JPS6158873A - Manufacture of ceramic porous body - Google Patents
Manufacture of ceramic porous bodyInfo
- Publication number
- JPS6158873A JPS6158873A JP17918484A JP17918484A JPS6158873A JP S6158873 A JPS6158873 A JP S6158873A JP 17918484 A JP17918484 A JP 17918484A JP 17918484 A JP17918484 A JP 17918484A JP S6158873 A JPS6158873 A JP S6158873A
- Authority
- JP
- Japan
- Prior art keywords
- water
- ceramic
- porous body
- hydrophilic
- absorbing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/20—Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
- B01D39/2068—Other inorganic materials, e.g. ceramics
- B01D39/2093—Ceramic foam
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は内部連通空間を有する三次元網状骨格のセル構
造をなしたセラミック多孔体の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a porous ceramic body having a cell structure of a three-dimensional network skeleton having internal communication spaces.
一般に三次元網状骨格の構造をなしたセラミック多孔体
は、三次元網状骨格構造の合成樹脂発泡体をセラミック
の水性スラリーに浸漬して引き土げ、余剰のスラリーを
遠心力あるいは通気、あるいは、それらの組み合わせな
どの処理により除去したのち、乾燥、焼成して製造する
。In general, ceramic porous bodies with a three-dimensional network skeleton structure are produced by immersing a synthetic resin foam with a three-dimensional network skeleton structure in an aqueous ceramic slurry and removing the excess slurry by centrifugal force, aeration, or other methods. It is manufactured by removing it by a combination of processes, drying, and firing.
しかしながらこのような製造方法では多孔体のセルを構
成する一本一木の骨格を太くシ、実用に耐える機械的強
度を(ジJ与するためには1合成樹脂発泡体をセラミッ
ク粉末の水性スラリーに浸漬して引き上げ、余剰のスラ
リーを除去し、乾燥する操作を何回も繰り返す必要があ
り生産の能率およびコストの点で問題があった。However, in this manufacturing method, the skeleton of each tree that makes up the cells of the porous body is made thicker, and in order to give it mechanical strength that can withstand practical use, the synthetic resin foam is mixed with an aqueous slurry of ceramic powder. It was necessary to repeat the operations of immersing the slurry in water, pulling it up, removing excess slurry, and drying it many times, which caused problems in terms of production efficiency and cost.
前記の繰り返し操作の回数を低減するために水性スラリ
ー中のセラミック粉末濃度を高くし、高粘度の水性スラ
リーを使用して、処理−回あたりのセラミック付着量を
増大する試みもなされたが、合成樹脂発泡体の連通空間
を形成するセルの開口部にセラミンクの水性スラリーの
ngが形成されやすく、したがって目づまりの少ない圧
力損失の低いセラミック多孔体を得ることは、このよう
な製造方法では困難であった。Attempts have also been made to increase the ceramic powder concentration in the aqueous slurry and to use a highly viscous aqueous slurry to increase the amount of ceramic deposited per treatment cycle in order to reduce the number of repetitions described above. ng of the aqueous ceramic slurry is likely to be formed in the openings of the cells that form the communicating spaces of the resin foam, and therefore it is difficult to obtain a ceramic porous body with less clogging and low pressure loss using this manufacturing method. Ta.
本発明は上記問題点を解消するためになされたものであ
って、その目的とするところは少ない回数のセラミック
水性スラリーへの含浸処理で多量のセラミックを付着さ
せることができ、力)つ目づまりの少ないセラミック多
孔体を製造することができる方法を提供することにある
。The present invention has been made to solve the above problems, and its purpose is to be able to adhere a large amount of ceramic by impregnating ceramic aqueous slurry a small number of times, and to prevent clogging. An object of the present invention is to provide a method that can produce a small number of ceramic porous bodies.
この目的を達成するために本発明のセラミック多孔体の
製造方法は。To achieve this objective, the present invention provides a method for producing a porous ceramic body.
合成樹脂発泡体を基材とし、これをセラミックの水性ス
ラリーに浸漬して、前記発泡体にセラミックを付着せし
めた後、乾燥し、焼成してセラミック多孔体を製造する
に際し、前記発泡体として内部連通空間を有する親水性
ないし吸水性の三次元網状骨格構造合成樹脂発泡体を用
いることを特徴とする通気抵抗の少ないセラミック多孔
体の製造方法、
を要旨とするものである。A synthetic resin foam is used as a base material, which is immersed in an aqueous ceramic slurry to adhere the ceramic to the foam, dried, and fired to produce a ceramic porous body. The gist of the present invention is to provide a method for producing a ceramic porous body with low ventilation resistance, which is characterized by using a hydrophilic or water-absorbing three-dimensional network skeleton structure synthetic resin foam having communicating spaces.
以下に本発明を+iT細に説明する。The present invention will be explained in detail below.
本発明に用いる内部連通空間を有する親水性ないし吸水
性の三次元、網状骨格構造合成樹脂発泡体としては、セ
ル膜のない親水性ないし吸水性のウレタンフオームが好
適に用いられる。親水性ないし吸水性のウレタンフオー
ムとしてウレタンフオームそのものを親水性ないし吸水
性としたものやウレタンフオームを種々の後処理方法で
親水性ないし吸水性にしたもの等を用いることができる
。As the hydrophilic or water-absorbing three-dimensional, network skeleton structure synthetic resin foam having an internal communication space used in the present invention, a hydrophilic or water-absorbing urethane foam without a cell membrane is preferably used. As the hydrophilic or water-absorbing urethane foam, urethane foam itself made hydrophilic or water-absorbing, or urethane foam made hydrophilic or water-absorbing by various post-treatment methods, etc. can be used.
ウレタンフオームそのものを親水性ないし吸水性にする
方法としては、ウレタンフオームを構成するポリオール
成分としてポリ(オキシエチレン)ポリオール、ポリ(
オキシエチレン−オキシプロピレン)ポリオール等を用
い、これらとインシアネート成分とを反応発泡させる方
法が採用でき、ポリオール成分としてポリ(オキシエチ
レン−オキシプロピレン)ポリオールを用いる場合には
、オキシエチレン成分は50正量%以上が好ましい、ま
たウレタンフオームを親水性ないし吸水性にする他の方
法としては吸水性樹脂を含む水性樹脂を分散しておき、
ポリインシアネート、水、触媒、その他の副原料を加え
て発泡し親水性ないし吸水性のポリウレタンフォームを
うることが出来る。As a method to make the urethane foam itself hydrophilic or water absorbent, poly(oxyethylene) polyol, poly(
A method can be adopted in which poly(oxyethylene-oxypropylene) polyol or the like is reacted and foamed with the incyanate component. When poly(oxyethylene-oxypropylene) polyol is used as the polyol component, the oxyethylene component is 50% % or more is preferable, and another method of making the urethane foam hydrophilic or water-absorbing is to disperse an aqueous resin containing a water-absorbing resin,
A hydrophilic or water-absorbing polyurethane foam can be obtained by foaming by adding polyincyanate, water, a catalyst, and other auxiliary raw materials.
一方、ウレタンフオームを後処理により親水性ないし吸
水性にする方法としては、親水性ないし吸水性の樹脂を
ウレタンフオーム骨格に被覆形成することによりなし得
る。親水性ないし吸水性樹脂として公知のものが採用で
きるが、本発明の目的をより有効に達するためには、吸
水量が樹脂重量の10f@以上、好ましくは50倍以上
であるような吸水性樹脂が好ましく、このような樹脂と
しては、アクリル酸−ビニルアルコール共重合体、ポリ
(メタ)アクリル酸、ポリ(メタ)アクリル酸ナトリウ
ム、(メタ)アクリルナトリウム−アクリルアミド共重
合体、ポリアクリルアミド、ポリエチレンオキシド、ポ
リビニルアルコール、j+fi粉またはセルローズ−ポ
リアクリロニトリルグラフト共重合体 の加水分解物、
カルボキシメチルセルロース、インブチレン−焦水マレ
イン酸共工合体、等を架橋して得られる水に不溶の吸水
性樹脂を採用することができる。親水性ないし吸水性樹
脂を前記発泡体の骨格に被覆させるにはいかなる方法も
採用できるが、好ましくは親水性ないし吸水性樹脂を接
着剤の有機溶剤溶液に添加して分散させ、この樹脂分散
液に三次元網状骨格構造を有する合成樹脂発泡体を浸漬
した後引き上げ、余剰の溶液を遠心力あるいは通気また
はその両方の組み合せにより除去し、乾燥する方法によ
り均一に付着させることができる。On the other hand, urethane foam can be made hydrophilic or water-absorbent by post-treatment by coating the urethane foam skeleton with a hydrophilic or water-absorbing resin. Known hydrophilic or water-absorbing resins can be used, but in order to more effectively achieve the purpose of the present invention, a water-absorbing resin whose water absorption is 10 f@ or more, preferably 50 times or more of the resin weight is used. is preferable, and examples of such resins include acrylic acid-vinyl alcohol copolymer, poly(meth)acrylic acid, sodium poly(meth)acrylate, sodium (meth)acryl-acrylamide copolymer, polyacrylamide, polyethylene oxide , polyvinyl alcohol, j+fi powder or cellulose-polyacrylonitrile graft copolymer hydrolyzate,
A water-insoluble water-absorbing resin obtained by crosslinking carboxymethyl cellulose, inbutylene-pyrohydric maleic acid copolymer, or the like can be used. Although any method can be adopted to coat the skeleton of the foam with the hydrophilic or water-absorbing resin, it is preferable to add the hydrophilic or water-absorbing resin to an organic solvent solution of the adhesive and disperse the resin dispersion. Uniform adhesion can be achieved by immersing a synthetic resin foam having a three-dimensional network skeleton structure in water, pulling it up, removing excess solution by centrifugal force or aeration, or a combination of both, and drying.
親水性ないし吸水性樹脂の最適付着量は、樹脂の吸水4
.¥性および、「i的とするセラミック多孔体のセルの
大きさ、セラミック多孔体の目標嵩比重、目標嵩比重に
するだめのセラミックスラリ−への含浸繰返し回数、使
用するセラミックスラリ−の物性によって適宜彦根する
。The optimum adhesion amount of hydrophilic or water-absorbing resin is water absorption 4 of the resin.
.. Depending on the cell size of the ceramic porous body, the target bulk specific gravity of the ceramic porous body, the number of repetitions of impregnation with the ceramic slurry to achieve the target bulk specific gravity, and the physical properties of the ceramic slurry used. Hikone as appropriate.
ここで接着剤としては、例えば酢酸ビニル樹脂、塩化ビ
ニル樹脂、フェノール樹脂、メタアクリル酸、エステル
樹脂あるいはそれらの共重合変性体の有機溶媒に可溶で
、水不溶性の樹脂類、ポリブタジエン、ポリイソプレン
、スチレン−ブタジェンコポリマー、ブチルゴム、ニト
リルゴムなどの有・機溶奴に可溶で、水不溶性のゴム類
、あるいはそれらの混合物などが好適である。Examples of the adhesive include resins that are soluble in organic solvents such as vinyl acetate resin, vinyl chloride resin, phenol resin, methacrylic acid, ester resin, or copolymerized modified products thereof, but are insoluble in water, polybutadiene, and polyisoprene. , styrene-butadiene copolymer, butyl rubber, nitrile rubber, etc., which are soluble in organic/organic materials and water-insoluble, or mixtures thereof are suitable.
また、上記接着剤と親水性ないし吸水性樹脂を溶解ある
いは分散させる溶剤としては、メタノール、エタノール
、酢酸エチル、トルエン、η−へキサン、シクロヘキサ
ン、アセトン、メチルエチルケトン、ジエチルエーテル
、トリクロルエチレンなどのアルコール、エステル炭化
水素、ケトンエーテル、ハロゲン化炭化水素などの有機
溶剤が好適であり、要は接着剤を均一に溶解し、親水性
ないし吸水性樹脂を均一に溶解もしくは懸濁分散出来、
かつセラミック多孔体の基材となる合成樹脂発泡体を著
るしく膨潤させることがなく、乾燥工程で比較的容易に
発揮させうる種類の有機溶剤が好ましい。Examples of solvents for dissolving or dispersing the adhesive and the hydrophilic or water-absorbing resin include alcohols such as methanol, ethanol, ethyl acetate, toluene, η-hexane, cyclohexane, acetone, methyl ethyl ketone, diethyl ether, and trichloroethylene; Organic solvents such as ester hydrocarbons, ketone ethers, and halogenated hydrocarbons are suitable; the key is that they can uniformly dissolve the adhesive, uniformly dissolve or suspend and disperse the hydrophilic or water-absorbing resin, and
Preferably, the organic solvent is of a type that does not significantly swell the synthetic resin foam serving as the base material of the ceramic porous body and can be relatively easily exerted in the drying process.
右vi溶剤に対する接着剤の添加量は、親水性ないし吸
水性樹脂を確実にセラミック多孔体の基材となる合成樹
脂発泡体に接着するのに必要な濃度があれば良いが通常
接着剤濃度として2.5〜30%程度が好ましい。The amount of adhesive added to the solvent should be the concentration necessary to reliably bond the hydrophilic or water-absorbing resin to the synthetic resin foam that is the base material of the ceramic porous body, but it is usually the concentration of the adhesive. It is preferably about 2.5 to 30%.
上述した接着剤および親水性ないし吸水性樹脂を含む有
機溶剤に三次元網状構造の合成樹脂発泡体を浸i11シ
て引き上げ、余剰の液を遠心力あるいは通気により除去
して乾燥して、前記樹脂を行右させる。このものをセラ
ミックの水性スラリーに浸漬して引き上げ余剰の液を遠
心力あるいは通気またはそれらの組合せにより除去して
乾燥し、必要ならば、目的のセラミック付着量かえられ
るまでこの操作を繰り返したのち、焼成して、内部連通
空間を有する三次元、網状骨格構造をなしたセラミック
多孔体をうることが出来る。A synthetic resin foam with a three-dimensional network structure is soaked in an organic solvent containing the above-mentioned adhesive and a hydrophilic or water-absorbing resin, pulled up, excess liquid is removed by centrifugal force or aeration, and the resin is dried. to the right. This material is immersed in an aqueous ceramic slurry, the excess liquid is removed by centrifugal force or aeration, or a combination thereof, and then dried. If necessary, this operation is repeated until the desired amount of ceramic coating is achieved. By firing, it is possible to obtain a ceramic porous body having a three-dimensional, network-like skeletal structure with internal communication spaces.
ここで用いるセラミックの水性スラリーは、コーディエ
ライト、ムライト、アルミナ、シリカ、リチウム−アル
ミノ珪酸塩、マグネシア等のセラミック原料微粉末とポ
リビニルアルコールやカルボキシメチルセルロース等の
バインダー、ケイ酸ナトリウム等の解膠剤および水等と
からなるものである。The aqueous ceramic slurry used here consists of fine powder of ceramic raw materials such as cordierite, mullite, alumina, silica, lithium-aluminosilicate, and magnesia, a binder such as polyvinyl alcohol and carboxymethylcellulose, and a peptizing agent such as sodium silicate. and water, etc.
ここで、セラミック原料として、ツーディエラ6Q?フ
イトM 〜!==fy ffi量部、リチウム−アルミ
ノ珪酸3 μO
塩5〜ルミ量部からなるものを用いると表面強度が向上
し、表面部分の骨格の損傷が起り難い外観のよいセラミ
ック多孔体が得られる。Here, as a ceramic raw material, Tsuudiera 6Q? Fuito M~! By using a material consisting of ==fy parts of ffi, 3 μO of lithium-aluminosilicate salt and 5 parts of lumi, the surface strength is improved and a ceramic porous body with a good appearance in which the skeleton of the surface portion is less likely to be damaged can be obtained.
本発明のセラミック多孔体の製造方法では、内部連通空
間を有する親水性ないし吸水性の三次元網状骨格構造合
成樹脂発泡体をセラミックの水性スラリーに浸漬するた
め1回の浸漬での前記発泡体に対するセラミックの付着
量が従来より大巾に増加し、かつ目詰りも少ないので、
従来法より浸漬回数を減らすことができる。In the method for producing a ceramic porous body of the present invention, a hydrophilic or water-absorbing three-dimensional network skeleton structure synthetic resin foam having an internal communication space is immersed in an aqueous ceramic slurry. The amount of ceramic deposited has increased significantly compared to conventional products, and there is less clogging, so
The number of immersions can be reduced compared to the conventional method.
また、既にセラミックをコーティングした合成樹脂発泡
体も、前記親水性ないし吸水性樹脂分散液で処理するこ
とにより、更にセラミックの水性スラリーでの浸漬に際
してセラミック付着量を顕著に増大することが可能であ
り、従来法より浸漬回数を減らすことができる。Furthermore, by treating a synthetic resin foam that has already been coated with ceramic with the hydrophilic or water-absorbing resin dispersion, it is possible to significantly increase the amount of ceramic coating when immersing it in an aqueous ceramic slurry. , the number of immersions can be reduced compared to the conventional method.
このようにして得られるセラミック多孔体は熔融合tr
iのフィルター材、自動車排ガス浄化触媒担体、その他
の工業用触媒担体、高温用断熱材などの用途に利用出来
るし、熱交換器などの新しい用途も期待されている。本
発明はこれらの用途に利用されるセラミック多孔体を、
製造工数を低減して生産能率を高め、低コストで製造す
る方法を提供するものであり、目づまりの少ないセラミ
ック多孔体がイ11られる4、シ徴がある。The ceramic porous body obtained in this way is melt-fused tr.
It can be used for applications such as i filter materials, automobile exhaust gas purification catalyst supports, other industrial catalyst supports, and high-temperature heat insulating materials, and new applications such as heat exchangers are also expected. The present invention provides ceramic porous bodies used for these purposes,
The present invention provides a method for manufacturing at low cost by reducing the number of manufacturing steps and increasing production efficiency, and has the following characteristics: a ceramic porous body with less clogging.
次に本発明を実施例及び比較例を挙げて更に具体的に説
明するが1本発明はその要旨を超えない限り以下の実施
例に限定されるものではない。Next, the present invention will be described in more detail with reference to Examples and Comparative Examples; however, the present invention is not limited to the following Examples unless it exceeds the gist thereof.
実施例1、比殻例1、
醋酸ビニルの40%メタノール溶液500gにビニルア
ルコールとアクリル酸共重合体を主成分とする架橋吸水
性樹脂200gを添加し、メタノールを20001:加
えてよくかきまぜた液に直径6cm、厚さ5cmのセル
数20個/インチのセル膜のない三次元網状骨格構造を
有するウレタンフオームを浸漬後引き上げ、遠心分離機
により余剰の液を除去したのち100°Cのオーブンで
乾燥した。Example 1, Ratio Example 1, 200 g of a crosslinked water-absorbent resin whose main component is a copolymer of vinyl alcohol and acrylic acid was added to 500 g of a 40% methanol solution of vinyl acetate, and 20,001:1 of methanol was added and the mixture was stirred well. A urethane foam having a three-dimensional network skeleton structure without a cell membrane with a diameter of 6 cm and a thickness of 5 cm, 20 cells/inch, was immersed in water and then pulled up. Excess liquid was removed using a centrifuge, and then the foam was placed in an oven at 100°C. Dry.
一方、コーディエライト配合±100部に、ポリビニル
アルコール4.5部、ケイ酸ナトリウム0.2部および
水を加えて、コーディエライトの水性スラリーを作成し
た。このスラリー濃度ノ士室温で約2.0ボイズであっ
た。このスラリーに前記吸水性樹脂を被覆したウレタン
フオームを含浸して直ちに引き上げ、遠心分離を行ない
乾燥して、グリーンサンプルを得た(実施例1)。On the other hand, 4.5 parts of polyvinyl alcohol, 0.2 parts of sodium silicate, and water were added to ±100 parts of the cordierite mixture to prepare an aqueous slurry of cordierite. The slurry concentration was approximately 2.0 voids at room temperature. This slurry was impregnated with urethane foam coated with the water-absorbing resin and immediately pulled up, centrifuged and dried to obtain a green sample (Example 1).
一方、吸水性樹脂の付着処理を行なわない疎水性ウレタ
ンフオームも同様にしてグリーンサンプルをえた(比較
例1)。On the other hand, a green sample was obtained in the same manner using hydrophobic urethane foam which was not subjected to the adhesion treatment of water-absorbing resin (Comparative Example 1).
セラミックスラリ−への含浸、余剰泥漿の除去および乾
燥までの操作を1サイクルとし、このサイクル数とサン
プルの毛借の関係は第1表のとおりであった。The operations of impregnating the ceramic slurry, removing excess slurry, and drying were considered to be one cycle, and the relationship between the number of cycles and the hair density of the sample was as shown in Table 1.
第1表
乾燥を終了したグリーンサンプルは1300°Cで焼成
してセラミック多孔体をえた。Table 1 The dried green sample was fired at 1300°C to obtain a porous ceramic body.
セラミック多孔体の圧縮強度と圧力損失の値も第1表に
示した。The compressive strength and pressure loss values of the ceramic porous bodies are also shown in Table 1.
この結果、吸水性樹脂付着サンプルは2サイクルの処理
で嵩比重0.4をこえるのに対し吸水性樹脂をつけない
場合には4サイクルの処理が必要であった。吸水性樹脂
付着サンプルは吸水性樹脂を含まないサンプルに比して
目づまりが少なく、このことは嵩比重が大きいにもかか
わらず圧力損失が小さい結果にも明確に現われている。As a result, the bulk specific gravity exceeded 0.4 for the water-absorbing resin-attached sample after two cycles of treatment, whereas four cycles of treatment were required when no water-absorbing resin was attached. The water-absorbing resin-adhered sample has less clogging than the sample not containing the water-absorbing resin, and this is clearly shown in the result that the pressure loss is small despite the large bulk density.
以上詳述した通り1本発明のセラミック多孔体の製造方
法は、内部連通空間を有する親木性ないし吸水性の三次
元網状骨格構造合成樹脂発泡体を基材とし、これをセラ
ミックの水性スラリーに浸漬して、前記発泡体にセラミ
ックを付着せしめた後乾燥し、焼成する新規製造方法で
あり、1回の含浸によるセラミック付着量が従来の方法
の2〜十数倍なのでセラミックスラリ−への浸漬、余剰
スラリーの除去、および乾燥の繰り返り回数を減らすこ
とができ、生産性を大巾に向上できるのにできるもので
ある。As detailed above, the method for producing a ceramic porous body of the present invention uses a wood-philic or water-absorbing three-dimensional network skeleton structure synthetic resin foam as a base material, and mixes this into an aqueous ceramic slurry. This is a new manufacturing method in which ceramic is adhered to the foam by dipping, followed by drying and firing.The amount of ceramic deposited by one impregnation is two to ten times that of the conventional method, so dipping in ceramic slurry is required. , removal of excess slurry, and repetition of drying can be reduced, and productivity can be greatly improved.
また、親水性ないし吸水性合成樹脂発泡体の吸水効果に
より、骨格表面でより粘稠になったセラミンクスラリー
が骨格表面に均一に付着するため目詰まりが少なく外観
のよいセラミック多孔体を製造できる。In addition, due to the water absorption effect of the hydrophilic or water-absorbing synthetic resin foam, the ceramic slurry, which has become more viscous on the skeletal surface, adheres uniformly to the skeletal surface, making it possible to produce ceramic porous bodies with less clogging and a good appearance. .
Claims (1)
ラリーに浸漬して、前記発泡体にセラミックを付着せし
めた後、乾燥し、焼成してセラミック多孔体を製造する
に際し、前記発泡体として内部連通空間を有する親水性
ないし吸水性の三次元網状骨格構造合成樹脂発泡体を用
いることを特徴とする通気抵抗の少ないセラミック多孔
体の製造方法。A synthetic resin foam is used as a base material, which is immersed in a ceramic water column slurry to adhere the ceramic to the foam, dried, and fired to produce a ceramic porous body. A method for producing a ceramic porous body with low ventilation resistance, characterized by using a hydrophilic or water-absorbing three-dimensional network skeleton structure synthetic resin foam having communicating spaces.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17918484A JPS6158873A (en) | 1984-08-30 | 1984-08-30 | Manufacture of ceramic porous body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17918484A JPS6158873A (en) | 1984-08-30 | 1984-08-30 | Manufacture of ceramic porous body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6158873A true JPS6158873A (en) | 1986-03-26 |
Family
ID=16061403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17918484A Pending JPS6158873A (en) | 1984-08-30 | 1984-08-30 | Manufacture of ceramic porous body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6158873A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61141682A (en) * | 1984-12-12 | 1986-06-28 | 東芝セラミツクス株式会社 | Ceramic foam and manufacture |
JPH0288475A (en) * | 1988-05-02 | 1990-03-28 | Schweiz Alum Ag <Alusuisse> | Ceramic foam and its production |
CN109896836A (en) * | 2019-04-19 | 2019-06-18 | 西安石油大学 | A kind of preparation method of kaolin/composite diatomite porous ceramics |
-
1984
- 1984-08-30 JP JP17918484A patent/JPS6158873A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61141682A (en) * | 1984-12-12 | 1986-06-28 | 東芝セラミツクス株式会社 | Ceramic foam and manufacture |
JPH058148B2 (en) * | 1984-12-12 | 1993-02-01 | Toshiba Ceramics Co | |
JPH0288475A (en) * | 1988-05-02 | 1990-03-28 | Schweiz Alum Ag <Alusuisse> | Ceramic foam and its production |
CN109896836A (en) * | 2019-04-19 | 2019-06-18 | 西安石油大学 | A kind of preparation method of kaolin/composite diatomite porous ceramics |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3090094A (en) | Method of making porous ceramic articles | |
US4518704A (en) | Activated carbon formed body and method of producing the same | |
JPS6141611B2 (en) | ||
CN109627011B (en) | Preparation method of porous ceramic with concentric holes and porous ceramic | |
CN1037498A (en) | ceramic foam and preparation method thereof | |
DE3628813A1 (en) | CERAMIC HOLLOW BALLS AND METHOD FOR THE PRODUCTION THEREOF | |
WO2008066766A1 (en) | Durable honeycomb structures | |
CN114775298B (en) | Composite material containing graphene aerogel and preparation method and application thereof | |
GB2216115A (en) | Kiln furniture for the firing of ceramic articles | |
JPS6158873A (en) | Manufacture of ceramic porous body | |
JP2651170B2 (en) | Ceramics porous body | |
US5783080A (en) | Plate filter with high odor and toxin removing and water absorbing capacity and its manufacturing processes | |
US4021282A (en) | Method of manufacturing a contact body | |
CN110935439A (en) | Integral denitration catalyst and preparation method thereof | |
JP2603139B2 (en) | Method for manufacturing porous ceramic structure | |
EP0796831A1 (en) | Method of producing porous ceramic molded material | |
JP3218845B2 (en) | Method for manufacturing three-dimensional copper network structure | |
JPS61222916A (en) | Porous activated carbon | |
JPH0523584A (en) | Adsorptive ceramic porous element and its manufacture | |
JP3950565B2 (en) | Porous hydrophilic polymer and method for producing the same | |
JPS5864255A (en) | Manufacture of ceramic porous body | |
JP2003201188A (en) | Inorganic porous body and production method therefor | |
JPS6255870A (en) | Manufacture of sintered substrate for cell | |
JP2002191929A (en) | Organic and inorganic composite moisture conditioning material and method for manufacturing the same | |
CN117602879A (en) | Cement-based porous material for on-line carbon fixation of cement kiln and preparation method thereof |