JPH0312933B2 - - Google Patents

Info

Publication number
JPH0312933B2
JPH0312933B2 JP57001849A JP184982A JPH0312933B2 JP H0312933 B2 JPH0312933 B2 JP H0312933B2 JP 57001849 A JP57001849 A JP 57001849A JP 184982 A JP184982 A JP 184982A JP H0312933 B2 JPH0312933 B2 JP H0312933B2
Authority
JP
Japan
Prior art keywords
catalyst
present
palladium
weight
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57001849A
Other languages
Japanese (ja)
Other versions
JPS58119343A (en
Inventor
Michiaki Yamamoto
Takashi Oogami
Noryuki Shimazaki
Kazunari Suzuki
Masahiro Nomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP57001849A priority Critical patent/JPS58119343A/en
Publication of JPS58119343A publication Critical patent/JPS58119343A/en
Publication of JPH0312933B2 publication Critical patent/JPH0312933B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は排ガス浄化用触媒の製造方法に関す
る。更に詳しくは内燃機関等から排出される排ガ
ス中の窒素酸化物(NOx)、炭化水素化合物
(HC)及び一酸化炭素(CO)を同時に除去しう
る触媒(三元触媒)の製造方法に関する。 三元触媒は排ガス中の酸化成分であるNOxを
還元して無害の窒素ガスとし、また還元成分であ
るHC及びCOを酸化して無害の二酸化炭素
(CO2)と水とに変成するという酸化還元反応を
同時に且つ迅速にしかも長時間にわたつて行わし
めることが要求され、このためNOx、HC及び
COのいづれの成分に対しても高い触媒活性を有
している必要があることはもちろんのこと、更に
は低温で触媒反応を開始する低温活性が高く且つ
低温度域から高温度域に至る広範な温度領域で使
用しても長時間にわたつて活性が維持できること
が必要である。また、鉛、リン、硫黄などに対す
る耐被毒性能が優れていることも要求される。 従来三元触媒としては白金−ロジウム、パラジ
ウム−ロジウム、白金−パラジウム−ロジウムが
利用されているが、これらはNOx、HC及びCO
に対しある程度の活性をもつものの未だ満足すべ
きものではなく、また耐久使用時の触媒性能の劣
化が大きく、しかも三成分を同時にある程度の高
い浄化率で除去しうる空燃化(A/F)の幅(ウ
インドー)が狭いという欠点があつた。 本発明は上記と如き欠点のないより望ましい排
ガス浄化用触媒の製造方法を提供するものであ
る。 即ち、本発明は、 (イ) パラジウム、白金及びロジウムからなる群か
ら選ばれた白金族元素の可溶性塩の少なくとも
一種、 (ロ) H3PMo12O40、H3PW12O40、H4SiMo12O40
H4SiW12O40及びこれらの化合物中の水素原子
が他の陽イオンで置換されている化合物からな
る群から選ばれたヘテロポリ化合物の少なくと
も一種、及び、 (ハ) 少なくとも一個の多重結合を有する窒素原子
又はアミノ基を含む有機窒素化合物の少なくと
も一種 を耐火性担体に含浸担持させ、その後仮焼する
ことを特徴とする排ガス浄化用触媒の製造方法
である。 本発明の製造方法においては、パラジウム、白
金又はロジウムの可溶性塩を用いる。本発明にお
いてはこれらの可溶性塩の一種又は二種以上を用
いることができる。 本発明で用いることのできるヘテロポリ化合物
は、H3PMo12O40、H3PW12O40、H4SiMo12O40
H4SiW12O40及びこれらの化合物中の水素原子が
他の陽イオン、例えばZn2+、Co2+、Ni2+、Cu2+
Pd2+、Ag+、Mn2+、La3+、Ce3+によつて置換さ
れている化合物である。本発明においてはこれら
のヘテロポリ化合物の一種又は二種以上を用いる
ことができる。 本発明で用いることのできる、少なくとも1個
の多重結合を有する窒素原子又はアミノ基を含む
有機窒素化合物は、例えば尿素、アゾジカルボン
アミド、シスチン、ビウレア、アセトアミドであ
る。本発明においてはこれらの有機窒素化合物の
一種又は二種以上を用いることができる。 本発明の製造方法においては、触媒成分を常法
に従つて一般に耐火性素材からなるハニカム等の
担体に担持させる。この際、通常は、従来法にお
けると同様に、担体の表面に活性アルミナコーテ
イング(ウオツシユコーテイング)を施して、表
面を触媒的に活性な状態にしておくことが好まし
い。 本発明の製造方法においては、担体容積1000ml
に対して白金族元素の可溶性塩を通常の量比例え
ば5〜100ミリモル、ヘテロポリ化合物を0.01〜
10ミリモルとなる量比で、そして有機窒素化合物
を白金族元素の可溶性塩の0.5〜3倍のモル比で
含浸担持させることが好ましい。 本発明においては、従来法におけると同様にし
てパラジウム、白金及び/又はロジウムの可溶性
塩を調製し、これと上記の有機窒素化合物とを混
合し、更に上記のヘテロポリ化合物を粉末状で又
は溶液状で添加し十分に撹拌、加温して得られた
含浸液を用いて従来法におけると同様にして担体
を含浸担持せしめるのである。パラジウム、白金
及び/又はロジウムとヘテロポリ化合物とを別々
に担体に含浸担持させることもできるが、耐久性
の点でより優れたものを得るためにはそれらの混
合含浸液を用いるのが好ましい。担体の含浸担持
の後、250〜450℃好ましくは300〜350℃で1〜数
時間空気中で仮焼し、次いで必要ならば還元処理
を行う。還元処理は従来法におけると同様乾式還
元及び湿式還元のいづれの方法によつてもよい。
以下に本発明触媒製造の好ましい一例について詳
細に説明する。 ベーマイトから製造したアルミナ液状組成物
(特開昭53−45314号公報参照)1重量部と活性ア
ルミナ2.5重量部を混合し、その混合物80重量部
と希土類化合物の可溶性塩をアンモニアと反応さ
せて得た希土類液状組成物20重量を混合し、ボー
ルミルで十分に混和する。得られた液状組成物を
用いてコージライト製ハニカム担体のウオツシユ
コーテングを行い、乾燥後、700℃で1〜3時間
仮焼する。このハニカム担体に対する触媒含浸液
として担体1000mlにつき、塩化パラジウム、ニト
ロアミノパジウム、パラジウムテトラアンミンジ
クロライド等の可溶性塩5〜100ミリモル好まし
くは10〜40ミリモル、それの1.0〜2.0倍ミリモル
の尿素、および12−モリブドリン酸三水素または
12−タングストリン酸三水素あるいはそれらから
誘導したヘテロポリ化合物0.01〜10ミリモル好ま
しくは0.05〜1ミリモルの撹拌混合物を調製す
る。この含浸液を50〜90℃、好ましくは70〜80℃
に加温してからハニカム担体に含浸させ、乾燥後
300〜350℃で1〜3時間仮焼してその後還元を行
う。 得られたハニカム担持パラジウム触媒に対する
触媒含浸液として該担持触媒1000mlにつき、塩化
ロジウム、ニトロジアミノロジウム等の可溶性塩
0.1〜10ミリモル、その0.5〜2.0倍ミリモルのアゾ
ジカルボンアミド、0.1〜0.3倍ミリモルのシスチ
ン、および12−モリブドリン酸三水素または12−
タングストリン酸三水素あるいはそれらから誘導
したヘテロポリ化合物0.005〜1ミリモルの撹拌
混合物を調製する。この含浸液を40〜70℃好まし
く50〜60℃に加温してから前記担持パラジウム触
媒に含浸させ乾燥後300〜350℃で1〜3時間仮焼
してその後還元を行う。 本発明の製造方法で得られる触媒は、例えば後
記実施例の試験法によるCO、HC、NOを含む三
元触媒反応においてそれぞれの成分が50%浄化率
に至るまでの反応時間をヘテロポリ化合物無添加
の触媒と比較すると、10〜40℃低温側で反応が達
成されることが判つた。さらにまた各A/Fにお
ける浄化率を平均して求めた平均浄化率をヘテロ
ポリ化合物の添加を有無によつて比較しても、本
発明によつて得られる触媒はヘテロポリ化合物無
添加の触媒よりも常に平均浄化率が高く、これよ
り本発明で得られる触媒の空燃比の幅が拡大され
ていることが判つた。さらにまた本発明で得られ
る触媒及びヘテロポリ化合物無添加の触媒を950
℃で10時間熱処理してそれらの平均浄化率を比較
しても本発明で得られた触媒の性能が著しく向上
していることが判つた。 以上の如き本発明の触媒は自動車排ガス浄化用
触媒に適用されるが、その他に工業廃ガス、家庭
用燃料廃ガス、各種脱臭装置等のCO、HCおよび
NOxの浄化等極めて広い範囲に適用される。 以下に本発明を実施例でさらに具体的に説明す
るが、本発明はこれによつて限定されるものでは
ない。 実施例 1 アルミナ1水和物50重量部と1規定の酢酸40重
量部を混練、乾燥して得た乾燥物を117重量部の
水に解膠してコロイド状液状組成物を得た。この
コロイド状液状組成物中のAl2O3分1重量部に対
して活性アルミナ2.5重量部の比率になるような
アルミナ混合物を160重量部用意した。一方、ア
ンモニア水と硝酸セリウムを反応せしめた後、振
とう加温してコロイド状のセリウム液状組成物を
得た。このコロイド状セリウム液状組成物40重量
部をアルミナ混合物160重量部に加え、それに水
1000重量部を加えて小型ボールミルで16時間混
合、ねつ和した。この液状混合物を用いてコージ
ライト製ハニカム担体(300セム/in2)のウオツ
シユコーテングを行い、乾燥後700℃で3時間仮
焼した。 このウオツシユコーテングを施したハニカム担
体1に対してPdとして2g含有する塩化パラ
ジウム溶液及びパラジウムと等重量部の尿素と含
有する錯体水溶液を用意し、この水溶液に12−モ
リブドリン酸三水素(H3PMo12O40)を0.1〜5
g添加して十分に撹拌した。この含浸液を70〜80
℃に加温してハニカム担体に含浸し、乾燥後350
℃で3時間仮焼してから還元し、つづいて700℃
で3時間仮焼して触媒試料No.1〜8を製造した。
触媒試料No.1〜3は参考例であり、触媒試料No.4
〜8は本発明に関するものである。 比較例 1 12−モリブドリン酸三水素を添加しないことを
除いて実施例1と全く同じ操作によりヘテロポリ
化合物を全く含まない比較触媒試料No.1を製造し
た。 実施例 2 実施例1と同様なハニカム担体1に対して、
Pdとして1.3gr含有する塩化パラジウム溶液及び
パラジウムと等重量部の尿素とを含有する錯体水
溶液を用意し、その水溶液にケイタングステン酸
(H4SiW12O40)を0.3〜10g添加した。この含浸
液を用いて実施例1と同様な方法で担持パラジウ
ム触媒を製造した。 この担持パラジウム触媒1に対して、Rhと
して1.3gr含有する塩化パラジウム溶液及びロジウ
ムと等重量部のアゾジカルボンアミドと0.2倍重
量部のシスチンとを含有する錯体水溶液を用意
し、この水溶液に12−タングストリン酸三水素
(H3PW12O40)を0.05〜0.1gr添加して十分に撹拌
した。この含浸液を50〜60℃に加温して上記ハニ
カム担持パラジウム触媒に含浸し、乾燥後300℃
で3時間仮焼してから還元し、つづいて500℃で
1時間仮焼して触媒試料No.9〜17を製造した。触
媒試料No.9〜10は参考例であり、触媒試料No.11〜
17は本発明に関するものである。 比較例 2 ケイタングステン酸及び12−タングストリン酸
三水素を添加しないことを除いて実施例2と全く
同じ操作によりヘテロポリ化合物を全く含まない
比較触媒試料No.2を製造した。 実施例 3 実施例1と同様なハニカム担体1に対して、
Ptとして1.1g含有するジニトロジアミノ白金硝
酸溶液とRhとして0.1gr含有するニトロジアミノ
ロジウム硝酸溶液およびPtとRhの合計量に対し
て0.3倍重量部のシスチンからなる水溶液を用意
し、この水溶液に12−タングストリン酸三水素と
炭素コバルトから調製した12−タングストリン酸
コバルト塩(CO1,5PW12O40)を0.5〜2.0g添加し
た。この含浸液を用いて実施例1と同様な方法に
より触媒試料No.18〜19を製造した。 比較例 3 12−タングストリン酸コバルト塩を添加しない
ことを除いて実施例3と全く同じ操作によりヘテ
ロポリ化合物を全く含まない比較触媒試料No.3を
製造した。 実施例 4 実施例1と同様なハニカム担体1に対して、
12−タングストリン酸三水素を0.2〜4gr含有する
含浸液を用意した。この含浸液を30〜40℃でハニ
カム担体に含浸し、乾燥した。この担体を用い
て、12−タングストリン酸コバルト塩を添加しな
いことを除いて実施例3と同様な方法により触媒
試料No.20〜22を製造した。 試験例 実施例および比較例で製造した触媒試料につい
て、新品触媒と空気中において950℃で10時間熱
処理した耐久後触媒の触媒活性を評価した。試験
条件は次の通りであり、試験結果を第1表に示
す。 触媒性能試験条件 (1) ガス組成(容量基準) CO:1.0% C3H6:1000ppm H2:0.33% CO2:10% O2:変動 H2O:10% NO:4000ppm N2:残部 (2) 空間速度:150000/Hr (3) 測定方法 A/F=14.5〜15.0の平均浄化率
The present invention relates to a method for manufacturing an exhaust gas purifying catalyst. More specifically, the present invention relates to a method for producing a catalyst (three-way catalyst) that can simultaneously remove nitrogen oxides (NOx), hydrocarbon compounds (HC), and carbon monoxide (CO) from exhaust gas emitted from internal combustion engines and the like. The three-way catalyst reduces the oxidized component NOx in exhaust gas to harmless nitrogen gas, and also oxidizes the reducing components HC and CO to convert them into harmless carbon dioxide (CO 2 ) and water. It is required that the reduction reaction be carried out simultaneously, rapidly, and over a long period of time, and for this reason, NOx, HC and
Not only does it need to have high catalytic activity against all components of CO, but it also needs to have high low-temperature activity that starts the catalytic reaction at low temperatures, and a wide range from low to high temperature ranges. It is necessary that the activity can be maintained for a long time even when used in a wide temperature range. It is also required to have excellent poisoning resistance against lead, phosphorus, sulfur, and the like. Conventionally, platinum-rhodium, palladium-rhodium, and platinum-palladium-rhodium are used as three-way catalysts, but these
Although it has a certain degree of activity, it is still not satisfactory, and the catalyst performance deteriorates significantly during long-term use.Furthermore, air-fuel conversion (A/F), which can simultaneously remove the three components with a certain high purification rate, is still not satisfactory. The drawback was that the width (window) was narrow. The present invention provides a method for producing a more desirable exhaust gas purifying catalyst that does not have the above-mentioned drawbacks. That is, the present invention provides (a) at least one soluble salt of a platinum group element selected from the group consisting of palladium, platinum, and rhodium; (b) H 3 PMo 12 O 40 , H 3 PW 12 O 40 , H 4 SiMo12O40 ,
At least one heteropoly compound selected from the group consisting of H 4 SiW 12 O 40 and compounds in which the hydrogen atom in these compounds is replaced with another cation, and (c) having at least one multiple bond. This is a method for producing a catalyst for exhaust gas purification, which comprises impregnating and supporting at least one organic nitrogen compound containing a nitrogen atom or an amino group on a refractory carrier, and then calcining it. In the production method of the present invention, a soluble salt of palladium, platinum or rhodium is used. In the present invention, one or more of these soluble salts can be used. The heteropoly compounds that can be used in the present invention include H 3 PMo 12 O 40 , H 3 PW 12 O 40 , H 4 SiMo 12 O 40 ,
H 4 SiW 12 O 40 and hydrogen atoms in these compounds can be combined with other cations such as Zn 2+ , Co 2+ , Ni 2+ , Cu 2+ ,
It is a compound substituted with Pd 2+ , Ag + , Mn 2+ , La 3+ , Ce 3+ . In the present invention, one or more of these heteropoly compounds can be used. Organic nitrogen compounds containing a nitrogen atom or an amino group having at least one multiple bond that can be used in the present invention are, for example, urea, azodicarbonamide, cystine, biurea, acetamide. In the present invention, one or more of these organic nitrogen compounds can be used. In the production method of the present invention, catalyst components are generally supported on a carrier such as a honeycomb made of a refractory material in accordance with a conventional method. At this time, it is usually preferable to apply an activated alumina coating (wash coating) to the surface of the carrier to make the surface catalytically active, as in the conventional method. In the production method of the present invention, the carrier volume is 1000 ml.
The usual amount ratio of soluble salt of platinum group element to
It is preferable to impregnate and support the organic nitrogen compound at a molar ratio of 10 mmol and a molar ratio of 0.5 to 3 times that of the soluble salt of the platinum group element. In the present invention, a soluble salt of palladium, platinum and/or rhodium is prepared in the same manner as in the conventional method, this is mixed with the above organic nitrogen compound, and the above heteropoly compound is added in the form of a powder or a solution. The impregnating liquid obtained by adding the impregnating liquid to the impregnating liquid is sufficiently stirred and heated to impregnate and support the carrier in the same manner as in the conventional method. Palladium, platinum and/or rhodium and the heteropoly compound can be impregnated and supported on the carrier separately, but in order to obtain better durability, it is preferable to use a mixed impregnating solution. After impregnating and supporting the carrier, it is calcined in air at 250 to 450°C, preferably 300 to 350°C, for one to several hours, and then, if necessary, a reduction treatment is performed. The reduction treatment may be carried out by either dry reduction or wet reduction as in conventional methods.
A preferred example of the production of the catalyst of the present invention will be explained in detail below. It is obtained by mixing 1 part by weight of an alumina liquid composition produced from boehmite (see JP-A-53-45314) and 2.5 parts by weight of activated alumina, and reacting 80 parts by weight of the mixture with a soluble salt of a rare earth compound with ammonia. Mix 20 weight of the rare earth liquid composition and thoroughly mix with a ball mill. The obtained liquid composition is used to wash-coat a cordierite honeycomb carrier, and after drying, it is calcined at 700°C for 1 to 3 hours. As a catalyst impregnating solution for this honeycomb carrier, per 1000 ml of the carrier, 5 to 100 mmol of a soluble salt such as palladium chloride, nitroaminopadium, palladium tetraammine dichloride, etc., preferably 10 to 40 mmol, 1.0 to 2.0 times that amount of urea, and 12 - trihydrogen molybdophosphate or
A stirred mixture of 0.01 to 10 mmol, preferably 0.05 to 1 mmol, of trihydrogen 12-tungstophosphate or a heteropoly compound derived therefrom is prepared. This impregnating liquid is heated at 50-90℃, preferably at 70-80℃.
After heating, impregnating the honeycomb carrier, and drying
Calcining is performed at 300 to 350°C for 1 to 3 hours, followed by reduction. A soluble salt such as rhodium chloride or nitrodiaminorhodium is added per 1000 ml of the honeycomb-supported palladium catalyst as a catalyst impregnating solution.
0.1 to 10 mmol, 0.5 to 2.0 mmol of azodicarbonamide, 0.1 to 0.3 mmol of cystine, and trihydrogen 12-molybdophosphate or 12-
A stirred mixture of 0.005 to 1 mmole of trihydrogen tungstophosphate or a heteropoly compound derived therefrom is prepared. This impregnation solution is heated to 40 to 70°C, preferably 50 to 60°C, impregnated into the supported palladium catalyst, dried, calcined at 300 to 350°C for 1 to 3 hours, and then reduced. The catalyst obtained by the production method of the present invention has a reaction time of up to 50% purification rate for each component in a three-way catalytic reaction including CO, HC, and NO according to the test method described in the example below, without the addition of a heteropoly compound. When compared with the catalyst of Furthermore, even when comparing the average purification rate obtained by averaging the purification rates in each A/F with and without the addition of a heteropoly compound, the catalyst obtained by the present invention is better than the catalyst without the addition of a heteropoly compound. The average purification rate was always high, and it was found that the air-fuel ratio range of the catalyst obtained by the present invention was expanded. Furthermore, the catalyst obtained according to the present invention and the catalyst without the addition of heteropoly compounds were used at 950%
It was found that the performance of the catalyst obtained according to the present invention was significantly improved even when the average purification rates were compared after heat treatment at ℃ for 10 hours. The catalyst of the present invention as described above is applied to a catalyst for purifying automobile exhaust gas, but it is also applicable to industrial waste gas, household fuel waste gas, various deodorizing devices, etc. such as CO, HC, etc.
It can be applied to an extremely wide range of applications such as NOx purification. EXAMPLES The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited thereto. Example 1 50 parts by weight of alumina monohydrate and 40 parts by weight of 1N acetic acid were kneaded and dried, and the dried product was peptized in 117 parts by weight of water to obtain a colloidal liquid composition. 160 parts by weight of an alumina mixture was prepared in a ratio of 2.5 parts by weight of activated alumina to 1/3 part by weight of Al 2 O in this colloidal liquid composition. On the other hand, aqueous ammonia and cerium nitrate were reacted, then shaken and heated to obtain a colloidal cerium liquid composition. Add 40 parts by weight of this colloidal cerium liquid composition to 160 parts by weight of the alumina mixture, and add water to it.
1000 parts by weight was added and mixed and kneaded for 16 hours in a small ball mill. This liquid mixture was used to wash-coat a cordierite honeycomb carrier (300 sems/in 2 ), and after drying, it was calcined at 700° C. for 3 hours. A palladium chloride solution containing 2 g of Pd and an aqueous complex solution containing palladium and an equal weight part of urea are prepared for the honeycomb carrier 1 subjected to the wash coating. PMo 12 O 40 ) from 0.1 to 5
g was added and thoroughly stirred. Add this impregnating liquid to 70~80%
It is heated to 350 °C and impregnated into a honeycomb carrier, and after drying
Calcined at ℃ for 3 hours, then reduced, then heated to 700℃
Catalyst samples Nos. 1 to 8 were produced by calcining for 3 hours.
Catalyst samples No. 1 to 3 are reference examples, and catalyst sample No. 4
-8 are related to the present invention. Comparative Example 1 Comparative catalyst sample No. 1 containing no heteropoly compound was produced in exactly the same manner as in Example 1, except that trihydrogen 12-molybdophosphate was not added. Example 2 For a honeycomb carrier 1 similar to Example 1,
A palladium chloride solution containing 1.3 g of Pd and an aqueous complex solution containing urea in an equal weight part to palladium were prepared, and 0.3 to 10 g of silicotungstic acid (H 4 SiW 12 O 40 ) was added to the aqueous solution. A supported palladium catalyst was produced in the same manner as in Example 1 using this impregnation liquid. For this supported palladium catalyst 1, a palladium chloride solution containing 1.3 gr as Rh and a complex aqueous solution containing rhodium, an equal part by weight of azodicarbonamide, and 0.2 parts by weight of cystine were prepared. 0.05 to 0.1 g of trihydrogen tungstophosphate (H 3 PW 12 O 40 ) was added and thoroughly stirred. This impregnating solution was heated to 50 to 60°C and impregnated into the honeycomb-supported palladium catalyst, and after drying it was heated to 300°C.
Catalyst samples Nos. 9 to 17 were produced by calcining at 500° C. for 3 hours, followed by reduction, followed by calcining at 500° C. for 1 hour. Catalyst samples No. 9 to 10 are reference examples, and catalyst samples No. 11 to
No. 17 relates to the present invention. Comparative Example 2 Comparative catalyst sample No. 2 containing no heteropoly compound was produced in exactly the same manner as in Example 2, except that tungstosilicic acid and trihydrogen 12-tungstophosphate were not added. Example 3 For a honeycomb carrier 1 similar to Example 1,
Prepare an aqueous solution consisting of a dinitrodiaminoplatinum nitrate solution containing 1.1 g of Pt, a nitrodiamino rhodium nitrate solution containing 0.1 g of Rh, and cystine in an amount of 0.3 times the weight of the total amount of Pt and Rh. - 0.5 to 2.0 g of cobalt 12-tungstophosphate (CO 1,5 PW 12 O 40 ) prepared from trihydrogen tungstophosphate and cobalt carbon was added. Catalyst samples No. 18 to 19 were produced in the same manner as in Example 1 using this impregnating liquid. Comparative Example 3 Comparative catalyst sample No. 3 containing no heteropoly compound was produced in exactly the same manner as in Example 3, except that cobalt 12-tungstophosphate was not added. Example 4 For a honeycomb carrier 1 similar to Example 1,
An impregnation solution containing 0.2 to 4 grams of 12-tungstotrihydrogen phosphate was prepared. A honeycomb carrier was impregnated with this impregnating liquid at 30 to 40°C and dried. Using this carrier, catalyst samples Nos. 20 to 22 were produced in the same manner as in Example 3 except that cobalt 12-tungstophosphate was not added. Test Example Regarding the catalyst samples produced in Examples and Comparative Examples, the catalytic activity of the new catalyst and the catalyst after durability heat treatment at 950° C. for 10 hours in air were evaluated. The test conditions are as follows, and the test results are shown in Table 1. Catalyst performance test conditions (1) Gas composition (volume basis) CO: 1.0% C 3 H 6 : 1000ppm H 2 : 0.33% CO 2 : 10% O 2 : Fluctuation H 2 O: 10% NO: 4000ppm N 2 : Balance (2) Space velocity: 150000/Hr (3) Measurement method Average purification rate of A/F = 14.5 to 15.0

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 (イ) パラジウム、白金及びロジウムからなる
群から選ばれた白金族元素の可溶性塩の少なく
とも一種、 (ロ) H3PMo12O40、H3PW12O40、H4SiMo12O40
H4SiW12O40及びこれらの化合物中の水素原子
が他の陽イオンで置換されている化合物からな
る群から選ばれたヘテロポリ化合物の少なくと
も一種、及び、 (ハ) 少なくとも一個の多重結合を有する窒素原子
又はアミノ基を含む有機窒素化合物の少なくと
も一種 を耐火性担体に含浸担持させ、その後仮焼するこ
とを特徴とする排ガス浄化用触媒の製造方法。
[Claims] 1. (a) At least one soluble salt of a platinum group element selected from the group consisting of palladium, platinum, and rhodium; (b) H 3 PMo 12 O 40 , H 3 PW 12 O 40 , H 4SiMo12O40 , _
At least one heteropoly compound selected from the group consisting of H 4 SiW 12 O 40 and compounds in which the hydrogen atom in these compounds is replaced with another cation, and (c) having at least one multiple bond. 1. A method for producing a catalyst for exhaust gas purification, which comprises impregnating and supporting at least one organic nitrogen compound containing a nitrogen atom or an amino group on a refractory carrier, followed by calcining.
JP57001849A 1982-01-11 1982-01-11 Catalyst for purifying exhaust gas Granted JPS58119343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57001849A JPS58119343A (en) 1982-01-11 1982-01-11 Catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57001849A JPS58119343A (en) 1982-01-11 1982-01-11 Catalyst for purifying exhaust gas

Publications (2)

Publication Number Publication Date
JPS58119343A JPS58119343A (en) 1983-07-15
JPH0312933B2 true JPH0312933B2 (en) 1991-02-21

Family

ID=11512994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57001849A Granted JPS58119343A (en) 1982-01-11 1982-01-11 Catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS58119343A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218140A (en) * 1988-08-02 1993-06-08 Union Carbide Chemicals & Plastics Technology Corporation Carbonylation reaction and catalyst therefor
EP0783469B1 (en) * 1994-09-29 1998-07-01 E.I. Du Pont De Nemours And Company Device for abating carbon monoxide in airbags
JP5002807B2 (en) * 2006-03-06 2012-08-15 国立大学法人鳥取大学 Novel nitrogen oxide reduction catalyst and nitrogen oxide reduction removal method
FR2915688B1 (en) * 2007-05-04 2012-01-27 Peugeot Citroen Automobiles Sa NOX STORAGE CATALYST COMPOSITION FOR NOx EMISSION TREATMENT SYSTEM USING PERIODIC NH3 REGENERATION EXHAUST
JP6268601B2 (en) * 2013-07-26 2018-01-31 スズキ株式会社 Method for producing exhaust gas purification catalyst
WO2016136969A1 (en) * 2015-02-27 2016-09-01 国立大学法人九州大学 Method for producing carrier for fine particles of late transition metal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229525A (en) * 1975-08-30 1977-03-05 Kali Chemie Ag Method of purifying automobile exhaust gas
JPS5393192A (en) * 1977-01-27 1978-08-15 Toyota Motor Corp Purification catalyst for exhaust gas from internal combustion engine
JPS57184439A (en) * 1981-01-20 1982-11-13 Johnson Matthey Co Ltd Three-way catalyst for purifying exhaust gas and its manufacture and exhaust gas system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229525A (en) * 1975-08-30 1977-03-05 Kali Chemie Ag Method of purifying automobile exhaust gas
JPS5393192A (en) * 1977-01-27 1978-08-15 Toyota Motor Corp Purification catalyst for exhaust gas from internal combustion engine
JPS57184439A (en) * 1981-01-20 1982-11-13 Johnson Matthey Co Ltd Three-way catalyst for purifying exhaust gas and its manufacture and exhaust gas system

Also Published As

Publication number Publication date
JPS58119343A (en) 1983-07-15

Similar Documents

Publication Publication Date Title
US4091072A (en) Exhaust gas conversion process and catalyst
JP2529739B2 (en) Exhaust gas purification catalyst and method
JPS59127649A (en) Catalyst for purifying exhaust gas
US4005177A (en) Catalytic treatment of automotive exhaust gas
JPH0312936B2 (en)
JPH0312933B2 (en)
JPH0775735A (en) High temperature resistant catalyst carrier
JPH07144134A (en) Catalyst for purifying exhaust gas
JPS63175640A (en) Catalyst carrier
JPH08150336A (en) Waste gas purification material and method for purifying waste gas
JPS62254843A (en) Catalyst carrier
JPH0871424A (en) Catalyst for purification of exhaust gas
JPH057778A (en) Manufacture of exhaust gas purification catalyst
JPH0549940A (en) Exhaust gas purifying device
JP3219815B2 (en) Exhaust gas purification catalyst
JPS6158223B2 (en)
JP3306932B2 (en) Exhaust gas purification method
JPS62250947A (en) Catalyst for simultaneous treatment of nitrogen oxide and carbon monoxide
JPH08168650A (en) Material and method for purifying exhaust gas
JPH08173815A (en) Catalyst for purification of exhaust gas
JPH04219143A (en) Exhaust gas purification catalyst
JPH04219146A (en) Exhaust gas purification catalyst
JP3149665B2 (en) Method for producing catalyst carrier
JPH05103949A (en) Catalyst for removal of nitrogen oxide and method for removing nitrogen oxide with the same
JPH05168943A (en) Exhaust gas purifying catalyst