JPH01269480A - Production of bioreactor element - Google Patents

Production of bioreactor element

Info

Publication number
JPH01269480A
JPH01269480A JP63099967A JP9996788A JPH01269480A JP H01269480 A JPH01269480 A JP H01269480A JP 63099967 A JP63099967 A JP 63099967A JP 9996788 A JP9996788 A JP 9996788A JP H01269480 A JPH01269480 A JP H01269480A
Authority
JP
Japan
Prior art keywords
metal oxide
filter layer
support material
molded body
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63099967A
Other languages
Japanese (ja)
Inventor
Takehisa Muronaga
室永 武久
Toshiya Furube
古部 敏也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwao Jiki Kogyo Co Ltd
Original Assignee
Iwao Jiki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwao Jiki Kogyo Co Ltd filed Critical Iwao Jiki Kogyo Co Ltd
Priority to JP63099967A priority Critical patent/JPH01269480A/en
Publication of JPH01269480A publication Critical patent/JPH01269480A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To obtain the subject product, having a high binding strength of a supporting material to a filter layer and hardly peeling the filter layer at a low cost in a simple process, by applying a specific cellular filter layer to the surface layer part of a cellular supporting material consisting of fine metallic oxide particles and calcining the filter layer. CONSTITUTION:A cellular molded body is initially molded from fine particles (preferably 1-1680mum particle diameter) of a metal oxide (e.g., alumina) and a slurry containing fine particles of a metal oxide having a smaller particle diameter (preferably 1-50mum) than that of the above-mentioned fine particles of the metal oxide is applied to the surface layer part of the above-mentioned molded body and then dried. The resultant cellular molded body is finally calcined to afford the aimed product.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は一般にバイオリアクターに使用するバイオリ
アクターエレメントの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) This invention generally relates to a method for manufacturing bioreactor elements for use in bioreactors.

(従来の技術) このバイオリアクターニレメン1へに類似のものとして
は、例えば特開昭58−34006号公報や特開昭62
−121614号公報に記載されているる材が知られて
いる。特開昭58−34006号公報に記載されている
る材は、金属酸化物粒子を焼結してなる多孔質支持材の
表面に、その支持材の内部には事実上侵入していない、
金属酸化物微粒子の多孔質焼結ろ層(ろ膜)を形成した
ものである。また、特開昭62−121614号公報に
は、ろ層が支持材の内部まで延びているる材が記載され
ている。
(Prior art) Bioreactors similar to Niremen 1 are disclosed in, for example, Japanese Patent Laid-Open No. 58-34006 and Japanese Patent Laid-Open No. 62
A material described in Japanese Patent No. 121614 is known. The material described in JP-A-58-34006 does not penetrate the surface of a porous support material formed by sintering metal oxide particles into the interior of the support material.
A porous sintered filter layer (filter membrane) of metal oxide fine particles is formed. Furthermore, Japanese Patent Application Laid-Open No. 121614/1983 describes a material in which the filter layer extends into the interior of the support material.

(発明が解決しようとする問題点) しかしながら、かかる従来のる材には以下において説明
するような欠点がある。すなわち、特開昭58−340
06号に示されるる材は、上述したようにろ層が支持材
の内部に事実上侵入しない。
(Problems to be Solved by the Invention) However, such conventional materials have drawbacks as explained below. That is, JP-A-58-340
In the material shown in No. 06, the filter layer does not substantially penetrate into the support material as described above.

そのため支持材とろ層との結合面積が小さく、結合力が
弱いためにろ層が容易に剥がれてしまうし、ろ層の強度
も小いさいものであった。もっとも、ろ層を厚くすれば
それに応じて強度もある程度向上する。しかしながら、
ろnQを厚くすれはするほど歪みが大きくなり、クラッ
クなどを発生しやすくするからそう厚くはできない。そ
れにも増して不都合なことは、ろ層を厚くすると阻止率
は向」ニするものの、ろ過抵抗が著しく増大して処理能
力が大幅に低下してしまうことである。
Therefore, the bonding area between the support material and the filter layer is small, and the bonding force is weak, so that the filter layer is easily peeled off, and the strength of the filter layer is also low. However, if the filter layer is made thicker, the strength will also improve to some extent. however,
It cannot be made too thick because the thicker it gets, the more distortion it causes, making it more likely that cracks will occur. What is even more inconvenient is that although thickening the filter layer improves the rejection rate, it significantly increases the filtration resistance and significantly reduces the throughput.

また、特開昭62−121614号においては、ろ層が
支持材の内部まで延びているため、いわゆるアンカー効
果が期待でき、支持材とる層との結合強度そのものは上
述したろ材よりも向上している。しかしながら一方で、
このろ材の製造は、−旦焼成した支持材にろ層を塗布し
て焼成するため、コス1〜的な問題がある。その理由は
、ろ層の厚みを均一にするため、高分子化合物を含浸す
る工程、含浸後の支持材を洗浄する工程、およびろ層が
支持材の孔の大きさ、空孔の分布に影響を受けないよう
に、ろ層と支持材との間に微粒子のゾルを塗布する工程
などろ層成形以前に別工程が必要であった。このため、
これらの]二量中に支持材を一定形状に保持するには、
焼成することが必要であったと推定される。
In addition, in JP-A No. 62-121614, since the filter layer extends to the inside of the support material, a so-called anchor effect can be expected, and the bonding strength with the support material layer itself is improved compared to the above-mentioned filter material. There is. However, on the other hand,
In the production of this filter medium, a filter layer is coated on a pre-fired support material and then fired, so there is a problem in terms of cost. The reason for this is that in order to make the thickness of the filter layer uniform, there is a process of impregnating it with a polymer compound, a process of washing the support material after impregnation, and the filter layer affects the pore size and pore distribution of the support material. In order to prevent this from occurring, a separate process was required before forming the filter layer, such as applying a fine particle sol between the filter layer and the support material. For this reason,
To hold the supporting material in a constant shape during these two volumes,
It is presumed that firing was necessary.

この発明の「1的は、」1記のような欠点を解決し、支
持材どろ層とよりなるバイオリアクター用のニレメン1
−において」1記のような欠点がなく、支持材とろ層と
の結合強度が高くてろ層が剥離しにくいバイオリアクタ
ーニレメン1〜lO造方法である。
``One object'' of the present invention is to solve the drawbacks as described in 1 and to provide a elm membrane 1 for bioreactors comprising a supporting material muddy layer.
- In this method, there are no drawbacks as described in 1 above, and the bonding strength between the support material and the filter layer is high, and the filter layer is difficult to peel off.

また、この発明はそのようなバイオリアクターニレメン
1へを低コストで、しかも単純な工程で製造する方法を
提供するにある。
Another object of the present invention is to provide a method for producing such a bioreactor element 1 at low cost and through simple steps.

(問題点を解決するための手段) 上記目的を達成するために、この発明においては、金属
酸化物粒子を成形体でなる多孔質支持材の表層に、その
支持材を構成している金属酸化物粒子よりも小さい平均
粒径をもつ金属酸化物微粒子の多孔質ろ層を塗布し、そ
の後焼結することによってバイオリアクターエレメント
が提供される。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, metal oxide particles are added to the surface layer of a porous support material made of a molded body, and the metal oxide particles constituting the support material are The bioreactor element is provided by applying a porous filter layer of metal oxide microparticles having an average particle size smaller than the material particles and subsequent sintering.

次に、この発明をその製造工程に従ってさらに詳細に説
明する。この発明においては、まず多孔質支持材を用意
する。この支持材は、平均粒子径が2 m m以下、好
ましくは1〜1680μmである金属酸化物粒子を成形
してなるいわゆるセラミックスからなっている。金属酸
化物粒子はアルミナ、シリカ、ジルコニアなどである。
Next, this invention will be explained in more detail according to its manufacturing process. In this invention, a porous support material is first prepared. This support material is made of so-called ceramics formed by molding metal oxide particles having an average particle diameter of 2 mm or less, preferably 1 to 1680 μm. Metal oxide particles include alumina, silica, zirconia, and the like.

もっとも、いわゆる焼結Wノ剤としてシリカ、マグネシ
ア、カルシア、ソーダ、イツトリア等の他の金属酸化物
粒子を含んでいてもよい。例えはアルミナ−シリカ系、
アルミナ−シリカ−マグネシア系、アルミナ−シリカ−
カルシア系、アルミナ−シリカ−ソーダ系、ジルコニア
−イソ1−リア系などを支持材として利用できる。しか
し、支持材は焼結後、10〜50mm程度の厚みをもち
、筒状や板状、ハニカム状などになるように押出成形、
錆込成形、プレス成形などで成形されている。この内、
押出成形の場合、成形面に比較的微粒子が集まり、その
後の処理がしやすい。また、この支持材の焼結後の気孔
率は50%程度であり、気孔径4〜200μmの空孔が
分布するようになっている。
However, other metal oxide particles such as silica, magnesia, calcia, soda, ittria, etc. may also be included as a so-called sintering W agent. For example, alumina-silica system,
Alumina-silica-magnesia, alumina-silica
Calcia type, alumina-silica-soda type, zirconia-iso-1-lia type, etc. can be used as the supporting material. However, after sintering, the support material has a thickness of about 10 to 50 mm, and is extruded into a cylinder, plate, or honeycomb shape.
It is molded by rust molding, press molding, etc. Of these,
In the case of extrusion molding, relatively fine particles gather on the molding surface, making subsequent processing easier. Further, the porosity of this support material after sintering is about 50%, and pores with a pore diameter of 4 to 200 μm are distributed.

次に、この多孔質支持材の成形体を乾燥する。この発明
においては次に支持材の表面に、支持材を構成する金属
酸化物粒子よりも小さい、平均粒径70μm以下、好ま
しくは1〜50μmであり、支持材と同じ金属酸化の微
粒子の泥漿を塗布する。この泥漿は、金属酸化物微粒子
を水に懸濁させたものであり、微粒子の濃度は5〜40
重景%、好ましくは10〜25重量%である。しかして
、このような泥漿を乾燥した支持材に塗布すると、支持
材がそれを引き込むが、塗布量あるいは含浸時間によっ
て、ある深さのところ以上は入りにくい。
Next, this molded body of porous support material is dried. In this invention, next, on the surface of the support material, a slurry of fine particles of the same metal oxide as the support material, which is smaller than the metal oxide particles constituting the support material and has an average particle size of 70 μm or less, preferably 1 to 50 μm, is applied. Apply. This slurry is made by suspending metal oxide fine particles in water, and the concentration of fine particles is 5 to 40.
Weight%, preferably 10 to 25% by weight. Thus, when such a slurry is applied to a dry support material, the support material draws it in, but depending on the amount of application or the time of impregnation, it is difficult to penetrate beyond a certain depth.

なお、塗布厚みは、後に形成される多孔質ろ層としての
厚みが10〜500μmになるような厚みである。なお
、本発明における塗布の方法としては、支持材を泥漿に
浸漬し泥漿を含浸させる方法、泥漿をスプレーで吹き付
ける方法、あるいははけで塗り付ける方法などがある。
The coating thickness is such that the porous filter layer to be formed later has a thickness of 10 to 500 μm. The application method in the present invention includes a method of dipping the support material in the slurry to impregnate it with the slurry, a method of spraying the slurry, and a method of applying the slurry with a brush.

次に、塗布後の支持材を好ましくは回転させながら自然
乾燥した後、80’Cまで加熱し、乾燥する。次に12
80°Cまで昇温し、力°ε成する。すると、支持材が
形成されると同時に、支持材の表層部に平均粒子径0.
1〜0.87zmの多孔質ろ層が形成される。
Next, the coated support material is air-dried, preferably while being rotated, and then heated to 80'C and dried. Next 12
Raise the temperature to 80°C and generate a force of °ε. Then, at the same time as the support material is formed, the surface layer of the support material has an average particle size of 0.
A porous filter layer of 1 to 0.87 zm is formed.

しかも、塗イ1jによる泥漿が支持材内部にも入り込ん
でいる結果、ろ層は支持材の表面にとどまることはなく
、支持材の内部まで延びている。
Moreover, as the slurry from the coating 1j has entered the inside of the support material, the filter layer does not stay on the surface of the support material but extends into the inside of the support material.

第1−図は、上述した方法によって得られた発明のバイ
オリアクターニレメン1への部分縦断面を示す模式図で
、平均粒径1〜]、、680μmの金属酸化物粒子1の
焼結体からなる多孔質支持材である。この支持材2の気
孔率は50%程度であり、またその気孔径は、4〜20
00μmである。この支持材2の表面には、塗布による
平均粒子径1〜50μmの金属酸化物微粒子5の多孔質
焼結層、つまりろ層6がある。このろ層の気孔率は20
〜50%であり、またその平均気孔径は0.1〜0.8
μmである。しかして厚さと気孔径の関連あり、かかる
ろ材は、支持材が成形、乾燥後のわずかに吸水性がある
が、比較的ち密であるため、ろ層6は支持材2の表面の
みに存在するのではなく、支持材の内部まであたかも根
が生えたように延びている。
Figure 1 is a schematic diagram showing a partial longitudinal section of the bioreactor element 1 of the invention obtained by the method described above, and is a sintered body of metal oxide particles 1 with an average particle size of 1 to 680 μm. It is a porous support material consisting of. The porosity of this support material 2 is about 50%, and the pore diameter is 4 to 20%.
00 μm. On the surface of this support material 2, there is a porous sintered layer of metal oxide fine particles 5 having an average particle diameter of 1 to 50 μm formed by coating, that is, a filter layer 6. The porosity of this filter layer is 20
~50%, and the average pore size is 0.1~0.8
It is μm. However, there is a relationship between the thickness and the pore size, and although such a filter medium has a slight water absorbency after the support material is molded and dried, it is relatively dense, so the filter layer 6 exists only on the surface of the support material 2. Instead, it extends into the interior of the support material as if it had roots.

以下実施例に一+、+2づいて、この発明をさらに詳細
に説明する。
The present invention will be described in more detail below with reference to Examples 1+ and 2.

実施例1 粒径が1680μm以下のカオリンと、粒径が50μm
以下木簡粘土とを配合して外径60 m rn、内径2
0 rn m、長さ210 m mの管状支持材を押出
成形した、この管状支持材の一端に同一配合の底を伺け
、有底管状部相となして乾燥した。組成はアルミナが3
0重力(%、シリカが60重力(%、である。一方カカ
リンと本節粘土を配合し、平均粒径65μmとなし、水
に懸濁して泥漿を得た。
Example 1 Kaolin with a particle size of 1680 μm or less and a particle size of 50 μm
Mixed with the following wooden tablet clay, the outer diameter is 60 m rn, and the inner diameter is 2.
A tubular support material of 0 rn m and a length of 210 mm was extruded. A bottom of the same composition was attached to one end of the tubular support material, and a bottomed tubular part was formed and dried. The composition is 3 alumina
0 gravity (%), silica is 60 gravity (%).Meanwhile, Kakarin and Honbushi clay were blended to have an average particle size of 65 μm, and suspended in water to obtain slurry.

この泥漿の濃度は15重量%である。次に、」二記支持
月の外表面に泥漿を、支持材の外部から内部に向かって
Q、2kg/cm”の圧力で圧入れし、塗布した。次に
、塗布後の支持材を自然乾燥し、込に乾燥した支持材を
1280℃まで加熱し焼成した。かくして第1図に示し
たようなこの発明のバイオリアクターエレメントが得ら
れた。このバイオリアクターニレメン1〜はろ層6の厚
みが500μmであり、支持材の厚みが2.0cmであ
った。また、ろR’i 6の金属酸化物微粒子5の平均
粒径は6.0μmであり、支持材の金属酸化物粒子の大
きさは1500μTnであった。上記のバイオリアクタ
ーエレメントについて、そのろ層の剥離強度を市販のセ
ロハン粘着テープをはり伺けて引き剥がすことによって
試験したが、ろ層の剥離は全くみられなかった。
The concentration of this slurry is 15% by weight. Next, the slurry was applied to the outer surface of the support material by pressing it from the outside to the inside of the support material at a pressure of 2 kg/cm.Next, the support material after application was applied naturally. The dried support material was heated to 1280° C. and fired. Thus, the bioreactor element of the present invention as shown in FIG. 1 was obtained. was 500 μm, and the thickness of the support material was 2.0 cm.Furthermore, the average particle size of the metal oxide fine particles 5 of filter R'i 6 was 6.0 μm, and the size of the metal oxide particles of the support material was The peel strength of the filter layer of the bioreactor element described above was tested by peeling off a commercially available cellophane adhesive tape, but no peeling of the filter layer was observed.

実施例2 実施例1において、泥漿の塗布を圧力に変え、支持材を
泥漿中に一定時間(1〜10S)漬け、乾燥後1280
℃まで加熱し、焼成した。このろ層6の厚みが20〜4
00μmであり、支持材の厚みが2.0cmであった。
Example 2 In Example 1, the application of the slurry was changed to pressure, and the support material was immersed in the slurry for a certain period of time (1 to 10S), and after drying, it was
It was heated to ℃ and baked. The thickness of this filter layer 6 is 20 to 4
00 μm, and the thickness of the support material was 2.0 cm.

また、ろ層の金属酸化物微粒子の平均粒子径は60μm
であり、支持材の金属酸化物粒子の平均粒子径は150
0μmであった。上記について実施例1と同様の剥離試
験をしだが、ろ層の剥離は全く認められなかった。
In addition, the average particle diameter of the metal oxide fine particles in the filter layer is 60 μm.
The average particle diameter of the metal oxide particles of the supporting material is 150
It was 0 μm. The same peeling test as in Example 1 was conducted for the above, but no peeling of the filter layer was observed.

(発明の効果) この発明のバイオリアクターエレメントは、ろ層が支持
材の内部まで延びているから、いわゆるアンカー効果が
極めて大きく、ろ層が強固で剥がれにくい。従って、ろ
層を極力薄くすることができ、ろ過処理能力が著しく向
上する。しかも支持材とる層との焼結が同時に行なえる
ので、焼結のためのコス1−が低減できる。
(Effects of the Invention) In the bioreactor element of the present invention, since the filter layer extends to the inside of the support material, the so-called anchor effect is extremely large, and the filter layer is strong and difficult to peel off. Therefore, the filter layer can be made as thin as possible, and the filtration capacity is significantly improved. Moreover, since the sintering with the supporting material layer can be performed at the same time, the cost 1- for sintering can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のバイオリアクターエレメントの部分断
面図である。
FIG. 1 is a partial cross-sectional view of a bioreactor element of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)金属酸化物粒子で多孔質成形体をつくり、その表
層部に、金属酸化物粒子よりも小さな平均粒径の金属酸
化物微粒子を分散した泥漿を塗布し、乾燥後金属酸化物
微粒子塗布の多孔質成形体を焼成してなるバイオリアク
ターエレメントの製造方法
(1) Make a porous molded body with metal oxide particles, apply a slurry in which metal oxide fine particles with an average particle size smaller than the metal oxide particles are dispersed to the surface layer, and after drying, apply the metal oxide fine particles. A method for producing a bioreactor element by firing a porous molded body of
(2)多孔質成形体を平均粒径の小さな金属酸化物微粒
子の懸濁した泥漿に浸漬、一定時間後に引上げる特許請
求の範囲第1項記載のバイオリアクターエレメントの製
造方法
(2) A method for producing a bioreactor element according to claim 1, in which a porous molded body is immersed in a slurry in which fine metal oxide particles with a small average particle size are suspended and pulled out after a certain period of time.
(3)金属酸化物粒子を押出成形した多孔質成形体を用
いる特許請求の範囲第1項、あるいは第2項記載のバイ
オリアクターエレメントの製造方法
(3) A method for producing a bioreactor element according to claim 1 or 2, using a porous molded body obtained by extruding metal oxide particles.
JP63099967A 1988-04-21 1988-04-21 Production of bioreactor element Pending JPH01269480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63099967A JPH01269480A (en) 1988-04-21 1988-04-21 Production of bioreactor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63099967A JPH01269480A (en) 1988-04-21 1988-04-21 Production of bioreactor element

Publications (1)

Publication Number Publication Date
JPH01269480A true JPH01269480A (en) 1989-10-26

Family

ID=14261442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63099967A Pending JPH01269480A (en) 1988-04-21 1988-04-21 Production of bioreactor element

Country Status (1)

Country Link
JP (1) JPH01269480A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08932A (en) * 1994-06-17 1996-01-09 Agency Of Ind Science & Technol Production of ceramic filter
WO2014197555A1 (en) * 2013-06-06 2014-12-11 Gusmer Enterprises Inc. Dry formed filters and methods of making the same
CN109012187A (en) * 2018-08-29 2018-12-18 北京工业大学 A kind of method of growth in situ layered bi-metal oxide nanofiltration membrane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08932A (en) * 1994-06-17 1996-01-09 Agency Of Ind Science & Technol Production of ceramic filter
WO2014197555A1 (en) * 2013-06-06 2014-12-11 Gusmer Enterprises Inc. Dry formed filters and methods of making the same
CN109012187A (en) * 2018-08-29 2018-12-18 北京工业大学 A kind of method of growth in situ layered bi-metal oxide nanofiltration membrane

Similar Documents

Publication Publication Date Title
KR930005309B1 (en) Preparation of monolithic catalyst support structures having an integrated high surface area phase
KR100686427B1 (en) Firing setters and process for producing these setters
JPS5834006A (en) Filter structure, production thereof and ultrafiltration apparatus using same
RU2456056C2 (en) Ceramic filter with carbon coat, and method of its production
EP0219383B1 (en) Use of sinterable powders of silicon carbide having a particular grain size distribution for producing porous ceramic filter elements, and ceramics thus obtained
CA2035180A1 (en) Ceramic filter and process for making it
US7781014B2 (en) Process for producing a filter catalyst
EP1063005B1 (en) Ceramic membrane
JPH01269480A (en) Production of bioreactor element
US9315425B2 (en) Macroporous ceramic body, method of manufacture and uses thereof
GB2249784A (en) Gas-tight aluminium oxide ceramic tube
JP2788061B2 (en) Firing jig and its manufacturing method
KR101734132B1 (en) Coating apparatus of membrane on porous support layer and coating method using the same
RU2294317C2 (en) Method of manufacture of high-porous cellular ceramic articles
GB2097777A (en) Ceramic foam
JP2002282629A (en) Method for manufacturing multilayer-structured ceramic filter
JPH01274815A (en) Production of ceramics filter
JPS62121614A (en) Filter medium and its preparation
JP4024704B2 (en) Manufacturing method of multilayer ceramic filter
JP2603139B2 (en) Method for manufacturing porous ceramic structure
JPH02199076A (en) Production of porous ceramic material
RU2205061C1 (en) Method of manufacturing filter elements with ceramic active layer on porous carbon support
JPS62202880A (en) Manufacture of porous ceramic body
JP3413668B2 (en) Method for producing porous ceramic laminate
JPH01157803A (en) Manufacture of ceramics molded product precursor