JP5002807B2 - Novel nitrogen oxide reduction catalyst and nitrogen oxide reduction removal method - Google Patents

Novel nitrogen oxide reduction catalyst and nitrogen oxide reduction removal method Download PDF

Info

Publication number
JP5002807B2
JP5002807B2 JP2006059571A JP2006059571A JP5002807B2 JP 5002807 B2 JP5002807 B2 JP 5002807B2 JP 2006059571 A JP2006059571 A JP 2006059571A JP 2006059571 A JP2006059571 A JP 2006059571A JP 5002807 B2 JP5002807 B2 JP 5002807B2
Authority
JP
Japan
Prior art keywords
sio
hpw
catalyst
zsm
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006059571A
Other languages
Japanese (ja)
Other versions
JP2007237018A (en
Inventor
亮介 吉本
崇 二宮
和 奥村
幹 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tottori University
Original Assignee
Tottori University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tottori University filed Critical Tottori University
Priority to JP2006059571A priority Critical patent/JP5002807B2/en
Publication of JP2007237018A publication Critical patent/JP2007237018A/en
Application granted granted Critical
Publication of JP5002807B2 publication Critical patent/JP5002807B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、トルエンを還元剤とでき、酸素・水蒸気共存下での窒素酸化物還元反応に高い活性を示す触媒に関する。   The present invention relates to a catalyst capable of using toluene as a reducing agent and exhibiting high activity in a nitrogen oxide reduction reaction in the presence of oxygen and water vapor.

炭化水素を還元剤とする酸素・水蒸気共存下での窒素酸化物(NO)の還元は燃焼排気中の浄化のために広く研究されている。困難であった内燃機関のリーンバーン(酸素過剰)領域での選択還元(SCR)に有効な触媒も開発されている。 Reduction of nitrogen oxides (NO x ) in the presence of oxygen and water vapor using hydrocarbon as a reducing agent has been widely studied for purification in combustion exhaust. An effective catalyst for selective reduction (SCR) in a lean burn (oxygen-excess) region of an internal combustion engine, which has been difficult, has also been developed.

トルエンは、溶剤などに由来して工場などの排気あるいは内燃機関の排気に含まれることも多い。Pt/AlやPt/SiOを触媒としてトルエンを還元剤とした場合の結果が公表されているが(例えば、非特許文献1)、性能の高いものではなかった。また、排気中に多く含まれるトルエンを還元剤としたとき(例えば、非特許文献2)には523 K(250℃)程度の低温で充分な活性を示す触媒は見出されていない。 Toluene is often derived from solvents or the like and contained in exhaust from factories or the like or exhaust from internal combustion engines. Although the results in the case of using Pt / Al 2 O 3 or Pt / SiO 2 as a catalyst and toluene as a reducing agent have been published (for example, Non-Patent Document 1), the performance was not high. Further, when toluene contained in the exhaust gas is used as a reducing agent (for example, Non-Patent Document 2), no catalyst showing sufficient activity at a low temperature of about 523 K (250 ° C.) has been found.

トルエンによってNOを低温で還元できる触媒が見出されれば、幅広く応用でき、例えば、内燃機関のコールドスタート時に触媒が完全に暖められる前に到達したNOを、コールドスタート時に多く排出されるトルエンを用いて還元除去するシステムなどが実現すると期待される。 If a catalyst capable of reducing NO x with toluene at a low temperature is found, it can be widely applied. For example, NO x reached before the catalyst is completely warmed at the cold start of the internal combustion engine, It is expected that a reduction and removal system will be realized.

なお、本発明の触媒の一要素として下記実施例等で使用しているPd/HPW/SiOはメタンを還元剤としたときにはPt/Alなどより非常に高い活性を示すNO還元触媒であることが知られている(特許文献1)。
特開2005−230736号公報 R.Burch, D. Ottery, Appl. Catal. B, 13, 105 (1997) N.R.Burke, D.L. Trimm and R.F.Howe, Appl. Catal. B, 46, 97 (2003)
Note that Pd / HPW / SiO 2 used as an element of the catalyst of the present invention in the following examples and the like is a NO reduction catalyst that exhibits a much higher activity than Pt / Al 2 O 3 or the like when methane is used as a reducing agent. (Patent Document 1).
JP 2005-230736 A R. Burch, D. Ottery, Appl. Catal. B, 13, 105 (1997) NRBurke, DL Trimm and RFHowe, Appl. Catal. B, 46, 97 (2003)

本発明は上記事情に鑑みなされたものであり、低温でトルエンを還元剤としてNOを除去することが可能な触媒、および該触媒を使用した窒素酸化物還元除去方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and aims to provide a nitrogen oxide reduction removal method using the catalyst capable, and the catalyst to remove the NO x toluene at low temperature as a reducing agent To do.

本発明は、低温でトルエンを還元剤としてNOを除去することが可能な触媒として、Pdをどちらか一方または両者に担持した、多孔質シリカ担持ヘテロポリ酸とゼオライトとを混合してなる窒素酸化物還元触媒に関する。 The present invention, as a catalyst capable of removing NO x toluene at low temperature as a reducing agent, was supported Pd on either or both nitrogen oxide obtained by mixing and the zeolite porous silica supported heteropolyacid The present invention relates to a product reduction catalyst.

まず、Pdを担持した多孔質シリカ担持ヘテロポリ酸(以下、「Pd/ヘテロポリ酸/SiO」と表す)について説明する。 First, a porous silica-supported heteropolyacid supporting Pd (hereinafter referred to as “Pd / heteropolyacid / SiO 2 ”) will be described.

前記多孔質シリカは、ヘテロポリ酸を含有させ、かつパラジウムを担持させるために、例えば比表面積が100m/g以上、好ましくは150m/g以上あり、細孔容積が0.5cm/g以上であるものを使用するようにする。このような多孔質シリカとしては、例えば日揮化学社製のN−602A(比表面積が290m/g、細孔容積が0.8cm/g)が入手可能である。多孔質シリカの形状は、粒状、ペレット状、ハニカム状などの任意の形状でよい。 The porous silica contains a heteropolyacid and supports palladium, for example, has a specific surface area of 100 m 2 / g or more, preferably 150 m 2 / g or more, and a pore volume of 0.5 cm 3 / g or more. Try to use what is. As such porous silica, for example, N-602A (specific surface area of 290 m 2 / g, pore volume of 0.8 cm 3 / g) manufactured by JGC Chemical Co., Ltd. is available. The shape of the porous silica may be any shape such as a granular shape, a pellet shape, or a honeycomb shape.

ヘテロポリ酸としては、バナジウム酸、モリブデン酸、タングステン酸のような無機オキソ酸を含む種々のものを用いることができるが、例えばHSiW1240,HPMo1240またはHPW1240が好ましい。より好ましくはHPMo1240またはHPW1240、最も好ましくはHPW1240(以下、「HPW」と略す)である。 Various heteropolyacids including inorganic oxo acids such as vanadium acid, molybdic acid and tungstic acid can be used. For example, H 4 SiW 12 O 40 , H 3 PMo 12 O 40 or H 3 PW 12 can be used. O 40 is preferred. More preferred is H 3 PMo 12 O 40 or H 3 PW 12 O 40 , and most preferred is H 3 PW 12 O 40 (hereinafter abbreviated as “HPW”).

ヘテロポリ酸は、ヘテロポリ酸/(ヘテロポリ酸+多孔質シリカ)重量比0.2〜0.4の範囲で多孔質シリカに含有させるようにする。   The heteropolyacid is contained in the porous silica at a heteropolyacid / (heteropolyacid + porous silica) weight ratio in the range of 0.2 to 0.4.

パラジウムは、パラジウム/(パラジウム+ヘテロポリ酸含有多孔質シリカ)重量比0.001〜0.1、好ましくは0.002〜0.02の範囲でヘテロポリ酸含有多孔質シリカに担持されるように調整し使用する。   The palladium is adjusted to be supported on the heteropolyacid-containing porous silica in a palladium / (palladium + heteropolyacid-containing porous silica) weight ratio of 0.001 to 0.1, preferably 0.002 to 0.02. And use.

Pd/ヘテロポリ酸/SiOは、例えば次のような方法により製造することができる。Pdを担持させないでヘテロポリ酸/SiOとして使用する場合は、下記のPd担持工程を行なう前のヘテロポリ酸/SiOを使用すればよい。 Pd / heteropolyacid / SiO 2 can be produced, for example, by the following method. When used as a heteropoly acid / SiO 2 is not carrying Pd, it is sufficient to use a heteropoly acid / SiO 2 prior to the Pd loading step follows.

多孔質シリカをヘテロポリ酸の水またはアルコール溶液に浸漬して、その多孔質シリカの気孔にヘテロポリ酸の溶液を含浸させた後、加熱して溶媒を揮散させる。これにより、多孔質シリカにヘテロポリ酸が含有される。このヘテロポリ酸含有多孔質シリカを、酢酸パラジウムのトルエン溶液に浸漬し、その多孔質シリカの気孔に酢酸パラジウムのトルエン溶液を含浸させる。その後、加熱してトルエンの揮散、酢酸パラジウムの分解を行うことにより、ヘテロポリ酸含有多孔質シリカにパラジウムを担持させることができる。酢酸パラジウムの他に、硝酸パラジウム、塩化パラジウム、塩化テトラアミンパラジウムを用いてもよい。なお、パラジウムの担持量は、酢酸パラジウム、硝酸パラジウム、塩化パラジウムまたは塩化テトラアミンパラジウムの量を変えることにより調整可能である。   The porous silica is immersed in a water or alcohol solution of the heteropolyacid, the pores of the porous silica are impregnated with the heteropolyacid solution, and then heated to volatilize the solvent. Thereby, heteropoly acid is contained in the porous silica. This heteropolyacid-containing porous silica is immersed in a toluene solution of palladium acetate, and the pores of the porous silica are impregnated with the toluene solution of palladium acetate. Subsequently, palladium can be supported on the heteropolyacid-containing porous silica by heating to volatilize toluene and decompose palladium acetate. In addition to palladium acetate, palladium nitrate, palladium chloride, and tetraamine palladium chloride may be used. The amount of palladium supported can be adjusted by changing the amount of palladium acetate, palladium nitrate, palladium chloride or tetraamine palladium.

次に、Pdを担持したゼオライトについて説明する。
ゼオライトは、M2/n・T・xSiOと一般に表記される結晶性シリケートである。ここで、Tはゼオライト骨格中の元素で、アルミニウム、鉄、ホウ素等の3価の金属が一般的であり、また、xは通常2以上の整数である。ゼオライトは、TO四面体とSiO四面体がO/(Si+T)比が2となるように、酸素原子を介して規則正しく三次元的に配列した結晶性化合物である。Tが3価のカチオンであるためTOは負電荷を帯び、このためこの負電荷を中和するために正の電荷をもつMが必要となる。したがって、Mはゼオライトの骨格構造を維持するためにはカチオン種でありさえすればよく、プロトン、アルカリ金属、アルカリ土類金属が一般的である。nはMが1価のカチオンであれば1であり、2価、3価のカチオンであればそれぞれ2、3となる。このようにゼオライトの基本構造は、TO,SiO四面体からなるものであり、Mはイオン交換することができる。
Next, the zeolite carrying Pd will be described.
Zeolites are crystalline silicates, denoted in M 2 / n · T 2 O 3 · xSiO 2 generally. Here, T is an element in the zeolite skeleton, and is generally a trivalent metal such as aluminum, iron, or boron, and x is usually an integer of 2 or more. Zeolite is a crystalline compound in which a TO 4 tetrahedron and a SiO 4 tetrahedron are regularly and three-dimensionally arranged through oxygen atoms so that the O / (Si + T) ratio is 2. Since T is a trivalent cation, TO 4 is negatively charged, and therefore M with a positive charge is required to neutralize this negative charge. Therefore, M only needs to be a cationic species in order to maintain the framework structure of the zeolite, and protons, alkali metals, and alkaline earth metals are generally used. n is 1 if M is a monovalent cation, and 2 or 3 if M is a divalent or trivalent cation. Thus, the basic structure of zeolite consists of TO 4 and SiO 4 tetrahedrons, and M can be ion-exchanged.

本発明においては、Mがアルカリ金属、好ましくはリチウム、ナトリウム、セシウム、より好ましくは、リチウム、ナトリウム、最も好ましくはナトリウムであるゼオライトを用いるようにする。Tやxには特に制限はない。用いるゼオライトの結晶構造に特に制限はなく、MFI型、MOR型、BEA型、FAU型いずれでもよいが、MFI型、MOR型、BEA型、FAU型の順に好ましい。なお、天然ゼオライトとして知られているものの中には合成することができるものもあるが、合成されたものが使用できることは言うまでもない。また、ゼオライトは一般にアルカリ型ゼオライトとして入手されるため、本発明においては、そのまま用いてもまた所望のアルカリカチオンにイオン交換して用いても良い。   In the present invention, a zeolite in which M is an alkali metal, preferably lithium, sodium, cesium, more preferably lithium, sodium, most preferably sodium is used. There is no particular limitation on T and x. The crystal structure of the zeolite to be used is not particularly limited, and any of MFI type, MOR type, BEA type, and FAU type may be used, but MFI type, MOR type, BEA type, and FAU type are preferable in this order. Of course, some known as natural zeolites can be synthesized, but it goes without saying that those synthesized can be used. In addition, since zeolite is generally obtained as an alkaline zeolite, in the present invention, it may be used as it is or after ion exchange with a desired alkali cation.

特に、Mがアルカリ金属であるアルカリゼオライト、好ましくはアルカリMFI型ゼオライト、より好ましくはNaまたはLiMFI型ゼオライト、最も好ましくはNaMFI型ゼオライトが好適に使用できる。   In particular, an alkali zeolite in which M is an alkali metal, preferably an alkali MFI type zeolite, more preferably an Na or LiMFI type zeolite, and most preferably an NaMFI type zeolite can be suitably used.

上記のようなゼオライトに、Pdを担持するには、従来知られている方法を使用すればよく、例えば、ゼオライトに相当量の塩化テトラアンミンパラジウムを含む水溶液を含浸後、室温で乾燥させる方法、また、相当量の塩化テトラアンミンパラジウムを含む水溶液中で攪拌後、濾過して得られた固体を乾燥させるイオン交換法等の方法を適用すればよい。   In order to support Pd on the zeolite as described above, a conventionally known method may be used. For example, after impregnating the zeolite with an aqueous solution containing a considerable amount of tetraamminepalladium chloride, drying at room temperature, A method such as an ion exchange method for drying a solid obtained by filtration after stirring in an aqueous solution containing a considerable amount of tetraamminepalladium chloride may be applied.

パラジウムの担持量は、塩化テトラアンミンパラジウムの量を変えることにより0.1〜5重量%の範囲で調整可能である。   The amount of palladium supported can be adjusted in the range of 0.1 to 5% by weight by changing the amount of tetraamminepalladium chloride.

本発明の触媒は、Pdをどちらか一方または両者に担持した、多孔質シリカ担持ヘテロポリ酸とゼオライトとを混合してなる。以下、単に「本発明の混合触媒」ということもある。
例えば、Pd/ヘテロポリ酸/SiOとゼオライトの混合は、単に両者を混合し、軽く振り混ぜるだけでもよいが、適度に粉砕混合を行うことが好ましい。例えば、乳鉢を使用して、両者を混合粉砕する場合、長時間粉砕混合を行うと、かえって触媒活性が低下することが解っている。Pd/ヘテロポリ酸/SiOとPd担持ゼオライトの混合、ヘテロポリ酸/SiOとPd担持ゼオライトの混合の場合も同様である。
The catalyst of the present invention is formed by mixing porous silica-supported heteropolyacid supporting zeolite on either or both and zeolite. Hereinafter, it may be simply referred to as “mixed catalyst of the present invention”.
For example, Pd / heteropolyacid / SiO 2 and zeolite may be mixed by simply mixing them and shaking lightly, but it is preferable to carry out moderate mixing. For example, when mixing and pulverizing both using a mortar, it is known that the catalytic activity is lowered when pulverized and mixed for a long time. The same applies to a mixture of Pd / heteropolyacid / SiO 2 and Pd-supported zeolite, and a mixture of heteropolyacid / SiO 2 and Pd-supported zeolite.

Pdをどちらか一方または両者に担持したヘテロポリ酸/SiOとゼオライトの混合は、ヘテロポリ酸/SiOの1に対してゼオライトを1(重量比)程度混合することで十分である。ゼオライトを、それ以上添加することを制限するものではないが、触媒活性の向上は添加に見合う活性向上が期待できず、体積が増加するのみである。ゼオライトの添加量が1(重量比)程度より低くなればなるほど、活性も低くなるので、理想的には1:1(重量比)程度である。 Mixing of the heteropolyacid / SiO 2 and zeolite carrying Pd on either or both is sufficient by mixing about 1 (weight ratio) of zeolite to 1 of heteropolyacid / SiO 2 . Although it is not limited to add more zeolite, the improvement of the catalytic activity cannot be expected to increase the activity commensurate with the addition, and only the volume is increased. As the amount of zeolite added becomes lower than about 1 (weight ratio), the activity becomes lower, so ideally it is about 1: 1 (weight ratio).

「Pdをどちらか一方または両者に担持した、ヘテロポリ酸/SiOとゼオライトとを混合する」とは、混合前に、所定量のPdをヘテロポリ酸/SiOあるいはゼオライトまたはその両者に担持させておいて、その両者を混合すればよいということである。 “Mixing heteropoly acid / SiO 2 and zeolite carrying Pd on either or both” means that a predetermined amount of Pd is supported on heteropoly acid / SiO 2 or zeolite or both before mixing. In other words, it is only necessary to mix the two.

混合を、粉砕を加えずに単に振り混ぜる程度の混合条件では、ゼオライト側にPdの所定量の50〜80重量%を担持させたものと、残りのPdを担持させたPd/ヘテロポリ酸/SiOとを混合することが好ましい傾向にあるが、例えば乳鉢を使用するような粉砕混合方法を採る場合は、Pdをどちらかの担体に特定量予め担持させておいた方がよい、といった条件は特にない。 Under mixing conditions such that the mixture is simply shaken without adding pulverization, 50 to 80% by weight of a predetermined amount of Pd is supported on the zeolite side, and Pd / heteropolyacid / SiO 2 on which the remaining Pd is supported. While mixing the 2 tends to be preferable, for example when taking a pulverizing mixing method such as using a mortar, it is better to leave a certain amount was previously supported on either carrier Pd, conditions such is Not particularly.

Pdの担持量は、混合してなる本発明の混合触媒の全量に対して約0.5重量%以上の量となるように、Pdをヘテロポリ酸/SiOまたはゼオライトのどちらか一方または両者に担持させるようにする。上限は特に制限するものではないが、増加分に見合う活性の向上は見られず、また、Pdは高価であることから、その使用量は少ないほど望ましい。 Loading amount of Pd, so that the amount of from about 0.5 wt% or more based on the total amount of the mixed catalyst of the present invention obtained by mixing a Pd on either or both of the heteropoly acid / SiO 2 or zeolites Make it carry. The upper limit is not particularly limited, but the improvement in activity commensurate with the increase is not observed, and Pd is expensive, so the smaller the amount used, the better.

本発明の混合触媒は、トルエンを還元剤として、Pd/ヘテロポリ酸/SiO単独の場合と比較して、非常に高いNO還元活性を示し、しかもその活性を示す温度が500〜580K程度と低い。従来知られているPt/Alに比べても高い活性を示す。 Mixed catalyst of the present invention, as a reducing agent to toluene, as compared with the case of the Pd / heteropolyacid / SiO 2 alone, showed very high NO X reduction activity, yet the temperature is about 500~580K showing its activity Low. The activity is higher than that of conventionally known Pt / Al 2 O 3 .

(1)触媒の調製
メタノール中でHPW(和光純薬製)の重量比(HPW/(HPW+SiO))が30 重量%となるように、含浸法によってHPWをSiO(日揮化学製;N602−A)に担持後、該担持体を393Kで一晩乾燥させた。
(1) Preparation of catalyst HPW was converted to SiO 2 (manufactured by JGC Chemical; N602-) by an impregnation method so that the weight ratio (HPW / (HPW + SiO 2 )) of HPW (manufactured by Wako Pure Chemical Industries) in methanol was 30% by weight. After loading on A), the support was dried overnight at 393K.

得られた担持体を、Pd(AcO)(和光純薬製)のトルエン溶液に、重量比(Pd/(Pd+HPW+SiO)が1重量%となるように、含浸させ、393Kで一夜乾燥させ、Pd/HPW/SiO触媒を得た。 The obtained support was impregnated with a toluene solution of Pd (AcO) 2 (manufactured by Wako Pure Chemical Industries, Ltd.) so that the weight ratio (Pd / (Pd + HPW + SiO 2 ) was 1% by weight, and dried at 393 K overnight. A Pd / HPW / SiO 2 catalyst was obtained.

上記で得られたPd/HPW/SiO触媒をゼオライト(商品名HSZ−820NAA;東ソー株式会社製)と混合してめのう乳鉢を用いて粉砕、攪拌した。 The Pd / HPW / SiO 2 catalyst obtained above was mixed with zeolite (trade name HSZ-820NAA; manufactured by Tosoh Corporation), and pulverized and stirred using an agate mortar.

(2)活性の測定
標準的には得られた触媒0.2gを反応管に入れ、NO 500mol ppm(0.05mol%)、トルエン700mol ppm(0.07mol%)、O 5mol%,HO 10mol%を含むHe(残り)気流(常圧、全流速200cm min−1)を流通させ、所定の反応温度で出口気体の組成を分析した。
(2) Measurement of activity Typically, 0.2 g of the obtained catalyst is put into a reaction tube, NO 500 mol ppm (0.05 mol%), toluene 700 mol ppm (0.07 mol%), O 2 5 mol%, H 2. A He (remaining) air flow (normal pressure, total flow rate 200 cm 3 min −1 ) containing 10 mol% of O was circulated, and the composition of the outlet gas was analyzed at a predetermined reaction temperature.

なお、HOを導入するのは燃焼排気などの実用条件に近づけるためである。NOの定量にはNO計(堀場CLA−510SS)を用い、トルエン、CO、Nの定量にはTCD(熱伝導度検出器)式ガスクロマトグラフ(日立163)を用いた。通常の手順では前処理なしで気体を流通させ、所定の温度まで昇温し、その温度に達してから数時間経過して転化率・収率が安定した時点の値を評価した。 The reason why H 2 O is introduced is to bring it closer to practical conditions such as combustion exhaust. NO meter (Horiba CLA-510SS) used for the quantification of NO, toluene, the determination of CO 2, N 2 was used TCD (thermal conductivity detector) type gas chromatograph (Hitachi 163). In a normal procedure, gas was circulated without pretreatment, the temperature was raised to a predetermined temperature, and the value at the time when the conversion rate and yield were stabilized after several hours from reaching that temperature was evaluated.

結果を、NO転化率、N収率、トルエン転化率で示した。
NO転化率 = 1−出口NO濃度/入口NO濃度;
収率 = 出口N濃度/入口NO濃度;
トルエン転化率 = 1−出口トルエン濃度/入口トルエン濃度
The results are shown as NO conversion rate, N 2 yield, and toluene conversion rate.
NO conversion rate = 1-outlet NO concentration / inlet NO concentration;
N 2 yield = outlet N 2 concentration / inlet NO concentration;
Toluene conversion rate = 1-outlet toluene concentration / inlet toluene concentration

目的反応が100%選択的に進行した場合、N収率はNO転化率の1/2となるはずである。ただし実際にはNの定量には若干の誤差があるので参考程度の値である。また目的反応の選択率が高く、副反応(トルエンの酸素による燃焼)の進行が遅いほど、トルエン転化率/NO転化率が低いはずなので、この数値が選択性の指標である。ただし化学反応式(トルエン分子中の7つの炭素原子と9つの水素原子のうち最大いくつがNOの還元に関わるか)が確立されていないので、数値を元に選択率を決定することはできない。 If the target reaction proceeds 100% selectively, the N 2 yield should be 1/2 of the NO conversion. However, in actuality, there is a slight error in the quantification of N 2 , so it is a reference value. Further, the higher the selectivity of the target reaction and the slower the side reaction (toluene combustion with oxygen), the lower the toluene conversion / NO conversion, so this number is an index of selectivity. However, since the chemical reaction formula (the maximum number of 7 carbon atoms and 9 hydrogen atoms in the toluene molecule involved in the reduction of NO) has not been established, the selectivity cannot be determined based on the numerical values.

(3)Pd/HPW/SiO触媒単独の場合の触媒活性
Pd/HPW/SiO(Pd1重量%)を0.1g反応管に入れ、その他の条件は上記(2)活性の測定に記載した条件と同様に測定を行った。結果を図1に示した。
(3) Catalytic activity in the case of Pd / HPW / SiO 2 catalyst alone Pd / HPW / SiO 2 (Pd 1 wt%) was put in a 0.1 g reaction tube, and other conditions were described in (2) Measurement of activity above. Measurements were performed in the same manner as the conditions. The results are shown in FIG.

473以上でNOの転化が見られ、573Kまでは反応速度が増加した。573Kで最大のNO転化率34%が得られ、このときトルエン転化率はほぼ100%に達した。さらに温度が上がるとトルエン転化率は高く保たれたままNO転化率が低下し、トルエンが燃焼する副反応が主となっていることがわかる。N収率は反応温度によらずNO転化率の半分程度で、NOがNに量論的に転化されたことがわかる。このようにPd/HPW/SiO単独でも活性を示す。 Conversion of NO was observed at 473 or higher, and the reaction rate increased up to 573K. The maximum NO conversion of 34% was obtained at 573 K, and the toluene conversion reached almost 100%. It can be seen that when the temperature further increases, the NO conversion rate decreases while the toluene conversion rate is kept high, and the side reaction in which toluene burns is the main. The N 2 yield is about half of the NO conversion rate regardless of the reaction temperature, and it can be seen that NO was stoichiometrically converted to N 2 . Thus, Pd / HPW / SiO 2 alone exhibits activity.

(4)Pt/Al触媒単独の場合の触媒活性
Pt/Alを0.1g反応管に入れ、その他の条件は上記(2)活性の測定に記載した条件と同様に測定を行った。結果を図2に示した。
図1と図2を比較すると、Pd/HPW/SiOとPt/Alの両者は、473〜573Kでは同じレベルの活性、より高温ではPt/Alの方が高い選択性を示した。これらの触媒は同じ重量のPtあるいはPdを含んでおり、これら貴金属が触媒コストのほとんどを占める。PtよりPdの方が安価なので経済的に有利ではあるが、以上の結果からは、Pd/HPW/SiOの方がPt/Alより高性能であるとは言い難い。
(4) Catalytic activity in the case of Pt / Al 2 O 3 catalyst alone Pt / Al 2 O 3 was put in a 0.1 g reaction tube, and other conditions were measured in the same manner as described in (2) Activity measurement above. Went. The results are shown in FIG.
Comparing FIG. 1 and FIG. 2, both Pd / HPW / SiO 2 and Pt / Al 2 O 3 have the same level of activity at 473-573 K, and higher selectivity at higher temperatures for Pt / Al 2 O 3 . showed that. These catalysts contain the same weight of Pt or Pd, and these noble metals account for most of the catalyst cost. Although Pd is cheaper than Pt, it is economically advantageous, but from the above results, it is difficult to say that Pd / HPW / SiO 2 has higher performance than Pt / Al 2 O 3 .

(5)Pd/HPW/SiOおよびNa−ZSM−5との混合触媒活性(混合時間の影響)
Pd/HPW/SiO(Pd1重量%)0.1gにNa−ZSM−5 0.1gを加え、乳鉢で粉砕・混合した後の523,573KでのNO転化率を図3に示す。図中にはPd/HPW/SiOのみの活性を矢印で示し、混合時間0は乳鉢を用いず、Pd/HPW/SiOとNa−ZSM−5粉末を反応管に入れて軽く振り混ぜた後の結果を示している。
(5) Mixed catalyst activity with Pd / HPW / SiO 2 and Na-ZSM-5 (effect of mixing time)
FIG. 3 shows the NO conversion rate at 523 and 573 K after adding 0.1 g of Na-ZSM-5 to 0.1 g of Pd / HPW / SiO 2 (Pd 1 wt%) and grinding and mixing in a mortar. In the figure, the activity of only Pd / HPW / SiO 2 is indicated by an arrow. When the mixing time is 0, a mortar is not used, and Pd / HPW / SiO 2 and Na-ZSM-5 powder are put in a reaction tube and lightly mixed. Later results are shown.

Pd/HPW/SiOとNa−ZSM−5を軽く振り混ぜただけでもPd/HPW/SiOのみの場合と比べて活性は少し向上しているが、5〜60分間乳鉢で混合すると活性が著しく向上した。混合時間が長すぎると活性は低下した。この混合は手作業で行っており、時間そのものには特段の物理的意味はなく、適度に混合すると高い活性が得られることを示していると考えられる。 Even if lightly mixing Pd / HPW / SiO 2 and Na-ZSM-5, the activity is slightly improved compared to the case of only Pd / HPW / SiO 2, but the activity is improved when mixed in a mortar for 5 to 60 minutes. Remarkably improved. The activity decreased when the mixing time was too long. This mixing is performed manually, and the time itself has no particular physical meaning, and it is considered that high activity can be obtained when mixing properly.

(6)Pd/HPW/SiOとNa−ZSM−5との混合触媒活性の温度依存性
Pd/HPW/SiO(Pd1重量%)0.1gにNa−ZSM−5 0.1gを加え30分間乳鉢で混合した混合触媒の転化率・収率の温度依存性を図4に示す。
(6) Pd / HPW / SiO 2 and Na-ZSM-5 Temperature dependence of the mixed catalytic activity of Pd / HPW / SiO 2 (Pd1 wt%) 30 added Na-ZSM-5 0.1g to 0.1g FIG. 4 shows the temperature dependence of the conversion rate and yield of the mixed catalyst mixed in the mortar for 5 minutes.

低温の523KでPd/HPW/SiO 0.1gだけの場合(図1)に比べて非常に高い転化率・収率が得られた。従来知られているPt/Al(図2)に比べても高い活性を示した。またN収率はNO転化率のほぼ半分で、NOが量論的にNに転化されていることがわかった。 Compared to the case of only 0.1 g of Pd / HPW / SiO 2 at a low temperature of 523 K (FIG. 1), a very high conversion rate and yield were obtained. The activity was higher than that of conventionally known Pt / Al 2 O 3 (FIG. 2). The N 2 yield was almost half of the NO conversion rate, and it was found that NO was stoichiometrically converted to N 2 .

(7)Pd/HPW/SiOとNa−ZSM−5との混合触媒活性のNa−ZSM−5の添加量依存性
Pd/HPW/SiO(Pd1重量%)の量を0.1gに固定し、Na−ZSM−5の添加量を変えた場合の触媒活性を測定(523K,573K)した。なお、このときの、混合時間は5分間である。結果を図5に示した。
(7) Dependence of mixed catalyst activity of Pd / HPW / SiO 2 and Na-ZSM-5 on the amount of Na-ZSM-5 added Pd / HPW / SiO 2 (Pd 1 wt%) fixed at 0.1 g Then, the catalytic activity when the amount of Na-ZSM-5 added was changed (523K, 573K) was measured. In this case, the mixing time is 5 minutes. The results are shown in FIG.

図5に示されているように、Na−ZSM−5の添加量が0.1gまでは、転化率が向上し、それ以上加えてもあまり変化がなかった。Na−ZSM−5を0.1g以上(言い換えるとNa−ZSM−5 : Pd/HPW/SiO重量比1以上)添加量を増しても反応速度は向上せず、Na−ZSM−5の製造に要するコストと触媒層の体積が増すばかりであるので、添加量としてはNa−ZSM−5:Pd/HPW/SiO重量比1が望ましいと言える。 As shown in FIG. 5, when the amount of Na-ZSM-5 added was up to 0.1 g, the conversion rate was improved, and there was not much change even when more was added. The reaction rate does not improve even when the amount of Na-ZSM-5 added is 0.1 g or more (in other words, Na-ZSM-5: Pd / HPW / SiO 2 weight ratio of 1 or more), and Na-ZSM-5 is produced. Therefore, it can be said that Na—ZSM-5: Pd / HPW / SiO 2 weight ratio of 1 is desirable as the amount of addition.

(8)Pd/HPW/SiOとNa−ZSM−5との混合触媒活性の混合比依存性
混合後の物質の体積当たりの触媒活性を評価する観点から、総重量を一定(0.2g)とし、Pd/HPW/SiO(Pd1重量%)とNa−ZSM−5の重量比を変えて、活性を測定した。結果を図6に示した。なお、この時の触媒調製混合時間は30分である。
(8) Mixing ratio dependency of mixed catalyst activity of Pd / HPW / SiO 2 and Na-ZSM-5 From the viewpoint of evaluating the catalytic activity per volume of the material after mixing, the total weight is constant (0.2 g) Then, the activity was measured by changing the weight ratio of Pd / HPW / SiO 2 (Pd 1 wt%) and Na-ZSM-5. The results are shown in FIG. The catalyst preparation and mixing time at this time is 30 minutes.

図6の左端の点はPd/HPW/SiOを0.2g用いた場合のNO転化率を示し、523Kにおいては0.1gの場合(図1)より高かった。しかしNa−ZSM−5を混合すると、貴金属成分であるPdを減らしているにもかかわらず活性は向上し、重量比0.5 : 0.5(等量)で最大の活性を示し、やがて減少した。以上から、Pd/HPW/SiOにNa−ZSM−5を混合すると触媒活性が向上することが明らかである。またNa−ZSM−5が多すぎると活性が低下したことから、Na−ZSM−5とPd/HPW/SiOの複合効果によって高い触媒活性が発現したことも明らかである。 The leftmost point in FIG. 6 shows the NO conversion when 0.2 g of Pd / HPW / SiO 2 was used, and was higher at 523 K than at 0.1 g (FIG. 1). However, when Na-ZSM-5 is mixed, the activity is improved despite the reduction of Pd, which is a noble metal component, and the maximum activity is shown at a weight ratio of 0.5: 0.5 (equal amount), and then decreases. did. From the above, it is apparent that the catalytic activity is improved when Na—ZSM-5 is mixed with Pd / HPW / SiO 2 . Also since the Na-ZSM-5 is too much activity decreased, it is clear that high catalytic activity by Na-ZSM-5 and Pd / HPW / SiO 2 composite effect was expressed.

(9)Pd/HPW/SiOとNa−ZSM−5との混合触媒活性の経時変化
Pd/HPW/SiO(Pd1重量%,0.1g)とNa−ZSM−5(0.1g)との混合触媒活性の523Kでの経時変化を評価した。結果を図7に示した。なお、この時の触媒調製混合時間は30分である。
(9) Time-dependent change of mixed catalyst activity of Pd / HPW / SiO 2 and Na—ZSM-5 Pd / HPW / SiO 2 (Pd 1 wt%, 0.1 g) and Na—ZSM-5 (0.1 g) The time-dependent change of the mixed catalyst activity at 523K was evaluated. The results are shown in FIG. The catalyst preparation and mixing time at this time is 30 minutes.

本発明の混合触媒は反応の初期に活性が向上し、その後少なくとも10時間程度は安定な活性を示した。   The activity of the mixed catalyst of the present invention was improved at the beginning of the reaction, and then showed stable activity for at least about 10 hours.

なお、図1〜図6に示されている結果は転化率・収率がほぼ安定した時間、すなわち200分付近のものを示している。   The results shown in FIG. 1 to FIG. 6 show the time when the conversion rate and yield are almost stable, that is, around 200 minutes.

(10)Pd/HPW/SiO+ゼオライト混合触媒活性のゼオライト結晶構造の影響
Pd/HPW/SiO(Pd1重量%,0.1g)と結晶構造の異なるNa型ゼオライト(MFI型、MOR型、BEA型、FAU型)(0.1g)との混合触媒の523K、573Kでの触媒活性を評価した。結果を図8に示した。なお、この時の触媒調製混合時間は5分である。
(10) Influence of zeolite crystal structure on Pd / HPW / SiO 2 + zeolite mixed catalyst activity Na type zeolite (MFI type, MOR type, Pd / HPW / SiO 2 (Pd 1 wt%, 0.1 g) and crystal structure different) The catalytic activity at 523K and 573K of the mixed catalyst with BEA type and FAU type (0.1 g) was evaluated. The results are shown in FIG. The catalyst preparation and mixing time at this time is 5 minutes.

図8に示されているように、Na型ゼオライトを加えるといずれも加えなかった場合(523KでNO転化率21%,573Kで34%(図1))より高活性を示した。   As shown in FIG. 8, when Na type zeolite was added, the activity was higher than when none was added (NO conversion 21% at 523K and 34% at 573K (FIG. 1)).

Na型の中ではMFI型(ZSM−5)を加えた場合が最も高活性を示し、続いてMOR,BEA,FAUの順に活性が強いことがわかる。   It can be seen that, among the Na types, the addition of MFI type (ZSM-5) shows the highest activity, followed by strong activity in the order of MOR, BEA, and FAU.

(11)Pd/HPW/SiO+ゼオライト混合触媒活性のゼオライトのアルカリ金属種の影響
(イオン交換率)
Pd/HPW/SiO(Pd1重量%,0.1g)と含有Na量が異なるゼオライト(MFI型)(ZSM−5)(0.1g)との混合触媒の523K、573Kでの触媒活性を評価した。結果を図9に示した。なお、この時の触媒調製混合時間は5分である。
(11) Pd / HPW / SiO 2 + zeolite mixed catalyst activity zeolite metal influence (ion exchange rate)
Evaluation of catalytic activity of Pd / HPW / SiO 2 (Pd 1% by weight, 0.1 g) and zeolite with different Na content (MFI type) (ZSM-5) (0.1 g) at 523K and 573K did. The results are shown in FIG. The catalyst preparation and mixing time at this time is 5 minutes.

Na型をH型にイオン交換したゼオライトを使用すると、523Kでの活性がやや低下した(図9)。   When zeolite in which Na type was ion-exchanged to H type was used, the activity at 523 K was slightly reduced (FIG. 9).

(アルカリ金属種)
Pd/HPW/SiO(Pd1重量%,0.1g)と含有アルカリ金属種が異なるゼオライト(MFI型)(ZSM−5)(0.1g)との混合触媒の523K、573Kでの触媒活性を評価した。結果を図10に示した。なお、この時の触媒調製混合時間は5分である。
(Alkali metal species)
The catalytic activity at 523K and 573K of a mixed catalyst of Pd / HPW / SiO 2 (Pd 1 wt%, 0.1 g) and zeolite (MFI type) (ZSM-5) (0.1 g) having different alkali metal species evaluated. The results are shown in FIG. The catalyst preparation and mixing time at this time is 5 minutes.

カチオン種を変えると、10%のNaをLiにイオン交換したLiNa−ZSM−5が低温でNa−ZSM−5とほぼ同等の活性を示した。LiもNaもほぼ同等の効果を持つことがわかった。Na,Liに続いてCs,Hの順で活性があることもわかった。   When the cation species was changed, LiNa-ZSM-5 in which 10% of Na was ion-exchanged with Li showed almost the same activity as Na-ZSM-5 at low temperatures. Li and Na were found to have almost the same effect. It was also found that there is activity in the order of Cs and H following Na and Li.

以上から、Pd/HPW/SiOにゼオライトを混合すると触媒活性が向上し、また混合するゼオライトとしてはどのような種類でも活性は向上するが、中でもMFI型構造(ZSM−5)が適しており、さらにはNaおよびLi型が適していることがわかった。 From the above, when zeolite is mixed with Pd / HPW / SiO 2 , the catalytic activity is improved, and the activity of any kind of zeolite to be mixed is improved, but the MFI structure (ZSM-5) is particularly suitable. Furthermore, it was found that Na and Li types are suitable.

Na−ZSM−5が他のNa型ゼオライトに比べて高い性能を有するのは、図14に示すように反応温度に近い550K程度までトルエンを吸着保持する能力を持つためと推測される。なお、図14は各種ゼオライトおよびPd/HPW/SiO上にトルエンを吸着させ、その後昇温させて観測される昇温脱離(TPD)スペクトルである。 The reason why Na-ZSM-5 has higher performance than other Na-type zeolites is presumed to be the ability to adsorb and hold toluene up to about 550 K close to the reaction temperature as shown in FIG. FIG. 14 is a temperature desorption (TPD) spectrum observed by adsorbing toluene on various zeolites and Pd / HPW / SiO 2 and then raising the temperature.

(12)Pd担持ゼオライトを使用混合した混合触媒
Pdの全てをあらかじめHPW/SiOに担持し、該Pd/HPW/SiOにゼオライトを混合することに代えて、Pdの総量を固定し、Pdの一部あるいは全部をゼオライトの側に担持してから混合を行った。
(12) Mixed catalyst mixed using Pd-supported zeolite Instead of supporting all of Pd on HPW / SiO 2 in advance and mixing zeolite in the Pd / HPW / SiO 2 , the total amount of Pd is fixed, and Pd A part or all of this was supported on the zeolite side and then mixed.

すなわち、Pd担持量が混合触媒総量の0.5重量%となるように、(Pd)/HPW/SiO(0.1g)と(Pd)/Na−ZSM−5(0.1g)とを混合し混合触媒を調製し、523Kでの触媒活性を評価した。結果を図11に示した。なお、この時の乳鉢による触媒調製混合時間は5分である。 That is, (Pd) / HPW / SiO 2 (0.1 g) and (Pd) / Na—ZSM-5 (0.1 g) were adjusted so that the amount of Pd supported was 0.5% by weight of the total amount of the mixed catalyst. A mixed catalyst was prepared by mixing, and the catalytic activity at 523K was evaluated. The results are shown in FIG. In addition, the catalyst preparation mixing time by the mortar at this time is 5 minutes.

同時に、乳鉢により混合を行わず、圧縮成形したPd/HPW/SiOの粉末を粉砕し、ふるい分けして得た見かけ直径1/30〜1/50インチの粒子と、同様に圧縮成形、粉砕、ふるい分けしたNa−ZSM−5の粒子を軽く1秒程度振り混ぜた場合(図中、「混合なし」)の触媒活性も示した。 At the same time, without mixing with a mortar, the compressed Pd / HPW / SiO 2 powder was pulverized and sieved to particles having an apparent diameter of 1/30 to 1/50 inch, as well as compression molding, pulverization, The catalytic activity was also shown when the screened Na-ZSM-5 particles were lightly shaken for about 1 second ("no mixing" in the figure).

図11に示されているように、乳鉢による混合をしないときには50〜80%のPdをNa−ZSM−5側に担持してから加えた方が高活性であった。したがってNa−ZSM−5上のPdが何らかの役割を果たしていると考えられる。Pdを100%Na−ZSM−5側に担持した実験は行っていないが、Pd/Na−ZSM−5だけでは触媒活性が低い(図12)ことから、本反応にはPd/HPW/SiOが中心的な役割を果たしていると推察される。したがって、Pd/HPW/SiOとPd/Na−ZSM−5がそれぞれ役割を分担しており、両者の共存が必要と考えられる。 As shown in FIG. 11, when mixing with a mortar was not carried out, it was more active when 50-80% of Pd was added after being supported on the Na-ZSM-5 side. Therefore, Pd on Na-ZSM-5 is considered to play some role. Although no experiment was conducted in which Pd was supported on the 100% Na-ZSM-5 side, the catalytic activity was low only with Pd / Na-ZSM-5 (FIG. 12). Therefore, in this reaction, Pd / HPW / SiO 2 was used. Is presumed to play a central role. Therefore, Pd / HPW / and SiO 2 and Pd / Na-ZSM-5 is to share the role each believed to require both coexist.

ところがこれらの試料を乳鉢で5分混合すると混合前のNa−ZSM−5上のPdの比率に関わらずほぼ等しい活性を示した。したがって、混合によってPdがHPW/SiOとNa−ZSM−5の間で分配されるか、混合によってHPW/SiOとNa−ZSM−5粒子が近づくためにあらかじめ担持したのと同等の役割が果たせるようになったと考えられる。 However, when these samples were mixed in a mortar for 5 minutes, they showed almost equal activity regardless of the ratio of Pd on Na-ZSM-5 before mixing. Therefore, either Pd by mixing is partitioned between HPW / SiO 2 and Na-ZSM-5, is equivalent role to that previously supported to HPW / SiO 2 and Na-ZSM-5 particles approach by mixing It is thought that it came to be able to do it.

以上から、本発明の混合触媒を調製するに際しては、Na−ZSM−5側に50〜80 %のPdを担持してからPd/HPW/SiOとPd/Na−ZSM−5を混合するか、あるいはHPW/SiOとゼオライトのどちらか一方または両者にあらかじめ所定量のPdを担持し、Pd/HPW/SiOとPd/Na−ZSM−5を乳鉢で混合すればよいことがわかった。 From the above, when preparing the mixed catalyst of the present invention, whether Pd / HPW / SiO 2 and Pd / Na-ZSM-5 are mixed after 50 to 80% Pd is supported on the Na-ZSM-5 side. Alternatively, it was found that a predetermined amount of Pd was previously supported on one or both of HPW / SiO 2 and zeolite, and Pd / HPW / SiO 2 and Pd / Na-ZSM-5 were mixed in a mortar.

(13)Pd担持量の触媒活性に及ぼす影響
Pd/HPW/SiO0.1gにNa−ZSM−5 0.1gを加え、乳鉢で30分粉砕・混合してなる混合触媒の523,573KでのNO転化率を図13に示す。
(13) Effect of Pd loading on catalyst activity Pd / HPW / SiO 2 0.1 g of Na-ZSM-5 was added to 0.1 g, and pulverized and mixed in a mortar for 30 minutes. The NO conversion rate is shown in FIG.

Pdの担持量が、混合触媒全量に対して0.5重量%以上であれば、高い活性がもたらされることがわかった。Pdは高価なので経済的にはその使用量が低いほど望ましい。   It was found that high activity was obtained when the amount of Pd supported was 0.5% by weight or more based on the total amount of the mixed catalyst. Since Pd is expensive, the lower the amount used, the better.

(14)高活性作用機構の考察
以上から、Pdをどちらかに担持したシリカ担持タングストリン酸(HPW1240)とゼオライト(特にNaあるいはLi型ZSM−5)を適当な時間をかけて乳鉢で混合した触媒、あるいは一部のPdをNa−ZSM−5側に担持してから混合した触媒は、トルエンを還元剤とする酸素・水蒸気共存下での窒素酸化物還元反応に高い活性を示すことがわかった。
(14) Consideration of the mechanism of high activity As described above, a silica-supported tungstophosphoric acid (H 3 PW 12 O 40 ) supporting Pd on either side and zeolite (especially Na or Li type ZSM-5) are taken over an appropriate time. Catalysts mixed in a mortar or mixed with some Pd supported on the Na-ZSM-5 side are highly active in the reduction of nitrogen oxides in the presence of oxygen and water vapor using toluene as the reducing agent. It was found that

発明者らの研究によれば、HPWはNOを活性化し、HPW上のPdはNO由来の活性種と炭化水素由来の活性種の間の反応を促進していると考えられる。一方、ゼオライトにはトルエンを吸着する性質があり、また前述のようにゼオライト上のPdにも役割があると推測されることから、ゼオライトに吸着されたトルエンがPd/ゼオライト上で活性化され、これがPd/HPW/SiO上で反応するためにNO還元速度が高まったと推測される。乳鉢で混合すると活性が高くなったことから、PdがHPW/SiOとゼオライト間で分配される可能性に加え、分子が移動できる程度の近い距離にこれらの異なる役割を持つ活性種が存在することが活性を高めると考えられる。 According to the studies by the inventors, it is considered that HPW activates NO, and Pd on HPW promotes the reaction between the NO-derived active species and the hydrocarbon-derived active species. On the other hand, since zeolite has a property of adsorbing toluene, and it is presumed that Pd on zeolite also has a role as described above, toluene adsorbed on zeolite is activated on Pd / zeolite, Since this reacts on Pd / HPW / SiO 2 , the NO reduction rate is estimated to have increased. Since the activity became higher when mixed in a mortar, in addition to the possibility that Pd is distributed between HPW / SiO 2 and zeolite, there are active species having these different roles at a distance that allows molecules to move. This is thought to increase activity.

(15)活性に及ぼす混合時間の影響に対する考察
Pd/HPW/SiO(Pd1重量%)0.1gにNa−ZSM−5 0.1gを加え、乳鉢で粉砕・混合し、混合時間の異なる混合触媒の全細孔容積を窒素吸着法によって測定した。結果を図15に示した。
(15) Consideration of influence of mixing time on activity Add 0.1 g of Na-ZSM-5 to 0.1 g of Pd / HPW / SiO 2 (Pd 1 wt%), grind and mix in a mortar, mixing with different mixing times The total pore volume of the catalyst was measured by nitrogen adsorption method. The results are shown in FIG.

全細孔容積は混合時間が長くなるにつれゆっくりと低下したが、ミクロ細孔容積はあまり減らなかった。したがって、ゼオライト結晶外表面やHPW/SiO粒子表面に由来するメゾ・マクロ細孔の容積が減少したと言える。これは、主としてメゾ・マクロ細孔をHPW/SiOの粒子が閉塞することによって起きたと推測され、HPW/SiO, ゼオライトともに外表面に反応物が接触しにくくなって活性が低下したものと考えられる。 The total pore volume decreased slowly with increasing mixing time, but the micropore volume did not decrease much. Therefore, it can be said that the volume of the meso macropores derived from the outer surface of the zeolite crystal and the surface of the HPW / SiO 2 particle is reduced. This is presumably caused by the blockage of HPW / SiO 2 particles in the meso-macropores, and the HPW / SiO 2 and zeolite are less likely to contact the reactants on the outer surface and the activity is reduced. Conceivable.

本発明の触媒は、トルエンを還元剤とする酸素・水蒸気共存下での窒素酸化物還元に使用することができる。   The catalyst of the present invention can be used for nitrogen oxide reduction using toluene as a reducing agent in the presence of oxygen and water vapor.

具体的には、トルエンを排ガス成分に含有する内燃機関のNO還元除去するシステムの触媒として使用することができる。 Specifically, it can be used as a catalyst for a system for reducing and removing NO x of an internal combustion engine containing toluene as an exhaust gas component.

Pd/HPW/SiO触媒単独の触媒活性の温度依存性を示すグラフ。Graph showing the temperature dependence of the Pd / HPW / SiO 2 catalyst alone catalytic activity. Pt/Al触媒単独の触媒活性の温度依存性を示すグラフ。Graph showing the temperature dependency of Pt / Al 2 O 3 catalyst alone catalytic activity. Pd/HPW/SiOとNa−ZSM−5との混合触媒の混合時間影響性を示すグラフ。Graph showing the mixing time influences of the mixed catalyst of Pd / HPW / SiO 2 and Na-ZSM-5. Pd/HPW/SiO+Na−ZSM−5の触媒活性の温度依存性を示すグラフ。Graph showing the temperature dependence of the catalytic activity of Pd / HPW / SiO 2 + Na -ZSM-5. Pd/HPW/SiO+Na−ZSM−5の触媒活性のNa−ZSM−5添加量依存性を示すグラフ。 Pd / HPW / SiO 2 + Na -ZSM-5 a graph showing the Na-ZSM-5 additive amount dependency of the catalytic activity of. Pd/HPW/SiOとNa−ZSM−5との混合触媒活性の総重量一定下の混合比依存性を示すグラフ。Pd / HPW / SiO 2 and a graph showing the mixing ratio dependence of the total weight constant of a mixed catalyst activity of Na-ZSM-5. Pd/HPW/SiO+Na−ZSM−5の触媒活性の経時変化を示すグラフ。A graph showing changes over time in the catalytic activity of Pd / HPW / SiO 2 + Na -ZSM-5. Pd/HPW/SiO+ゼオライト混合触媒活性のゼオライト結晶構造の影響を示すグラフ。Graph showing the effect of Pd / HPW / SiO 2 + zeolite mixed catalyst activity of the zeolite crystal structure. Pd/HPW/SiO+Na−ZSM−5の触媒活性のZSM−5ゼオライトにおけるH−Naイオン交換率の影響を示すグラフ。Graph showing the effect of H-Na ion exchange ratio of ZSM-5 zeolite of Pd / HPW / SiO 2 + Na -ZSM-5 catalyst activity. Pd/HPW/SiO+Na−ZSM−5の触媒活性のZSM−5ゼオライトにおけるカチオン種の影響を示すグラフ。Graph showing the effect of the cationic species in the ZSM-5 zeolite of Pd / HPW / SiO 2 + Na -ZSM-5 catalyst activity. Pd担持ゼオライトを使用混合した混合触媒の活性を示すグラフ。The graph which shows the activity of the mixed catalyst which mixed using Pd carrying | support zeolite. Pd/Na−ZSM−5触媒単独の触媒活性の温度依存性を示すグラフ。The graph which shows the temperature dependence of the catalyst activity of a Pd / Na-ZSM-5 catalyst single. Pd/HPW/SiO+Na−ZSM−5の触媒活性のPd担持量の影響を示すグラフ。Graph showing the effect of the amount of Pd supported of the catalytic activity of Pd / HPW / SiO 2 + Na -ZSM-5. 各種担体のトルエン昇温脱離スペクトル。Toluene temperature programmed desorption spectra of various carriers. Pd/HPW/SiO+Na−ZSM−5の混合触媒の細孔容積の混合時間依存性を示すグラフ。Graph showing the mixing time dependency of the pore volume of the pd / HPW / mixed catalyst of SiO 2 + Na-ZSM-5 .

Claims (6)

Pdをどちらか一方または両者に担持した、多孔質シリカ担持ヘテロポリ酸とNaまたはLiMFI型ゼオライトとを混合してなるトルエンを還元剤とする窒素酸化物還元触媒。 A nitrogen oxide reduction catalyst using toluene as a reducing agent, which is a mixture of a porous silica-supported heteropolyacid and Na or LiMFI-type zeolite supporting Pd on either or both. ヘテロポリ酸が、HPW1240である請求項1に記載の触媒。 The catalyst according to claim 1, wherein the heteropolyacid is H 3 PW 12 O 40 . Pdの担持量が、触媒の全量に対して0.5重量%以上の量である、請求項1〜いずれかに記載の触媒。 Loading amount of Pd is in relative to the total amount of catalyst 0. 5 is the amount of weight% or more, the catalyst according to any of claims 1-2. 混合が、粉砕工程を含む、請求項1〜いずれかに記載の触媒。 The catalyst according to any one of claims 1 to 3 , wherein the mixing includes a grinding step. 少なくともトルエン、酸素、水蒸気および窒素酸化物を成分として含む排ガスの窒素酸化物を除去する方法において、該排ガスを請求項1〜いずれかに記載の触媒に通して窒素酸化物を還元除去することを特徴とする、窒素酸化物還元除去方法。 In the method for removing nitrogen oxides in exhaust gas containing at least toluene, oxygen, water vapor and nitrogen oxides as components, the exhaust gas is passed through the catalyst according to any one of claims 1 to 4 to reduce and remove nitrogen oxides. A method for reducing and removing nitrogen oxides. 窒素酸化物の還元温度が、500〜580Kで行われる、請求項に記載の窒素酸化物還元除去方法。 The method for reducing and removing nitrogen oxides according to claim 5 , wherein the reduction temperature of nitrogen oxides is 500 to 580K.
JP2006059571A 2006-03-06 2006-03-06 Novel nitrogen oxide reduction catalyst and nitrogen oxide reduction removal method Active JP5002807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006059571A JP5002807B2 (en) 2006-03-06 2006-03-06 Novel nitrogen oxide reduction catalyst and nitrogen oxide reduction removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006059571A JP5002807B2 (en) 2006-03-06 2006-03-06 Novel nitrogen oxide reduction catalyst and nitrogen oxide reduction removal method

Publications (2)

Publication Number Publication Date
JP2007237018A JP2007237018A (en) 2007-09-20
JP5002807B2 true JP5002807B2 (en) 2012-08-15

Family

ID=38583090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006059571A Active JP5002807B2 (en) 2006-03-06 2006-03-06 Novel nitrogen oxide reduction catalyst and nitrogen oxide reduction removal method

Country Status (1)

Country Link
JP (1) JP5002807B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119343A (en) * 1982-01-11 1983-07-15 Mitsui Mining & Smelting Co Ltd Catalyst for purifying exhaust gas
JP2691643B2 (en) * 1991-01-08 1997-12-17 財団法人石油産業活性化センター Exhaust gas purification method
JP3363160B2 (en) * 1991-06-14 2003-01-08 株式会社日本触媒 Nitrogen oxide removal catalyst
JPH0557196A (en) * 1991-08-29 1993-03-09 Toyota Motor Corp Production of catalyst for purifying exhaust gas
JPH06327978A (en) * 1993-05-26 1994-11-29 Honda Motor Co Ltd Catalyst for purifying waste gas
DE4419486C2 (en) * 1994-06-03 1996-09-05 Daimler Benz Ag Catalyst, process for its preparation and use of the catalyst
JPH09164335A (en) * 1995-12-15 1997-06-24 Jisedai Haigasu Shokubai Kenkyusho:Kk Exhaust gas-purifying catalyst
JP3096611B2 (en) * 1995-04-28 2000-10-10 藤崎電機株式会社 Equipment for spray drying and fluidized granulation
JP3791033B2 (en) * 1996-01-24 2006-06-28 マツダ株式会社 Engine exhaust gas purification catalyst
JPH10169434A (en) * 1996-12-09 1998-06-23 Ngk Insulators Ltd Exhaust emission control method and exhaust emission control system used for the same
JP4078427B2 (en) * 2004-02-20 2008-04-23 国立大学法人鳥取大学 Nitrogen oxide removal method
EP1748834A1 (en) * 2004-04-16 2007-02-07 HTE Aktiengesellschaft The High Throughput Experimentation Company Process for the removal of harmful substances from exhaust gases of combustion engines and catalyst for carrying out said process

Also Published As

Publication number Publication date
JP2007237018A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
Mihai et al. The effect of Si/Al ratio for Pd/BEA and Pd/SSZ-13 used as passive NO x adsorbers
EP2714267B1 (en) Cold start catalyst and its use in exhaust systems
JP2909553B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
Porta et al. Low temperature NO x adsorption study on Pd-promoted zeolites
Wang et al. Effect of preparation methods on the performance of CuFe-SSZ-13 catalysts for selective catalytic reduction of NOx with NH3
JP2000157870A (en) Catalyst for purifying exhaust gas from diesel engine
KR100284936B1 (en) Method for producing a catalytically active noble metal-supported zeolite denitrification catalyst
Ogura et al. Determination of active palladium species in ZSM-5 zeolite for selective reduction of nitric oxide with methane
KR20150121074A (en) NOx TRAP COMPOSITION
JP2008240568A (en) Exhaust emission control device
KR20080077163A (en) Exhaust gas purifying device
US20160102590A1 (en) Methods of making porous crystalline materials and their use in hydrocarbon sorption
Akter et al. Effects of copper loading on NH 3-SCR and NO oxidation over Cu impregnated CHA zeolite
WO2019132611A1 (en) Hydrocarbon adsorbent
EP3793724A1 (en) Hydrocarbon trap catalyst
Song et al. Promotional effect of acidic oxide on catalytic activity and N2 selectivity over CeO2 for selective catalytic reduction of NOx by NH3
Yan et al. Promotional effect of molybdenum additives on catalytic performance of CeO 2/Al 2 O 3 for selective catalytic reduction of NO x
WO2008018388A1 (en) Nitrogen oxides adsorber and process for production thereof
JPH0796178A (en) Adsorbent of hydrocarbon in exhaust gas from internal combustion engine
JP5002807B2 (en) Novel nitrogen oxide reduction catalyst and nitrogen oxide reduction removal method
JP3407901B2 (en) Exhaust gas purifying catalyst, method for producing the catalyst, and method for purifying exhaust gas
JP2008279352A (en) Catalyst for removing nitrogen oxide discharged from lean burn automobile
JP7218402B2 (en) Exhaust gas purification catalyst device
JP5112966B2 (en) Lean burn exhaust gas purification catalyst
de Correa et al. The role of zeolite type on the lean NOx reduction by methane over Pd loaded pentasil zeolites

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150