JPS6158223B2 - - Google Patents

Info

Publication number
JPS6158223B2
JPS6158223B2 JP52146324A JP14632477A JPS6158223B2 JP S6158223 B2 JPS6158223 B2 JP S6158223B2 JP 52146324 A JP52146324 A JP 52146324A JP 14632477 A JP14632477 A JP 14632477A JP S6158223 B2 JPS6158223 B2 JP S6158223B2
Authority
JP
Japan
Prior art keywords
prepared
catalyst
catalysts
added
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52146324A
Other languages
Japanese (ja)
Other versions
JPS5478389A (en
Inventor
Toshuki Sakai
Koichi Matsuo
Michiaki Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP14632477A priority Critical patent/JPS5478389A/en
Publication of JPS5478389A publication Critical patent/JPS5478389A/en
Publication of JPS6158223B2 publication Critical patent/JPS6158223B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は燃焼排ガス、特に内燃機間の排ガス中
に含まれる窒素酸化物(NOx)、炭化水素
(HC)および一酸化炭素(CO)などを同時に無
害化しうる触媒の製造に用いられ含浸液に関す
る。 従来、燃焼排ガス中のNOx、HCおよびCOなど
の有害成分を同時に無害化せんとする場合には論
理空燃比に近い一定領域内で触媒を使用すること
が多く行われているが、その触媒成分として白金
(Pt)―ロジウム(Rh)触媒が有効な触媒活性を
有しているために各種のPt―Rh触媒の製造方法
が提案されている。 NOx,HCおよびCOを同時に無害化しうる触媒
すなわち三元触媒には、排ガス中の酸化性成分で
あるNOxを還元して無害の窒素ガスとなし、ま
た還元性成分であるHCおよびCOを酸化して無害
の二酸化炭素と水とに転化するという酸化還元反
応を同時に迅速にしかも長時間に亘つて行わしめ
るために (1) まずNOx,HCおよびCOの何れの成分に対し
ても高い触媒活性を有していることは勿論、低
温域から高温域に至る広範な温度域での使用に
対して長時間に亘つて活性が維持できること (2) 鉛,リン,硫黄などに対する耐被毒性能が優
れていること などの触媒性能が要求される。 然しながら従来提案されて来た三元触媒では
NOx,HCおよびCOの三成分すべてに対して触媒
活が高いという触媒が得がたく、例えばNOxに
対する触媒活性を高めるとHCおよびCOに対する
触媒活性が低下し、逆にHCおよびCOに対する触
媒活性を高めとNOxに対する触媒活性が低下す
るというように、酸化還元反応のバランスを保ち
ながらなおかつ高い触媒活性を保持することは困
難であつた。更に又、実際の使用条件下では排カ
ス中に含まれる鉛,リン,硫黄などの毒成分によ
つて触媒活性が低下し、その上に高温度の排ガス
に長時間触れているために触媒の熱的劣化も加わ
り、三元触媒の寿命が短いという欠点もあつた。 本発明者らはこれらの欠点を克服するために
種々研究を行つた結果、Pt―Rh,パラジウム
(Pd)―RhおよびPt―Pd―Rhを触媒活性成分と
する三元触媒を製造するに当つてこれらの白金族
金属を担体に担持させる際に用いられる触媒含浸
液に以下に記すような有機窒素化合物の少くとも
1種を添加した含浸液を用いて製造した触媒は
NOx,HCおよびCOの何れに対しても触媒活性が
高く而も鉛,リン,硫黄に対する耐被毒性能にも
優れ、かつ担体としてアルミナ,コージエライ
ト,ムライト,窒化珪素のような耐熱性、機械的
強度共にすぐれた担体を用いるときは耐熱性、機
械的強度をも充分に保持することに見出した。本
発明はこれに基づいてなされたものであつて以下
に本発明を詳細に説明する。 本発明に用いられる有機窒素化合物は−N=N
―,>C=N―,−C≡N,−N=Oなどのように
少くとも1個の多重結合を有する窒素(N)また
は/およびアミノ基(−NH2)を含む有機窒素化
合物であつて、二三の具体例を挙げればシスチ
ン,アゾジカルボンアミド,その部分熱分解生成
物であるシアヌル酸,アゾビスアソブチルニトリ
ル,グアニジン,その部分熱分解生成物であるメ
ラミン等があり、これらの1種または2種以上が
用いられる。 これらの有機窒素化合物の添加量は含浸液中に
存在する白金族金属1モルに対して数/10〜数モ
ルの範囲で有効性が認められるが、効果の顕著
性、向上性から見て特に0.5〜3モルの範囲を選
ぶのが好ましい。 添加する有機窒素化合物は液状であつても粉末
状であつても使用上何ら差支えなく、これらの有
機窒素化合物を触媒含浸液に添加し均質な溶液と
することによつて本発明の含浸液が得られる。溶
液の均質化を速かに終了させるには当然のことで
あるが溶液を充分撹拌混合するのがよく、場合に
よつては加熱すると均質化を一層早めることがで
きる。通常5〜10分間も撹拌混合を行えば溶液の
均質化は充分に達成される。 このようにして得られた触媒含浸液をハニカム
状、ペレツト状あるいはその他の形状の担体に含
浸せしめればその後の処理は通常の含浸触媒製造
方法に従えばよく、このようにして高性能の三元
触媒が得られる。なお通常行われている含浸後の
処理方法は次のとおりである。即ち含浸後は100
〜180℃で3〜24時間、好ましくは110〜150℃で
3〜10時間乾燥し引続き気体還元もしくは液体還
元を行う。気体還元の場合、還元ガスは水素、ア
ンモニア分解ガス等が用いられ還元条件は300〜
700℃で30分〜2時間、好ましくは400〜500℃で
30分〜60分間である。また液体還元の場合には還
元剤としてホルマリン,ギ酸ソーダ,ホウ水素化
ナトリウム,N―Nジエチルグリシン等が用いら
れ還元条件は30〜100℃で30分〜2時間、好まし
くは60〜80℃、30〜60分間である。続いて(湿式
還元の場合は水洗、乾燥後)空気中もしくは窒素
雰囲気中で400〜800℃で30分〜4時間、好ましく
は500〜700℃で1〜3時間〓焼して目的との触媒
が得られる。 なお含浸液がPt,Pd,Rhの三者を含有すると
きは前記の有機窒素化合物を添加した場合に沈澱
を生ずることがある。この場合には該含浸液に更
に脂肪族飽和ジカルボン酸あるいは脂肪族オキシ
カルボン酸に属する有機酸、例えばシユウ酸,コ
ハク酸,酒石酸,クエン酸,グルコン酸等の少く
とも1種を加えると沈澱は再び溶解して均質な溶
液となる。これらの酸を加える量は沈澱が認めら
れなくなればそれでよいのであるが多少余分に加
えても得られる触媒の性能が害われることはな
い。普通は含浸液中の白金族金属の合計1モル当
り0.2〜2モル程度のことが多い。 以下に実施例を示して上記の効果を明らかにす
る。 実施例 1 活性アルミナ処理を施したコージエライト質の
ハニカム担体の1のもの(嵩比重0.55)を4個
用意し、塩化白金酸(H2PtCl6・6H2O)水溶液,
塩化ロジウム(RhCl3・4H2O)水溶液を用いPt
として0.9g,Rhとして0.1gを含む800mlの酢酸
酸性水溶液を4個用意した。この4個の溶液に有
機添加剤としてPtとRhとの合計1モルン当り順
次に1倍モル量,2倍モル量,3倍モル量,4倍
モル量のアゾジカルボンアミドと、夫々に0.3倍
モル量のシスチンとを添加してよく混合した混合
溶液4種の中に前記のハニカム担体を各1個浸漬
して塩化白金酸および塩化ロジウムを含浸させ
た。含浸後の担体を130〜150℃の乾燥器中で1昼
夜乾燥した後、500℃の水素気流中に30分間保持
して白金塩およびロジウム塩を還元し続いて空気
中で500℃で1時間〓焼して触媒1〜4を調製し
た。 また、含浸液中に有機添加剤を全く含まない以
外は上記と全く同じ操作により1個の比較触媒1
を調製した。 これらの触媒の担体1当りのPtおよびRbの
担持量(g)は表1のとおりであつた。
The present invention relates to an impregnating liquid used for producing a catalyst that can simultaneously detoxify nitrogen oxides (NOx), hydrocarbons (HC), carbon monoxide (CO), etc. contained in combustion exhaust gas, particularly exhaust gas between internal combustion engines. Conventionally, when attempting to simultaneously detoxify harmful components such as NOx, HC, and CO in combustion exhaust gas, a catalyst is often used within a certain range close to the stoichiometric air-fuel ratio. Since platinum (Pt)-rhodium (Rh) catalysts have effective catalytic activity, various methods for producing Pt-Rh catalysts have been proposed. A three-way catalyst, which can simultaneously detoxify NOx, HC, and CO, reduces NOx, an oxidizing component in exhaust gas, to harmless nitrogen gas, and also oxidizes HC and CO, which are reducing components. In order to simultaneously carry out the redox reaction of converting carbon dioxide into harmless carbon dioxide and water simultaneously and over a long period of time, (1) First, high catalytic activity against all components of NOx, HC and CO must be achieved. Of course, it also has the ability to maintain its activity for a long time when used in a wide temperature range from low to high temperatures (2) Excellent poisoning resistance against lead, phosphorus, sulfur, etc. catalytic performance is required. However, the three-way catalysts that have been proposed so far
It is difficult to obtain a catalyst that has high catalytic activity against all three components, NOx, HC, and CO. For example, increasing the catalytic activity against NOx lowers the catalytic activity against HC and CO, and conversely increases the catalytic activity against HC and CO. It has been difficult to maintain a high catalytic activity while maintaining the balance of redox reactions, as the catalytic activity against NOx decreases as the temperature increases. Furthermore, under actual usage conditions, the catalyst activity decreases due to poisonous components such as lead, phosphorus, and sulfur contained in the exhaust gas, and on top of that, the catalyst deteriorates due to prolonged contact with high-temperature exhaust gas. In addition to thermal deterioration, the three-way catalyst also had a short lifespan. The present inventors have conducted various studies to overcome these drawbacks, and as a result, we have found a method for producing three-way catalysts containing Pt-Rh, palladium (Pd)-Rh, and Pt-Pd-Rh as catalytically active components. Therefore, catalysts manufactured using an impregnating liquid containing at least one of the organic nitrogen compounds described below are used when supporting these platinum group metals on a carrier.
It has high catalytic activity against NOx, HC, and CO, and has excellent poisoning resistance against lead, phosphorus, and sulfur. It has been found that when a carrier with excellent strength is used, heat resistance and mechanical strength can be sufficiently maintained. The present invention has been made based on this, and will be explained in detail below. The organic nitrogen compound used in the present invention is -N=N
An organic nitrogen compound containing nitrogen (N) or/and an amino group (-NH 2 ) having at least one multiple bond such as -, >C=N-, -C≡N, -N=O, etc. A few specific examples include cystine, azodicarbonamide, its partial thermal decomposition product cyanuric acid, azobisisobutylnitrile, guanidine, and its partial thermal decomposition product melamine. One or more of these are used. The amount of these organic nitrogen compounds added is considered to be effective in the range of several tenths to several moles per mole of platinum group metal present in the impregnating solution, but in terms of the conspicuousness and improvement of the effect, it is particularly effective. It is preferable to choose a range of 0.5 to 3 mol. The organic nitrogen compound to be added may be in liquid or powder form without any problem in use, and by adding these organic nitrogen compounds to the catalyst impregnating liquid to make a homogeneous solution, the impregnating liquid of the present invention can be prepared. can get. Of course, in order to quickly complete the homogenization of the solution, it is preferable to sufficiently stir and mix the solution, and in some cases, homogenization can be further accelerated by heating. Generally, stirring and mixing for 5 to 10 minutes will sufficiently homogenize the solution. Once the catalyst impregnating solution obtained in this way is impregnated into a honeycomb-shaped, pellet-shaped or other shaped carrier, the subsequent treatment can be carried out according to the usual method for producing impregnated catalysts. The original catalyst is obtained. The treatment method commonly used after impregnation is as follows. i.e. 100 after impregnation
Drying is carried out at ~180°C for 3-24 hours, preferably at 110-150°C for 3-10 hours, followed by gaseous or liquid reduction. In the case of gaseous reduction, hydrogen, ammonia decomposition gas, etc. are used as the reducing gas, and the reduction conditions are 300~
700℃ for 30 minutes to 2 hours, preferably 400 to 500℃
The duration is 30 to 60 minutes. In the case of liquid reduction, formalin, sodium formate, sodium borohydride, N-N diethylglycine, etc. are used as reducing agents, and the reduction conditions are 30 to 100°C for 30 minutes to 2 hours, preferably 60 to 80°C, The duration is 30-60 minutes. Then (in the case of wet reduction, after washing with water and drying), the target catalyst is baked in air or nitrogen atmosphere at 400-800°C for 30 minutes to 4 hours, preferably at 500-700°C for 1-3 hours. is obtained. In addition, when the impregnating liquid contains three of Pt, Pd, and Rh, precipitation may occur when the above-mentioned organic nitrogen compound is added. In this case, if at least one organic acid belonging to the aliphatic saturated dicarboxylic acid or aliphatic oxycarboxylic acid group, such as oxalic acid, succinic acid, tartaric acid, citric acid, or gluconic acid, is added to the impregnating solution, precipitation can be prevented. Re-dissolve to form a homogeneous solution. The amount of these acids to be added can be set as long as no precipitation is observed, but even if a little extra is added, the performance of the resulting catalyst will not be impaired. Usually, the amount is about 0.2 to 2 moles per 1 mole of platinum group metals in the impregnating solution. Examples are shown below to clarify the above effects. Example 1 Four pieces of cordierite honeycomb carrier 1 (bulk specific gravity 0.55) treated with activated alumina were prepared, and an aqueous solution of chloroplatinic acid (H 2 PtCl 6 6H 2 O),
Pt using rhodium chloride (RhCl 3 4H 2 O) aqueous solution
Four 800 ml acetic acid aqueous solutions containing 0.9 g of Rh and 0.1 g of Rh were prepared. To these four solutions, as an organic additive, azodicarbonamide was added in an amount of 1, 2, 3, and 4 times the mole of Pt and Rh, respectively, and 0.3 times the amount of azodicarbonamide, respectively. One honeycomb carrier was immersed in each of the four types of mixed solutions in which a molar amount of cystine was added and thoroughly mixed to impregnate chloroplatinic acid and rhodium chloride. After the impregnated carrier was dried in a dryer at 130 to 150°C for one day and night, it was kept in a hydrogen stream at 500°C for 30 minutes to reduce the platinum salt and rhodium salt, and then dried in air at 500°C for 1 hour. Catalysts 1 to 4 were prepared by calcination. In addition, one comparative catalyst 1 was prepared using the same procedure as above except that the impregnating solution did not contain any organic additives.
was prepared. The amounts (g) of Pt and Rb supported per carrier of these catalysts were as shown in Table 1.

【表】 実施例 2 粒状活性アルミナ担体3(嵩比重0.73)を用
意し、塩化パラジウム(PdCl2)水溶液および塩
化ロジウム水溶液を用いてPdとして0.9g,Rhと
して0.1gを含む800mlの塩酸酸性水溶液を3個用
意した。この3個の溶液に有機添加剤としてPd
とRhとの合計1モル量当り順次に1倍モル量の
アゾジカルボンアミド、1倍モル量のグアニジ
ン、1倍モル量のメラミンを添加してよく混合し
た混合溶液3種の中に前記の粒状担体各1を浸
漬して塩化パラジウムと塩化ロジウムとを含浸さ
せた。含浸後の担体を130〜150℃の乾燥器中で5
時間乾燥した後、ギ酸ソーダ溶液で湿式還元し、
水洗、乾燥後、700℃で3時間〓焼して触媒5〜
7を調製した。 また、含浸液中に有機添加剤を全く含まない以
外は上記と全く同じ操作により1の比較触媒2
を調製した。 これらの触媒の担体は1当りのPdおよびRh
の担持量(g)は表2のとおりであつた。
[Table] Example 2 Granular activated alumina carrier 3 (bulk specific gravity 0.73) was prepared, and 800 ml of an acidic hydrochloric acid solution containing 0.9 g of Pd and 0.1 g of Rh was prepared using a palladium chloride (PdCl 2 ) aqueous solution and a rhodium chloride aqueous solution. I prepared three. Pd was added as an organic additive to these three solutions.
1 times the molar amount of azodicarbonamide, 1 times the molar amount of guanidine, and 1 times the molar amount of melamine were sequentially added per 1 molar amount of the total amount of Rh and Rh, and the above-mentioned granules were added to the three mixed solutions that were well mixed. Each carrier was dipped to impregnate it with palladium chloride and rhodium chloride. After impregnation, the carrier is heated in a dryer at 130 to 150℃ for 5 minutes.
After drying for an hour, wet reduction with sodium formate solution,
After washing with water and drying, bake at 700℃ for 3 hours and catalyst 5~
7 was prepared. Comparative catalyst 2 of 1 was prepared using the same procedure as above except that the impregnating solution did not contain any organic additives.
was prepared. The support for these catalysts contains Pd and Rh per 1
The supported amount (g) of was as shown in Table 2.

【表】 実施例 3 活性アルミナ処理を施したコージエライト質の
ハニカム担体の1のもの(嵩比重0.55)を4個
用意し、塩化白金酸水溶液、塩化パラジウム水溶
液および塩化ロジウム水溶液を用いPtとして0.6
g、Pdとして0.3g、Rhとして0.1gを含む800ml
の酢酸酸性水溶液を4個用意した。この4個の溶
液に有機添加剤としてPt,PdおよびRhの合計1
モル量当り順次に1倍モル量のアゾジカルボンア
ミド、1倍モル量のグアニジン、1倍モル量のメ
ラミン、1倍モル量のアラニンと、夫々に0.3倍
モル量のシスチンと、更に前記の順に0.5倍モル
量のシユウ酸,コハク酸,酒石酸,クエン酸と添
加してよく混合した混合溶液4種の中に前記のハ
ニカム担体各1個を浸漬して塩化白金酸、塩化パ
ラジウムおよび塩化ロジウムを含浸させた。含浸
後の担体を実施例1と同様の操作により触媒8〜
11を調製した。 また、含浸液中に有機添加剤を全く含まない以
外は上記と全く同じ操作により1個の比較触媒3
を調製した。 これらの触媒の担体1当りのPt,Pdおよび
Rhの担持量(g)は表3のとおりであつた。
[Table] Example 3 Four cordierite honeycomb carriers treated with activated alumina (bulk specific gravity 0.55) were prepared, and Pt was 0.6 using a chloroplatinic acid aqueous solution, a palladium chloride aqueous solution, and a rhodium chloride aqueous solution.
800ml containing 0.3g as g, Pd and 0.1g as Rh
Four acetic acidic aqueous solutions were prepared. A total of 1% of Pt, Pd and Rh was added to these 4 solutions as organic additives.
In order per molar amount, 1 times molar amount of azodicarbonamide, 1 times molar amount of guanidine, 1 times molar amount of melamine, 1 times molar amount of alanine, each of 0.3 times molar amount of cystine, and further in the above order. One honeycomb carrier each was immersed in four types of mixed solutions in which 0.5 times the molar amount of oxalic acid, succinic acid, tartaric acid, and citric acid were added and mixed well to add chloroplatinic acid, palladium chloride, and rhodium chloride. Impregnated. The impregnated carrier was treated in the same manner as in Example 1 to prepare catalysts 8 to 8.
11 was prepared. In addition, one comparative catalyst 3 was prepared using the same procedure as above except that the impregnating solution did not contain any organic additives.
was prepared. Pt, Pd and
The amount of Rh supported (g) was as shown in Table 3.

【表】 実施例 4 実施例1〜3で調製した触媒1〜11および比較
触媒1〜3について触媒活性判定試験を行つた。
判定試験は新品触媒と、1800c.c.エンジンを取付け
たエンジンダイナモメーターの排気系統内に触媒
を装着し100Km/時の定速で250時間運転後の触媒
(耐久触媒)とについて行い、触媒活性を評価し
た。 供試ガス組成 CO 1.05% H2 0.35% C3H6 330ppm C3H8 170ppm NO 1000ppm O2 0.83% CO2 10% H2O 10% N2 残部 %,ppmは何れも容量 還元性成分/酸化性成分 =CO+H+9C+10C/NO
+2O=1 空間速度 60000Hr-1 試験結果を表4に示す。この表から本発明の効
果が明瞭に判る。
[Table] Example 4 Catalyst activity determination tests were conducted on catalysts 1 to 11 prepared in Examples 1 to 3 and comparative catalysts 1 to 3.
Judgment tests were conducted on new catalysts and on catalysts (durable catalysts) that had been operated for 250 hours at a constant speed of 100 km/h with the catalyst installed in the exhaust system of an engine dynamometer equipped with an 1800 c.c. engine. was evaluated. Sample gas composition CO 1.05% H 2 0.35% C 3 H 6 330ppm C 3 H 8 170ppm NO 1000ppm O 2 0.83% CO 2 10% H 2 O 10% N 2 balance % and ppm are both volume reducing components/ Oxidizing component = CO + H 2 + 9C 3 H 6 + 10C 3 H 8 /NO
+2O 2 =1 Space velocity 60000Hr -1 The test results are shown in Table 4. From this table, the effect of the present invention can be clearly seen.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 パラジウムおよび白金の化合物の少なくとも
1種とロジウムの化合物とを含む水溶液に、少く
とも1個の多重結合を有する窒素または/および
アミノ基を含む有機窒素化合物の少くとも1種を
添加してなる燃焼排ガス浄化用酸化還元触媒製造
用含浸液。
1. At least one organic nitrogen compound containing nitrogen having at least one multiple bond and/or an amino group is added to an aqueous solution containing at least one compound of palladium and platinum and a compound of rhodium. Impregnation liquid for manufacturing redox catalysts for combustion exhaust gas purification.
JP14632477A 1977-12-06 1977-12-06 Impregnating liquid for catalyst manufacture Granted JPS5478389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14632477A JPS5478389A (en) 1977-12-06 1977-12-06 Impregnating liquid for catalyst manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14632477A JPS5478389A (en) 1977-12-06 1977-12-06 Impregnating liquid for catalyst manufacture

Publications (2)

Publication Number Publication Date
JPS5478389A JPS5478389A (en) 1979-06-22
JPS6158223B2 true JPS6158223B2 (en) 1986-12-10

Family

ID=15405087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14632477A Granted JPS5478389A (en) 1977-12-06 1977-12-06 Impregnating liquid for catalyst manufacture

Country Status (1)

Country Link
JP (1) JPS5478389A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123898U (en) * 1991-04-26 1992-11-10 横浜ゴム株式会社 Pneumatic fender weight mounting structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017239U (en) * 1983-07-11 1985-02-05 トヨタ自動車株式会社 Catalyst for exhaust gas purification

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123898U (en) * 1991-04-26 1992-11-10 横浜ゴム株式会社 Pneumatic fender weight mounting structure

Also Published As

Publication number Publication date
JPS5478389A (en) 1979-06-22

Similar Documents

Publication Publication Date Title
JPS6135897B2 (en)
US3914377A (en) Catalyst reactor for oxidizing carbon monoxide and hydrocarbons in gaseous stream
US4183829A (en) Catalysts for purification of exhaust gases from internal combustion engines
JPS6158223B2 (en)
JPS5820307B2 (en) Catalyst for vehicle exhaust gas purification
JPH0312933B2 (en)
JPH07171349A (en) Exhaust gas purification
JPH06165920A (en) Exhaust gas purifying method
JPH0824583A (en) Exhaust gas purifying material and method for purifying exhaust gas
JPH06126177A (en) Catalyst for removing nitrous oxide in exhaust gas
JPS63175640A (en) Catalyst carrier
JPH0871424A (en) Catalyst for purification of exhaust gas
JPH04284824A (en) Method for purifying exhaust gas
JP2587000B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JP4624598B2 (en) Exhaust gas purification catalyst and production method thereof
JPH06142523A (en) Waste gas purifying material and waste gas purifying method
JPH078028Y2 (en) Exhaust gas purification catalyst
JP2992629B2 (en) Exhaust gas purification material and exhaust gas purification method using ethanol
JPH08168650A (en) Material and method for purifying exhaust gas
JPH11294150A (en) Exhaust emission control device and its use
JPH0334368B2 (en)
JPH0515779A (en) Preparation of catalyst for purifying exhaust gas
JPH0824654A (en) Matreial and method for pufitying exhaust gas
JPH09327617A (en) Purification catalyst and purifying method for exhaust gas of internal combustion engine
JPS5833015B2 (en) Exhaust gas purification catalyst