore Granted JPS58159856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57041451A JPS58159856A (en) 1982-03-15 1982-03-15 Treatment for enriching iron in low-grade iron ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57041451A JPS58159856A (en) 1982-03-15 1982-03-15 Treatment for enriching iron in low-grade iron ore

Publications (2)

Publication Number Publication Date
JPS58159856A true JPS58159856A (en) 1983-09-22
JPS6159182B2 JPS6159182B2 (en) 1986-12-15

Family

ID=12608738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57041451A Granted JPS58159856A (en) 1982-03-15 1982-03-15 Treatment for enriching iron in low-grade iron ore

Country Status (1)

Country Link
JP (1) JPS58159856A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150856A (en) * 1984-01-14 1985-08-08 Kobe Steel Ltd Flotation method of iron ore
CN106807558A (en) * 2017-02-15 2017-06-09 西安天宙矿业科技开发有限责任公司 A kind of beneficiation method
CN109046747A (en) * 2018-08-10 2018-12-21 江苏凯达石英股份有限公司 The technique that composite algorithm prepares glass sand
CN109174473A (en) * 2018-09-28 2019-01-11 杨建� A kind of fining mineral dressing flotation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150856A (en) * 1984-01-14 1985-08-08 Kobe Steel Ltd Flotation method of iron ore
CN106807558A (en) * 2017-02-15 2017-06-09 西安天宙矿业科技开发有限责任公司 A kind of beneficiation method
CN109046747A (en) * 2018-08-10 2018-12-21 江苏凯达石英股份有限公司 The technique that composite algorithm prepares glass sand
CN109174473A (en) * 2018-09-28 2019-01-11 杨建� A kind of fining mineral dressing flotation
CN109174473B (en) * 2018-09-28 2020-06-09 杨建� Fine ore dressing flotation machine

Also Published As

Publication number Publication date
JPS6159182B2 (en) 1986-12-15

Similar Documents

Publication Publication Date Title
Houot Beneficiation of iron ore by flotation—review of industrial and potential applications
CN104624389B (en) A kind of gravity tailings tin-lead soldering method
JPS60197253A (en) Beneficiation of complicated sulfide ore
CN105597946A (en) Comprehensive recovery method for tungsten accompanying fluorite resources
CN101792867B (en) Combined flow treatment method of tin rough concentrate
CN108816497B (en) Magnetite beneficiation process
CN108580023B (en) Multi-component recycling and beneficiation method for iron tailings associated with rare earth minerals
CN102909124A (en) Iron-increasing and silicon-reducing reselection technique for mixed-type lean iron ore tailings
CN105214837B (en) A kind of copper sulphur ore deposit beneficiation method rich in magnetic iron ore and pyrite
CN102580844B (en) Method for improving grade of magnetic concentrate by using reagent
US2206980A (en) Gravity sei aration of ores
CN110575904A (en) Spodumene grading-grade dual medium-flotation beneficiation method
CN110935560A (en) Beneficiation method for recovering phosphorus from vanadium titano-magnetite tailings with extremely low phosphorus content
BR102020017252A2 (en) METHOD OF RECOVERY OF S AND FE FROM CU-S-FE POLYMETALLIC ORE COMPLEX CONTAINING EASY TO FLOAT SILICATE GANGAE
CN100444964C (en) Benefication of magnetite-haematite acid mixed mine
CN111068898A (en) Method for producing bulk concentrate by mineral separation from polymetallic ore
CN108114805A (en) A kind of lean hematite stage grinding-magnetic separation shifts to an earlier date process for discarding tailings
JPS58159856A (en) Treatment for enriching iron in low-grade iron ore
CN112871439A (en) Industrial production method for separating fine-grained copper-molybdenum bulk concentrate by using pulsating high-gradient magnetic separation technology
CN110038718B (en) Process for efficiently separating micro-fine tungsten ore by using centrifugal machine and flotation
US3710934A (en) Concentration of spodumene using flotation
CN109499758A (en) A kind of rotary table column magnetic separator and based on iron ore concentrate method for separating thereon
CN112718231B (en) Mineral separation method of molybdenite of magnesium-rich mineral
CN109939816B (en) Impurity-reducing titanium-selecting process for ilmenite
CN113893955A (en) Beneficiation method for recovering gold and zinc from gold-zinc-iron-containing multi-metal tailings