JPH0487648A - Method for refining molybdenum ore - Google Patents

Method for refining molybdenum ore

Info

Publication number
JPH0487648A
JPH0487648A JP2200229A JP20022990A JPH0487648A JP H0487648 A JPH0487648 A JP H0487648A JP 2200229 A JP2200229 A JP 2200229A JP 20022990 A JP20022990 A JP 20022990A JP H0487648 A JPH0487648 A JP H0487648A
Authority
JP
Japan
Prior art keywords
copper
molybdenite
molybdenum
gradient magnetic
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2200229A
Other languages
Japanese (ja)
Inventor
Hidemasa Okamoto
秀征 岡本
Hiroichi Miyashita
博一 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2200229A priority Critical patent/JPH0487648A/en
Publication of JPH0487648A publication Critical patent/JPH0487648A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To rapidly and efficiently remove the copper sulfide ore from molybdenite by applying high-gradient magnetic separation to the molybdenite contg. the copper sulfide ore obtained by copper roughing, copper cleaning and molybdenum flotation when the copper content decreases below about 10wt.%. CONSTITUTION:The copper concentrate obtained by copper-roughing and copper- cleaning a copper ore is molybdenum-floated one to three times to obtain molybdenite contg. <= about 10wt.% copper. The molybdenite is crushed, and the molybdenite grains and copper sulfide ore grains are liberated. The granular molybdenite and copper sulfide ore are pulped and passed through the net (matrix) of a high-gradient magnetic separator, hence the copper sulfide ore is magnetically to the matrix, and the molybdenum ore (molybdenite) as a nonmagnetic material is separated as a non-adhered material. When one-stage high-gradient magnetic flotation is not sufficient for the separation and concentration, plural-stage high-gradient magnetic separation and concentration is applied, or the high-gradient magnetic separation and scavenging are combined to conduct high-gradient magnetic concentration.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、不純物として硫化銅鉱物を含有する輝水鉛鉱
(二硫化モリブデン)からモリブデン精鉱を選鉱するよ
うにした、モリブデン鉱物の精製方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for refining molybdenum minerals, in which molybdenum concentrate is beneficiated from molybdenum ore (molybdenum disulfide) containing copper sulfide minerals as impurities. Regarding.

〔従来の技術〕[Conventional technology]

斑岩銅鉱山において、モリブデン精鉱は一般に硫化銅鉱
石に含まれる輝水鉛鉱を主原料とし、浮遊選鉱(以下浮
選という)による硫化銅鉱物の濃薬・精製過程における
副産物として回収されている。モリブデンは価値が高い
ため、卑金属鉱物の選鉱一般からみれば原料鉱石の品位
が低くても操業可能ではあるが、その精鉱は不純物の極
めて少ない高品位のものが要求される。
In porphyry copper mines, molybdenum concentrate is generally made from molybdenum ore contained in copper sulfide ore as a main raw material, and is recovered as a by-product in the concentrate and refining process of copper sulfide minerals through flotation (hereinafter referred to as flotation). . Since molybdenum is of high value, it is possible to operate even if the raw material ore is of low grade in terms of general beneficiation of base metal minerals, but the concentrate must be of high quality with extremely few impurities.

従来行われているモリブデン精鉱の選鉱方法を説明する
と、銅鉱石から成る原料鉱石を破砕し、浮選をして尾鉱
とフロスとに選別し、得られたフロスに対して更に同一
の処理を繰り返して、銅粗選及び銅精選を行なうと、輝
水鉛鉱を含有する硫化銅鉱物が銅精鉱として得られる。
To explain the conventional beneficiation method for molybdenum concentrate, raw ore consisting of copper ore is crushed, flotated and separated into tailings and froth, and the resulting froth is further subjected to the same treatment. By repeating the above steps and performing copper rough selection and copper selection, copper sulfide mineral containing molybdenite is obtained as copper concentrate.

輝水鉛鉱は最も浮上しやすい鉱物の一つとして知られて
おり、特別な処理を施さな(でも浮鉱する。
Luminite is known as one of the minerals that floats the most, and it floats even without special treatment.

このようにして得られた銅精鉱に対して、更にモリブデ
ンの優先浮選等を行なうと、尾鉱として最終銅精鉱が得
られ、又フロスに対してモリブデン精選を繰り返すこと
により、最終モリブデン精鉱が得られる。
By further performing preferential flotation of molybdenum on the copper concentrate obtained in this way, final copper concentrate is obtained as tailings, and by repeating molybdenum screening on the froth, final molybdenum can be obtained. Concentrate is obtained.

尚、上述のように輝水鉛鉱はそれ自体強い浮遊性を持っ
ているため、ケロシンその他の燃料油と必要量の起泡剤
を添加することによって容易に浮上するが、硫化銅鉱物
即ち黄銅鉱1斑銅鉱、輝銅鉱等の主要な硫化銅鉱物もい
ずれも強い浮遊性を持っているため、必然的にフロスに
これらの硫化銅鉱物が混入することになる。
As mentioned above, molybdenite itself has strong buoyancy, so it can easily float to the surface by adding kerosene or other fuel oil and the necessary amount of foaming agent. 1. Since major copper sulfide minerals such as bornite and chalcocite all have strong floating properties, these copper sulfide minerals inevitably become mixed into the floss.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従って輝水鉛鉱の精製に際しては、銅鉱物の抑制剤例え
ばシアン化物を添加することにより硫化銅鉱物の浮上を
抑制す・る必要があり、しかも銅粗選及び銅精選等の銅
浮選段階において添加されだ捕収剤が粒子表面に残留し
ているため、抑制剤を添加しながら数回から十数回にわ
たって精選を繰り返さなければならなかった。その結果
、精選の各段階において浮上か抑制されることによって
生じるモリブデンの損失が、精選を繰り返す毎に累積さ
れ、最終的なモリブデンの実収率は銅精鉱中の含有量の
80%〜40%にまで低下したり、脱銅か不十分になる
こともある。このように、輝水鉛鉱の浮選による精製は
、試薬、エネルギー、設備維持費等の操業コストを消費
する割に実収率か悪く、しかも手間がかかって効率か悪
いという問題かある。特にモリブデン優先浮選の段階に
おいて、10回から10数回の浮選を繰り返す必要かあ
るため、極めて効率が悪かった。又、従来、最終的なモ
リブデン精鉱に混入する黄銅鉱9斑銅鉱等の硫化銅鉱物
は、磁性か弱いために、精製段階で磁選による分離を行
なうことは不可能視されていた。
Therefore, when refining molybdenite, it is necessary to suppress the flotation of copper sulfide minerals by adding a copper mineral inhibitor such as cyanide. Since the added scavenger remained on the particle surface, the selection had to be repeated several times to more than ten times while adding the inhibitor. As a result, the loss of molybdenum caused by flotation or suppression at each stage of refining is accumulated each time the refining is repeated, and the final molybdenum yield is 80% to 40% of the content in the copper concentrate. In some cases, copper removal may be insufficient. As described above, the refining of molybdenite by flotation has problems in that the actual yield is low despite the operating costs such as reagents, energy, and equipment maintenance costs, and it is time-consuming and inefficient. Particularly at the molybdenum preferential flotation stage, it was extremely inefficient because it was necessary to repeat the flotation 10 to 10-odd times. Furthermore, conventionally, copper sulfide minerals such as chalcopyrite 9 bornite mixed into the final molybdenum concentrate have weak magnetism, so it has been considered impossible to separate them by magnetic separation in the refining stage.

本発明はこのような課題に鑑みて、輝水鉛鉱に混入され
た硫化銅鉱物を迅速且つ効率良く除去できるようにした
モリブデン鉱物の精製方法を提供することを目的とする
In view of these problems, an object of the present invention is to provide a method for refining molybdenum minerals that can quickly and efficiently remove copper sulfide minerals mixed in molybdenite.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によるモリブデン鉱物の精製方法は、銅粗選、銅
精選及びモリブデン浮選によって得られた硫化銅鉱物を
含有する輝水鉛鉱を、銅含有率が約10重量%以下にな
った時点で高勾配磁力選鉱してモリブデン精鉱を精製す
るようにしたものである。
The method for refining molybdenum minerals according to the present invention is to refine molybdenum minerals containing copper sulfide minerals obtained by rough copper separation, copper refinement, and molybdenum flotation until the copper content reaches about 10% by weight or less. The molybdenum concentrate is refined using gradient magnetic beneficiation.

又、硫化銅鉱物を含有する輝水鉛鉱を、銅含有率が約1
0重量%以下になった時点でシアン化物水溶液処理及び
高勾配磁力選鉱してモリブデン精鉱を精製するようにし
たものである。
In addition, molybdenite containing copper sulfide minerals with a copper content of about 1
When the concentration becomes 0% by weight or less, the molybdenum concentrate is purified by cyanide aqueous solution treatment and high gradient magnetic beneficiation.

〔作用〕[Effect]

銅鉱石を銅粗選及び銅精選することによって得られた銅
精鉱を1〜3回モリブデン浮選すれば、銅含有率が約1
0重量%以下の輝水鉛鉱が得られ、そしてこの輝水鉛鉱
を高勾配磁力選鉱することによって、或いは輝水鉛鉱に
含有される硫化銅鉱物が磁着しにくいものを含む場合に
はシアン化物水溶液処理を組み合わせることによって、
少ない処理工程で硫化銅鉱物を分離でき、迅速且つ効果
良くモリブデン精鉱を精製することができる。
If the copper concentrate obtained by rough separation and copper separation of copper ore is subjected to molybdenum flotation 1 to 3 times, the copper content will be approximately 1.
If less than 0% by weight of molybdenite is obtained and this molybdenite is subjected to high-gradient magnetic beneficiation, or if the copper sulfide mineral contained in the molybdenite contains a substance that is difficult to magnetize, cyanide is removed. By combining aqueous treatment,
Copper sulfide minerals can be separated with fewer processing steps, and molybdenum concentrate can be purified quickly and effectively.

〔実施例〕〔Example〕

以下、本発明による精製方法を詳細に説明する。 Hereinafter, the purification method according to the present invention will be explained in detail.

銅精鉱をモリブデン浮選することによって得られた輝水
鉛鉱に含有される硫化銅鉱物の主たるものとしては、上
述したように輝銅鉱、黄銅鉱及び斑銅鉱等が知られてい
る。
As mentioned above, chalcocite, chalcopyrite, bornite, and the like are known as main copper sulfide minerals contained in molybdenite obtained by flotation of copper concentrate for molybdenum.

このうち、硫化銅鉱物として主に黄銅鉱及び斑銅鉱を含
有する輝水鉛鉱の場合には、高勾配磁力選鉱が行なわれ
る。
Among these, in the case of molybdenite which mainly contains chalcopyrite and bornite as copper sulfide minerals, high gradient magnetic beneficiation is performed.

ここで、高勾配磁気選鉱について説明すると、この処理
に用いられる選鉱機として、高勾配磁気分離機(Hig
h  GraclientMagnetic  5ep
arater)が有効である。この高勾配磁気分離機は
強磁力細線又は網(マトリックス)をソレノイドコイル
内部の均一磁場に置くことによって細線又は網の周囲に
生じる高い磁場勾配を利用して、磁性物を吸着して磁性
物と非磁性物とを分離するものである。硫化銅鉱物の中
で最も強い磁性を持つ斑銅鉱でも、その磁化率はII〜
55rr?/kg程度であるか、この高勾配磁気分離機
によれば着磁させることか可能である。尚、この分離機
による高勾配磁気分離粗選、精選、清掃選(HGMS粗
選、精選、清掃選)等を高勾配磁力選鉱という。
Here, to explain high gradient magnetic ore beneficiation, a high gradient magnetic separator (High
h GraclientMagnetic 5ep
arater) is valid. This high-gradient magnetic separator places a strong magnetic wire or mesh (matrix) in a uniform magnetic field inside a solenoid coil, and uses the high magnetic field gradient generated around the wire or mesh to attract magnetic materials and convert them into magnetic materials. It separates non-magnetic materials. Even bornite, which has the strongest magnetism among copper sulfide minerals, has a magnetic susceptibility of II ~
55rr? /kg, or it is possible to magnetize it with this high gradient magnetic separator. The high gradient magnetic separation rough separation, fine selection, cleaning separation (HGMS rough selection, fine selection, cleaning separation), etc. using this separator are referred to as high gradient magnetic separation.

又、高勾配磁力選鉱を行なうにあたっては、輝水鉛鉱を
破砕し、輝水鉛鉱自体の粒子と、硫化銅鉱物粒子とに単
体分離させる必要かある。この場合の粒子の程度は鉱石
の産地によって異なり(精製条件や結晶の大きさの相違
等に起因する)、例えば米国塵の硫化銅鉱石では45μ
m以下であり、又中国産鉱石では75μm以下であるこ
とか目安である。実際には、被処理鉱石を粉砕し、顕微
鏡観察することにより容易にその粒度を決定することが
できる。けれども、粒度が2〜3μm以下まで小さくな
ると着磁力か弱まるので好ましくない。
In addition, when performing high gradient magnetic beneficiation, it is necessary to crush the molybdenite and separate it into particles of the molybdenite itself and copper sulfide mineral particles. The degree of particles in this case varies depending on the origin of the ore (due to differences in refining conditions and crystal size, etc.); for example, copper sulfide ore made from American dust has a particle size of 45 μm.
The average diameter is 75 μm or less for ores produced in China. In fact, the particle size can be easily determined by crushing the ore to be treated and observing it under a microscope. However, if the particle size becomes smaller than 2 to 3 μm, the magnetizing force will be weakened, which is not preferable.

又、高勾配磁力選鉱段階における処理効率を考慮すると
、輝水鉛鉱の銅品位は10重量%以下であることが適切
である。輝水鉛鉱中の銅の含有率を10重量%以下とす
るためには、銅精鉱に対するモリブデン浮選を1〜3回
程度行えばよい。銅含有率が10重量%を越える場合に
は、高勾配磁力選鉱の効率か低下するので好ましくない
Furthermore, in consideration of processing efficiency in the high gradient magnetic beneficiation stage, it is appropriate that the copper grade of molybdenite is 10% by weight or less. In order to make the content of copper in the molybdenum ore 10% by weight or less, molybdenum flotation with respect to the copper concentrate may be carried out about 1 to 3 times. If the copper content exceeds 10% by weight, it is not preferable because the efficiency of high gradient magnetic beneficiation decreases.

そして、これら所定粒度の粒子状輝水鉛鉱及び硫化銅鉱
物をパルプ状にして高勾配磁気分離機のマトリックスを
通過させることにより、硫化銅鉱物をマトリックスに磁
着させ、非磁性体であるモリブデン鉱物(輝水鉛鉱)を
非磁着物として分離させることができる。又、この際の
パルプ流速は50〜200m/hが好適である。微細な
粒子か多い場合は流速を減少させて硫化銅鉱物の磁着性
を向上させるが、流速が小さすきると磁着物へのモリブ
デンの混入か増加するため好ましくない。
Then, by making these particulate molybdenite and copper sulfide minerals of a predetermined particle size into pulp and passing them through the matrix of a high gradient magnetic separator, the copper sulfide minerals are magnetically attached to the matrix, and the non-magnetic molybdenum minerals are (molybumite) can be separated as a non-magnetic substance. Moreover, the pulp flow rate at this time is preferably 50 to 200 m/h. If there are many fine particles, the flow rate is reduced to improve the magnetic adhesion of the copper sulfide mineral, but if the flow rate is too low, molybdenum will be mixed into the magnetized material, which is not preferable.

空芯時の磁場強度は上述のパルプ流速の条件で1゜9〜
22.2kOe程度が適当である。磁場強度が強すぎる
とやはり磁着物へモリブデンが混入する。
The magnetic field strength at the time of air core is 1°9~ under the pulp flow rate conditions mentioned above.
Approximately 22.2 kOe is appropriate. If the magnetic field strength is too strong, molybdenum will also mix into the magnetic object.

一段の高勾配磁力選鉱で十分な分離及び選鉱ができない
ときは、複数段のHGMS (高勾配磁気分離)精選を
行い、或いはHGMS (高勾配磁気分離)清掃選を組
み合わせることによって高勾配磁力選鉱を行なう。
If sufficient separation and beneficiation cannot be achieved with one-stage high-gradient magnetic separation, high-gradient magnetic separation can be performed by performing multiple stages of HGMS (high-gradient magnetic separation) sorting or by combining HGMS (high-gradient magnetic separation) cleaning. Let's do it.

尚、HGMS清掃選とは、HGMS粗選又は精選によっ
て分離された磁着物から、これに混入されたモリブデン
鉱物を分離せしめて、非磁着物にフィードバックするた
めの処理をいう。
Note that HGMS cleaning and selection refers to a process for separating molybdenum minerals mixed into the magnetic substances separated by HGMS rough selection or fine selection and feeding them back to the non-magnetized substances.

上述のように硫化銅鉱物として主に黄銅鉱及び斑銅鉱を
含有する輝水鉛鉱を選鉱する場合は、銅精鉱を1〜3回
モリブデン浮選して銅含有率を10重量%以下にしてお
(。そしてこの輝水鉛鉱は、黄銅鉱及び斑銅鉱が磁着し
やすい特性を有しているから、前処理を行なうことなく
高勾配磁力選鉱を行い、黄銅鉱及び斑銅鉱か磁着されて
分離し、硫化銅鉱物の含有量の少ない輝水鉛鉱即ちモリ
ブデン精鉱を精製することができる。
As mentioned above, when beneficializing molybdenite containing mainly chalcopyrite and bornite as copper sulfide minerals, the copper concentrate is flotated with molybdenum 1 to 3 times to reduce the copper content to 10% by weight or less. (And since this molybdenite has the property that chalcopyrite and bornite are easily magnetically attached, high-gradient magnetic beneficiation is performed without pretreatment, and chalcopyrite and bornite are easily attached to the magnet. It is possible to separate and refine molybdenum concentrate with a low content of copper sulfide minerals.

次に、硫化銅鉱物として黄銅鉱や斑銅鉱以外に輝水鉛鉱
と酸素銅鉱或いはこれらの混合物等を含有する輝水鉛鉱
の場合には、高勾配磁力選鉱とシアン化物水溶液処理と
を組み合わせて選鉱を行なう。これは輝銅鉱が磁着しに
くい一方、シアン化物水溶液によって溶解する特性を有
するためである。
Next, in the case of molybdenite, which contains molybdenite, oxycopperite, or a mixture thereof in addition to chalcopyrite and bornite as copper sulfide minerals, beneficiation is performed by combining high-gradient magnetic beneficiation and cyanide aqueous solution treatment. Do this. This is because chalcocite is difficult to attract magnetism, but has the property of being dissolved by an aqueous cyanide solution.

ここで、シアン化水溶液処理について説明すると、シア
ン化物水溶液はシアン化ソーダ又はシアン化カリウム等
が好適であり、シアン化物水溶液として200ppm以
上の濃度かあればよい。又、輝水鉛鉱をシアン化物水溶
液と混合してパルプを作る場合、パルプ濃度は60重量
%以下であることか望ましく、しかも処理時間は数時間
〜約48時間とすることが好ましい。そしてこのパルプ
はpHを9以上とし、その温度は室温が望ましい。
Here, to explain the cyanide aqueous solution treatment, the cyanide aqueous solution is preferably sodium cyanide or potassium cyanide, and the cyanide aqueous solution only needs to have a concentration of 200 ppm or more. Further, when pulp is prepared by mixing molybdenum with an aqueous cyanide solution, the pulp concentration is preferably 60% by weight or less, and the treatment time is preferably several hours to about 48 hours. This pulp has a pH of 9 or more, and its temperature is preferably room temperature.

しかもその際、パルプの撹拌を行えば一層好ましい 選鉱に際しては、シアン化物水溶液処理と高勾配磁力選
鉱とのいずれを先にしても良く、或いは両者を同時に行
ってもよく、いずれの場合でも好適な結果が得られる。
Moreover, in this case, it is more preferable to perform pulp agitation, so either the cyanide aqueous solution treatment or the high gradient magnetic beneficiation can be performed first, or both can be performed simultaneously. Get results.

シアン化物水溶液処理を先に行なう場合、輝水鉛鉱の粒
度は銅精選工程を経て得られるその粒度をそのまま用い
てもよいが、210μm以下に破砕して用いることが望
ましい。
When the cyanide aqueous solution treatment is performed first, the grain size of molybdenite obtained through the copper selection process may be used as it is, but it is preferable to use it after crushing it to 210 μm or less.

上述のように硫化銅鉱物として輝銅鉱や酸化銅鉱或いは
これらの混合物等を含有する輝水鉛鉱を選鉱する場合は
、銅精鉱を1〜3回のモリブデン浮選によって銅含有率
10重量%以下の輝水鉛鉱にしてお(。そしてこの輝水
鉛鉱は、シアン化物水溶液処理によって輝銅鉱が液相に
溶は出して分離される。高勾配磁力選鉱にあたっては輝
水鉛鉱及び硫化銅鉱物を単体分離する粒度の粒子に破砕
して、高勾配磁気分離機を通過させることによって黄銅
鉱及び斑銅鉱等を磁着させて分離せしめ、必要に応じて
複数段のHGMS精選又は清掃選を組み合わせて選鉱を
行なう。
As mentioned above, when beneficent ore containing chalcocite, copper oxide ore, or a mixture thereof as a copper sulfide mineral, the copper concentrate is flotated with molybdenum 1 to 3 times to reduce the copper content to 10% by weight or less. This molybdenite is treated with a cyanide aqueous solution to dissolve the chalcocite into the liquid phase and separate it.In high-gradient magnetic beneficiation, molybdenite and copper sulfide minerals are separated as a single substance. Chalcopyrite, bornite, etc. are separated by crushing them into particles of the desired particle size and passed through a high-gradient magnetic separator, and if necessary, they are beneficent by combining multiple stages of HGMS sorting or cleaning sorting. Do this.

このようにして硫化銅鉱物の含有量の少ない精製された
輝水鉛鉱即ちモリブデン精鉱が得られる。
In this way, a purified molybdenum or molybdenum concentrate with a low content of copper sulfide minerals is obtained.

上述のように本発明によれば、モリブデン浮選の回数を
大幅に減少できる等処理工程数が減少するから迅速且つ
効率的に輝水鉛鉱に含まれる硫化銅鉱物を除去すること
かでき、操業コストを低廉にすることかできる。
As described above, according to the present invention, the number of processing steps such as the number of times of molybdenum flotation can be significantly reduced, so copper sulfide minerals contained in molybdenite can be quickly and efficiently removed, making it possible to reduce the number of operations. It is possible to reduce costs.

次に、本発明によるモリブデン鉱物の精製方法について
の具体的な実施例を、第1図及び第2図に示すフローシ
ートに基ついて説明する。
Next, a specific example of the method for refining molybdenum minerals according to the present invention will be described based on the flow sheets shown in FIGS. 1 and 2.

寒亙亘ニュ 主に黄銅鉱と斑銅鉱を含有する銅精鉱を1〜3回のモリ
ブデン優先浮選100によって精製し、得られた硫化銅
含有率5.96重量%の輝水鉛鉱(A)を、第1図のフ
ローシートに従って処理した。
Copper concentrate containing mainly chalcopyrite and bornite was purified by 1 to 3 cycles of molybdenum preferential flotation, and the resulting molybdenite (A ) was processed according to the flow sheet shown in FIG.

輝水鉛鉱(A)を破砕して粒度45μmで篩分けし、篩
下即ち45μm以下の粒子のみを水と混合してパルプを
作り、パルプ濃度を10〜20重量%として高勾配磁力
選鉱に供した。高勾配磁力選鉱で使用した高勾配磁気分
離機はS A L AHGMS (登録商標)10−1
5〜20型試験機であり、この試験機はハツチ処理式で
あるため1回の処理量に制限かあり、ここでは初期給鉱
量を200〜500gにして処理を行った。また、捕獲
マトッリクスはFXと呼ばれるものを使用した。
The molybdenite (A) is crushed and sieved with a particle size of 45 μm, and only the particles under the sieve, that is, particles of 45 μm or less, are mixed with water to make pulp, and the pulp is subjected to high gradient magnetic beneficiation at a pulp concentration of 10 to 20% by weight. did. The high gradient magnetic separator used in high gradient magnetic beneficiation is SAL AHGMS (registered trademark) 10-1.
This is a 5-20 type testing machine, and since this testing machine is a hatch processing type, there is a limit to the amount of ore that can be processed at one time, and here the processing was carried out with the initial amount of ore fed at 200-500 g. In addition, a capture matrix called FX was used.

そして、輝水鉛鉱(A)を、磁場強度(空芯時)4.7
kOe、マトリックス上のバルブ流速100m/hに設
定した高勾配磁気分離機に給鉱し、HGMS粗選101
によって、磁着物(黄銅鉱及び斑銅鉱等)と非磁着物(
輝水鉛鉱)とに分離した。この場合、−度の処理では輝
水鉛鉱中の硫化銅鉱物の除去が不完全なため、更に2回
の精選102,103を行った。又精選段階で非磁着物
に残留する硫化銅鉱物は非常に微細な粒子か片刃状の粒
子であると考えられるため、最後の精選103では磁場
強度を20kOeに増強した。また、粗選101及び1
回目の精選102で分離された磁着物から磁力以外の要
因で混入したモリブデンを回収するため、パルプ流速を
200m/hに速めて清掃選104を行い、片刃として
分離できた。
Then, the magnetic field strength (at the time of air core) is 4.7 with molybdenite (A)
kOe, the ore was fed to a high gradient magnetic separator set at a valve flow rate of 100 m/h above the matrix, and HGMS rough selection 101
Magnetized materials (such as chalcopyrite and bornite) and non-magnetized materials (
It was separated into molybdenite) and molybdenite. In this case, since the removal of copper sulfide minerals in the molybdenum ore was incomplete in the -degree treatment, two more rounds of selection 102 and 103 were performed. Furthermore, since the copper sulfide minerals remaining in the non-magnetized material during the selection stage are considered to be very fine particles or single-edged particles, the magnetic field strength was increased to 20 kOe in the final selection 103. Also, rough selection 101 and 1
In order to recover molybdenum mixed in due to factors other than magnetic force from the magnetic material separated in the second selection 102, cleaning selection 104 was performed with the pulp flow rate increased to 200 m/h, and it was possible to separate it as a single edge.

その処理結果を示すと第1表のようになる。The processing results are shown in Table 1.

第1表 第2図に示すフローシートに従って説明すると、銅精鉱
を実施例−1と同様に1〜3回のモリブデン優先浮選1
00によって精製し、得られた輝銅鉱や酸化銅鉱等を含
む輝水鉛鉱(B)の硫化銅含有率は0.31重量%と非
常に低いものとなっている。このため高勾配磁力選鉱に
関して、HGMS粗選106後の)(GMS精選107
は]回とし、この粗選106と精選107の磁着物を合
わせたものについて3回のHGMS清掃選108.10
9.110を繰返し、このうち2回の清掃選I08,1
09において分離された非磁着物をモリブデン精鉱とし
て回収し、その実収率の向上を図った。尚、粗選106
.精選107及び1,2回目の清掃選108,109は
磁場強度を9kOe。
To explain according to the flow sheet shown in Table 1 and Figure 2, copper concentrate was subjected to molybdenum preferential flotation 1 to 3 times in the same manner as in Example-1.
Copper sulfide content of molybdenite (B) containing chalcocite, copper oxide ore, etc., refined by 0.00 is extremely low at 0.31% by weight. For this reason, regarding high gradient magnetic beneficiation, after HGMS rough selection 106) (GMS fine selection 107)
] times, and the combined magnetically attracted materials of the rough selection 106 and the fine selection 107 were subjected to three HGMS cleaning selections 108.10.
9. Repeat 110, cleaning selection I08, 1 twice.
The non-magnetic material separated in 09 was recovered as molybdenum concentrate in order to improve its actual yield. In addition, rough selection 106
.. In the selection 107 and the first and second cleaning selections 108 and 109, the magnetic field strength was 9 kOe.

パルプ流速を100m/hとし、最後の清掃選11Oは
磁場強度を20kOe、パルプ流速を200 m / 
hに設定して処理を行った。
The pulp flow rate was 100 m/h, and the final cleaning step 11O had a magnetic field strength of 20 kOe and a pulp flow rate of 200 m/h.
Processing was performed with the setting set to h.

その処理結果を示すと第2表のようになる。The processing results are shown in Table 2.

第2表 輝水鉛鉱(B)のHGMSによる処理試験結果(前処理
なし) 実施例−2(a) 第2図に示すフローシートにおいて、輝水鉛鉱(B)の
硫化銅含有率は0.38重量%になっている。又、輝水
鉛鉱(B)は実施例−2(a)と同様に磁着しにくい輝
銅鉱や酸化銅鉱を含有しており、これを処理するために
、HGMS粗選106の前にシアン化物水溶液処理11
1の工程か付加されている。1g/zのシアン化物水溶
液で48時間前処理することにより、輝銅鉱は青酸に容
易に溶解するために酸化銅鉱と共に溶は出し、この前処
理後の輝水鉛鉱には磁着しやすい黄銅鉱や斑銅鉱のみが
残留しているものと考えられる。そのため、第3表に示
すように硫化銅鉱物は0.38重量%へと減少した。以
下は実施例−2(a)と同様に処理された。実施例−2
(a)と比較してモリブデン精鉱の実収率(88,8%
)のロスが少なかった。
HGMS treatment test results for 2nd surface molybdenite (B) (no pretreatment) Example-2 (a) In the flow sheet shown in FIG. 2, the copper sulfide content of molybdenite (B) is 0. It is 38% by weight. In addition, molybdenite (B) contains chalcocite and copper oxide ore, which are difficult to attract magnetically, as in Example 2 (a), and in order to treat this, cyanide was added before the HGMS rough selection 106. Aqueous solution treatment 11
1 step has been added. By pre-treating with a 1g/z cyanide aqueous solution for 48 hours, chalcopyrite is easily dissolved in hydrocyanic acid, so it is eluted together with copper oxide, and after this pretreatment, chalcopyrite, which is easily magnetized, is dissolved in chalcopyrite. It is thought that only bornite and bornite remain. Therefore, as shown in Table 3, the copper sulfide mineral content decreased to 0.38% by weight. The following treatment was carried out in the same manner as in Example-2(a). Example-2
Actual yield of molybdenum concentrate (88.8% compared to (a)
) losses were small.

第3表 輝水鉛鉱(B)のシアン化物水溶液処理(浸出)及びH
GMSによる処理試験結果 第1図及び第2図は本発明によるモリブデン鉱物の精製
方法の具体的な一実施例を夫々示すフローシートである
Table 3 Cyanide aqueous solution treatment (leaching) of molybdenite (B) and H
GMS processing test results FIGS. 1 and 2 are flow sheets showing a specific example of the method for refining molybdenum minerals according to the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)銅粗選、銅精選及びモリブデン浮選によって得ら
れた硫化銅鉱物を含有する輝水鉛鉱を、該輝水鉛鉱中の
銅含有率が約10重量%以下になった時点で高勾配磁力
選鉱してモリブデン精鉱を得るようにしたモリブデン鉱
物の精製方法。
(1) When the molybdenite containing copper sulfide minerals obtained by rough copper separation, fine copper separation, and molybdenum flotation is reduced to about 10% by weight or less, the high gradient A method for refining molybdenum minerals by magnetic beneficiation to obtain molybdenum concentrate.
(2)銅粗選、銅精選及びモリブデン浮選によって得ら
れた硫化銅鉱物を含有する輝水鉛鉱を、該輝水鉛鉱中の
銅含有率が約10重量%以下になった時点でシアン化物
水溶液処理及び高勾配磁力選鉱してモリブデン精鉱を得
るようにしたモリブデン鉱物の精製方法。
(2) Cyanide of molybdenum containing copper sulfide minerals obtained by coarse copper separation, fine selection of copper, and flotation of molybdenum is obtained when the copper content in the molybdenite becomes approximately 10% by weight or less. A method for refining molybdenum minerals by performing aqueous solution treatment and high gradient magnetic beneficiation to obtain molybdenum concentrate.
JP2200229A 1990-07-27 1990-07-27 Method for refining molybdenum ore Pending JPH0487648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2200229A JPH0487648A (en) 1990-07-27 1990-07-27 Method for refining molybdenum ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2200229A JPH0487648A (en) 1990-07-27 1990-07-27 Method for refining molybdenum ore

Publications (1)

Publication Number Publication Date
JPH0487648A true JPH0487648A (en) 1992-03-19

Family

ID=16420962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2200229A Pending JPH0487648A (en) 1990-07-27 1990-07-27 Method for refining molybdenum ore

Country Status (1)

Country Link
JP (1) JPH0487648A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999032229A1 (en) * 1997-12-22 1999-07-01 Barry Graham Lumsden Device and method for improving flotation process using magnetic fields
US6559928B1 (en) 1998-02-09 2003-05-06 Nikon Corporation Substrate supporting apparatus, substrate transfer apparatus and the transfer method, method of holding the substrate, exposure apparatus and the method of manufacturing the apparatus
CN103878069A (en) * 2012-12-19 2014-06-25 沈阳有色金属研究院 Molybdenite separation method
JP2014168762A (en) * 2013-03-05 2014-09-18 Sumitomo Metal Mining Co Ltd Method for recovering molybdenite
CN105032605A (en) * 2015-06-10 2015-11-11 岳阳大力神电磁机械有限公司 Magnetic separation method for gathering copper and cobalt in copper and cobalt oxide ores
JP2016502599A (en) * 2012-11-06 2016-01-28 ヴァーレ、ソシエダージ、アノニマVale S.A. Removal of uranium from copper concentrate by magnetic separation
CN105381874A (en) * 2015-10-19 2016-03-09 衢州华友钴新材料有限公司 Beneficiation method for improving grade of copper-cobalt magnetic concentrate
CN105944827A (en) * 2016-04-21 2016-09-21 洛南县恒丰非金属矿业有限公司 Method for extracting rare earth tailings discarded by preconcentration from molybdenum floatation tailings
CN106248135A (en) * 2016-08-30 2016-12-21 中冶北方(大连)工程技术有限公司 A kind of non magnetic Ore is at the assay method of grind grading closed-circuit system cycle-index
CN109127118A (en) * 2018-11-05 2019-01-04 中国矿业大学 A kind of microfine molybdenum cleaner tailings superconduction separation-selective flocculation flotation combined reclamation method
CN109701737A (en) * 2018-12-19 2019-05-03 鹤庆北衙矿业有限公司 A kind of beneficiation method of the Comprehen Siving Recovery of Magnetite from cyanidation tailings
CN111167599A (en) * 2020-03-07 2020-05-19 江西理工大学 Process for directly separating chalcopyrite from molybdenite through superconducting magnetic separation
CN111921699A (en) * 2020-06-29 2020-11-13 金堆城钼业汝阳有限责任公司 Novel efficient iron separation process for molybdenum separation tailings
CN114471935A (en) * 2022-01-26 2022-05-13 中南大学 Magnetic suspension combined copper-molybdenum separation method
CN118142699A (en) * 2024-05-13 2024-06-07 栾川县格诺矿业有限公司 Comprehensive utilization method of high talcum molybdenum tailings

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999032229A1 (en) * 1997-12-22 1999-07-01 Barry Graham Lumsden Device and method for improving flotation process using magnetic fields
US6559928B1 (en) 1998-02-09 2003-05-06 Nikon Corporation Substrate supporting apparatus, substrate transfer apparatus and the transfer method, method of holding the substrate, exposure apparatus and the method of manufacturing the apparatus
JP2016502599A (en) * 2012-11-06 2016-01-28 ヴァーレ、ソシエダージ、アノニマVale S.A. Removal of uranium from copper concentrate by magnetic separation
CN103878069A (en) * 2012-12-19 2014-06-25 沈阳有色金属研究院 Molybdenite separation method
JP2014168762A (en) * 2013-03-05 2014-09-18 Sumitomo Metal Mining Co Ltd Method for recovering molybdenite
CN105032605A (en) * 2015-06-10 2015-11-11 岳阳大力神电磁机械有限公司 Magnetic separation method for gathering copper and cobalt in copper and cobalt oxide ores
CN105381874A (en) * 2015-10-19 2016-03-09 衢州华友钴新材料有限公司 Beneficiation method for improving grade of copper-cobalt magnetic concentrate
CN105944827A (en) * 2016-04-21 2016-09-21 洛南县恒丰非金属矿业有限公司 Method for extracting rare earth tailings discarded by preconcentration from molybdenum floatation tailings
CN106248135A (en) * 2016-08-30 2016-12-21 中冶北方(大连)工程技术有限公司 A kind of non magnetic Ore is at the assay method of grind grading closed-circuit system cycle-index
CN109127118A (en) * 2018-11-05 2019-01-04 中国矿业大学 A kind of microfine molybdenum cleaner tailings superconduction separation-selective flocculation flotation combined reclamation method
CN109127118B (en) * 2018-11-05 2020-12-22 中国矿业大学 Superconducting separation-selective flocculation flotation combined recovery method for fine-particle molybdenum concentration tailings
CN109701737A (en) * 2018-12-19 2019-05-03 鹤庆北衙矿业有限公司 A kind of beneficiation method of the Comprehen Siving Recovery of Magnetite from cyanidation tailings
CN109701737B (en) * 2018-12-19 2021-06-08 鹤庆北衙矿业有限公司 Beneficiation method for comprehensively recovering magnetite from cyanidation tailings
CN111167599A (en) * 2020-03-07 2020-05-19 江西理工大学 Process for directly separating chalcopyrite from molybdenite through superconducting magnetic separation
CN111921699A (en) * 2020-06-29 2020-11-13 金堆城钼业汝阳有限责任公司 Novel efficient iron separation process for molybdenum separation tailings
CN111921699B (en) * 2020-06-29 2022-11-22 金堆城钼业汝阳有限责任公司 Novel efficient iron separation process for molybdenum separation tailings
CN114471935A (en) * 2022-01-26 2022-05-13 中南大学 Magnetic suspension combined copper-molybdenum separation method
CN118142699A (en) * 2024-05-13 2024-06-07 栾川县格诺矿业有限公司 Comprehensive utilization method of high talcum molybdenum tailings

Similar Documents

Publication Publication Date Title
US4663279A (en) Method of beneficiation of complex sulfide ores
US4192738A (en) Process for scavenging iron from tailings produced by flotation beneficiation and for increasing iron ore recovery
US8741023B2 (en) Ore beneficiation
US3337328A (en) Iron ore beneficiation process
JPH0487648A (en) Method for refining molybdenum ore
AU2016349790B2 (en) Methods, devices, systems and processes for upgrading iron oxide concentrates using reverse flotation of silica at a Natural pH
CN111715399B (en) Pretreatment method of high-calcium high-magnesium fine-particle embedded scheelite
CN108514949B (en) Recovery method of fine-grain ilmenite
US8834593B2 (en) Ore beneficiation
RU2275248C2 (en) Method of floating sulfide minerals
US4294690A (en) Process for separating weakly magnetic accompanying minerals from nonmagnetic useful minerals
EP0058197A1 (en) Magnetic beneficiation of clays utilizing magnetic seeding and flotation.
CN110678266A (en) System and method for sorting niobium ore
CN114072235A (en) Method for concentrating an iron ore stream
CN109718946B (en) Non-flotation method for magnetic-hematite mixed iron ore
RU2296624C2 (en) Heat-and-power station ash-and-slack waste processing method
US2558635A (en) Process for treating a magnetic iron ore
CN113042180B (en) Method for recovering rare earth from heterolite
CN112871438B (en) Method for recovering ilmenite from iron ore dressing tailings
CN117295557A (en) Mineral separation process
CA2444143A1 (en) Process for sulphide concentration
CN112718231A (en) Beneficiation method of molybdenite of magnesium-rich minerals
CN114589002B (en) Beneficiation separation method for copper-zinc sulfide ore with high copper-zinc ratio
US3928185A (en) Phenolaldimines as froth flotation reagents
RU2802647C2 (en) Method for enrichment of iron ore streams