JPS6157963B2 - - Google Patents

Info

Publication number
JPS6157963B2
JPS6157963B2 JP54009487A JP948779A JPS6157963B2 JP S6157963 B2 JPS6157963 B2 JP S6157963B2 JP 54009487 A JP54009487 A JP 54009487A JP 948779 A JP948779 A JP 948779A JP S6157963 B2 JPS6157963 B2 JP S6157963B2
Authority
JP
Japan
Prior art keywords
temperature
amount
incinerated
furnace
incinerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54009487A
Other languages
Japanese (ja)
Other versions
JPS55102813A (en
Inventor
Takekazu Tomizawa
Toyoji Sakyo
Susumu Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okawara Mfg Co Ltd
Original Assignee
Okawara Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okawara Mfg Co Ltd filed Critical Okawara Mfg Co Ltd
Priority to JP948779A priority Critical patent/JPS55102813A/en
Publication of JPS55102813A publication Critical patent/JPS55102813A/en
Publication of JPS6157963B2 publication Critical patent/JPS6157963B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)
  • Incineration Of Waste (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【発明の詳細な説明】 本発明は流動層型の焼却炉において、燃焼ゾー
ン内の温度を検出してこれを被焼却物の投入装置
に伝え、被焼却物の投入量を調節して燃焼ゾーン
内の温度を一定に保ち、安定した燃焼状態を維持
しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a fluidized bed type incinerator that detects the temperature in the combustion zone, transmits this to a material charging device to adjust the amount of material to be incinerated, and controls the temperature in the combustion zone. The aim is to maintain a constant temperature within the combustion chamber and maintain stable combustion conditions.

流動層型の焼却炉は、大きさのほぼ一様な被焼
却物を焼却するに適した堅形の焼却炉であつて、
炉底から空気を吹き上げて炉内に投入された被焼
却物を浮遊状態にして流動層を形成し、被焼却物
と空気との接触効果を高めつゝ焼却するものであ
る。
A fluidized bed incinerator is a rigid incinerator that is suitable for incinerating materials that are approximately uniform in size.
Air is blown up from the bottom of the furnace to suspend the materials to be incinerated inside the furnace, forming a fluidized bed, thereby increasing the effect of contact between the materials to be incinerated and the air.

ここで本発明を説明するに先立つて流動層形焼
却炉の概略を説明する。
Before explaining the present invention, an outline of a fluidized bed incinerator will be explained.

第1図において、符号1は焼却炉本体であつ
て、その基部は下方に向つて次第に細く、所謂逆
截頭円錐状にし、更にその底面には通気盤2を張
設して燃焼室を構成する。3は排気口、4は送気
ダクトであつて、図示しない送風機5と連結して
炉内へ燃焼用空気を送入するものである。尚、こ
の送気ダクト4と送風機5との間には予熱炉を取
付けて炉の始動時には熱風を送る様に形成するも
のとする。符号6は炉内へ被焼却物を投入する投
入ダクトである。この投入ダクト6には被焼却物
を炉内へ連続的に送り込むことの出来る適宜な送
り装置を内設するもので、図に於いてはスクリユ
ーコンベヤを用いる一例を示したものである。こ
のスクリユーコンベヤにはこれを作動させるため
に駆動装置(図示せず)を連結する。又、8a,
8b,8cは炉内温度計であつて燃焼ゾーン内の
適宜な点に取付けるものである。尚、この焼却炉
には、残渣取出口、覗き窓、着火口、サンプリン
グ用燃焼ガス取出口等を取り付けることは云うま
でもない。こころで、この種の焼却炉は既に述べ
た様に炉内に投入された被焼却物(以下滞留焼却
物と云う)を浮遊状態にして燃焼させるものであ
るから、これと空気との接触がよく、しかも新た
に投入された被焼却物と滞留焼却物とが充分混合
されて燃焼を持続させるためのエネルギー交換も
よく、焼却速度が速いのであるが、反面、制禦上
の外乱に対しても反応が速く、燃焼に大きな乱れ
を生じてクリンカーを発生したり断火したり易い
のである。更には、燃焼によつて生成した灰は自
動的に分離して排気口3等から排出されるので、
連続的に焼却処理するのには適しているが、滞留
焼却物の量が一定範囲内に保たれることが必要で
あつて、その量が所定量以下に減少したり、一時
的に増加したりすると、断火する欠点がある。
In Fig. 1, reference numeral 1 denotes the incinerator body, whose base gradually tapers downward into a so-called inverted truncated conical shape, and a ventilation plate 2 is placed over its bottom to form a combustion chamber. do. 3 is an exhaust port, and 4 is an air supply duct, which is connected to a blower 5 (not shown) to supply combustion air into the furnace. Note that a preheating furnace is installed between the air duct 4 and the blower 5 so that hot air is sent when the furnace is started. Reference numeral 6 is a charging duct for charging the materials to be incinerated into the furnace. This input duct 6 is equipped with an appropriate feeding device capable of continuously feeding the materials to be incinerated into the furnace, and the figure shows an example using a screw conveyor. A drive device (not shown) is connected to this screw conveyor to operate it. Also, 8a,
Reference numerals 8b and 8c are furnace thermometers, which are installed at appropriate points within the combustion zone. It goes without saying that this incinerator is equipped with a residue outlet, a viewing window, an ignition port, a combustion gas outlet for sampling, and the like. As mentioned above, this type of incinerator burns the material to be incinerated (hereinafter referred to as retained incineration material) placed in the furnace in a suspended state, so there is no chance of the material coming into contact with the air. Moreover, the newly inputted materials to be incinerated and the accumulated materials to be incinerated are sufficiently mixed, and the energy exchange for sustaining combustion is also good, resulting in a fast incineration speed. However, the reaction is fast, which causes large turbulence in combustion, resulting in clinker generation and fire breakouts. Furthermore, the ash produced by combustion is automatically separated and discharged from the exhaust port 3, etc.
Although it is suitable for continuous incineration, it is necessary to maintain the amount of accumulated incineration within a certain range, and it is necessary to keep the amount of accumulated incineration within a certain range or to temporarily increase it. If you do so, there is a drawback that it will catch fire.

そのため、この種の焼却炉を運転するに当つて
は、燃焼を持続する為のエネルギー交換を乱さな
い様にし、更に滞留焼却物の量を常に検知して、
その情報を駆動装置にフイードバツクし、被焼却
物の投入量を制禦して燃焼状態を一定に保つこと
が必須の条件とされる。従来からその試みはなさ
れてきたのであるが、いずれの方法も満足すべき
効果を上げることは出来なかつた。その一例とし
て炉内の一点に温度計を挿し込みこの点の温度を
測定して制禦装置に伝え、その温度があらかじめ
設定した温度範囲より上昇したときは被焼却物の
量が過剰であるとしてその投入量を減少させ、測
定温度が下降したときは被焼却物の量が過少であ
るとして投入量を増加させる方法がある。
Therefore, when operating this type of incinerator, care must be taken not to disturb the energy exchange needed to sustain combustion, and the amount of accumulated incineration material must be constantly detected.
It is essential to feed back this information to the drive device, control the amount of material to be incinerated, and maintain a constant combustion state. Attempts have been made in the past, but none of the methods have been able to produce a satisfactory effect. For example, a thermometer is inserted into one point in the furnace to measure the temperature at this point and send it to the control device, and when the temperature rises above a preset temperature range, it is determined that the amount of material to be incinerated is excessive. There is a method of reducing the input amount and increasing the input amount when the measured temperature falls, assuming that the amount of incineration material is too small.

しかしながら本焼却炉の様な場合は被焼却物の
性質の変化によつて測定位置の温度が変化するか
ら、この点の温度変化と燃焼を持続するためのエ
ネルギー交換量及び滞留焼却物の量の変化とが必
ずしも一致しないのである。そのため被焼却物の
投入量を適切に制禦することが出来ず、しばしば
燃焼ゾーン内にクリンカーが発生したり断火した
りする事態が発生するのである。(特にクリンカ
ーは炉壁への付着及び流動化の停止などを起し、
終には運転が不能となり、またその除去作業に時
間がかゝるため焼却炉内での発生は必ず防止しな
ければならなかつた)その主たる理由は次の通り
である。即ち、炉内の温度分布は第一表に示す様
に燃焼ゾーン内に極大点を有し、上方に向つて僅
かに低くなつている。この極大点の位置は被焼却
物の性状及び滞留焼却物の量によつて変異するも
のであり、例えば滞留焼却物の量が増加した場
合、或いは被焼却物の含水率が増加した場合は上
方へ移行する。
However, in cases like this incinerator, the temperature at the measurement location changes due to changes in the properties of the incinerated material, so the temperature change at this point, the amount of energy exchanged to sustain combustion, and the amount of accumulated incinerated material are Changes do not necessarily correspond. Therefore, the amount of material to be incinerated cannot be properly controlled, and clinker often forms in the combustion zone or fire breaks out. (In particular, clinker can cause adhesion to the furnace wall and stop fluidization,
The main reasons for this are as follows. That is, as shown in Table 1, the temperature distribution within the furnace has a maximum point within the combustion zone, and becomes slightly lower toward the top. The position of this maximum point varies depending on the properties of the material to be incinerated and the amount of accumulated incineration material. For example, when the amount of accumulated incineration material increases or the moisture content of the material to be incinerated increases, the position of this maximum point changes upward. Move to.

第一表は稼動状態(適正に燃焼している状態)
に於ける炉内の被焼却物の量と炉内の温度分布曲
線を示す。表中曲線は被焼却物の量が多いとき
の温度分布曲線を示すものであり、曲線及び
はそれよりも更に量の少ないときの温度分布曲線
を示す。
Table 1 shows operating status (proper combustion status)
The amount of incinerated material in the furnace and the temperature distribution curve inside the furnace are shown. The curve in the table shows the temperature distribution curve when the amount of material to be incinerated is large, and the curve and the curve show the temperature distribution curve when the amount is even smaller.

表に示される様に炉内温度の極大点は滞留焼却
物の量が増減するに伴なつて昇降する。また上記
の様に、滞留焼却物の量が正常に燃焼を続けられ
る範囲内にあるときは、燃焼ゾーンの温度は上部
に於いては滞留焼却物の量が変動してもほぼ一定
値を示し、中間部及び下部では量が変動するに従
つて大きく昇降するのである。
As shown in the table, the maximum temperature inside the furnace rises and falls as the amount of retained incineration material increases or decreases. Furthermore, as mentioned above, when the amount of accumulated incineration material is within the range that allows normal combustion to continue, the temperature in the combustion zone will remain almost constant in the upper part even if the amount of accumulated incineration material fluctuates. , the middle and lower parts rise and fall significantly as the amount changes.

この様なことから、燃焼ゾーンの上部であるt1
の点に温度計を設置したときは、温度によつて滞
留焼却物の増減を検知することが出来ない。
For this reason, t 1 , which is the upper part of the combustion zone,
When a thermometer is installed at the point, it is not possible to detect an increase or decrease in the accumulated incineration material depending on the temperature.

又、t2の位置に温度計を設置したときは、滞留
焼却物の量が増加すると測定温度は下降し、逆に
量が減少すると測定温度は上昇する。このことか
ら滞留焼却物が多いときは被焼却物の投入量を増
加させることになり、そのため滞留焼却物の量が
過大になり、また滞留焼却物が少ないときは被焼
却物の投入量が減らされるから、滞留焼却物の量
は過少になつて安定した燃焼を続けることが出来
ず、突然クリンカーを生成したり断火したりする
のである。
Furthermore, when the thermometer is installed at the position t2 , the measured temperature decreases as the amount of retained incineration material increases, and conversely, the measured temperature increases as the amount decreases. From this, when there is a large amount of retained incineration material, the amount of incinerated material input must be increased, resulting in an excessive amount of retained incineration material, and when there is little retained incineration material, the amount of incinerated material input will be reduced. As a result, the amount of accumulated incineration material becomes too small to continue stable combustion, and clinker suddenly forms or the fire breaks out.

第二表は被焼却物の投入量を急に増加させた場
合の投入直後の炉内温度分布曲線の変化を示す。
新たに投入される焼却物は温度が低いので焼却ゾ
ーンの温度はこれによつて一時的に抑えられ、曲
線から′に変化する。この傾向は被焼却物の
含水率が高い程顕著である。
Table 2 shows the change in the temperature distribution curve in the furnace immediately after the input of the material to be incinerated when the input amount of the material to be incinerated is suddenly increased.
Since the temperature of the newly inputted material to be incinerated is low, the temperature in the incineration zone is temporarily suppressed and changes from the curve to ''. This tendency is more pronounced as the moisture content of the material to be incinerated is higher.

この場合も、炉内の滞留焼却炉の量が増加する
にも拘わらず、測定温度が下がるから、更に投入
量を増やすこととなり、そのため炉内温度は一層
低下して遂には断火する結果となるのである。
In this case as well, even though the amount of accumulated incinerator in the furnace increases, the measured temperature decreases, so the amount of input has to be further increased, which causes the temperature inside the furnace to further decrease and eventually causes the fire to break out. It will become.

本発明は上記した従来の欠点を解消し、被焼却
物の投入量を確実に制禦することが出来る様にし
たもので、この骨子とするところは、燃焼ゾーン
の数箇所の温度を測定することにより、炉内の滞
留焼却物の量の変化とそれに対する炉内温度の見
掛け上の逆転現象を無くす点にある。
The present invention solves the above-mentioned conventional drawbacks and makes it possible to reliably control the amount of material to be incinerated.The main point of this invention is to measure the temperature at several points in the combustion zone. By doing so, it is possible to eliminate changes in the amount of incineration material accumulated in the furnace and the apparent reversal phenomenon of the temperature in the furnace in response to the change.

即ち、第一表に例示する様に焼却炉が適正な状
態で稼動しているときは、燃焼ゾーンの温度の極
大点a,b,cは滞留焼却物の量が増減するに従
つて変移するが、その温度は被焼却物の種類や形
状、及び送風量などによつて特有なものであつ
て、ほゞ一定値を示すものである。
In other words, as illustrated in Table 1, when the incinerator is operating under proper conditions, the maximum temperature points a, b, and c in the combustion zone change as the amount of accumulated incineration material increases or decreases. However, the temperature is unique depending on the type and shape of the material to be incinerated, the amount of air blown, etc., and exhibits a substantially constant value.

この様なことから本発明は、適正な状態で稼動
しているときの温度の極大点が変移し得る範囲内
の二ケ所又はそれ以上の点の極大点の温度を測定
し、その温度変化によつて炉内の滞留焼却物の量
を感知し、これを駆動装置にフイードバツクして
被焼却物の投入量を制禦しようとするものであ
る。
For this reason, the present invention measures the temperature at two or more points within the range where the maximum point of temperature can change when operating under proper conditions, and Therefore, the amount of waste to be incinerated accumulated in the furnace is sensed, and this is fed back to the drive device to control the amount of waste to be incinerated.

以下本発明を実施例に基づいて具体的に説明す
る。
The present invention will be specifically described below based on examples.

実施例 1 焼却炉が適正な状態で稼動しているときの燃焼
ゾーン内での温度極大点が変移し得る範囲内の三
点ta,tb,tcの温度を測定し、一方、これらの点
における適正な温度を設定して、それぞれの測定
温度のうちの最高温度と、その点における設定温
度との差を検知してこれを駆動装置にフイードバ
ツクするものである。
Example 1 The temperature at three points ta, tb, and tc within the range where the temperature maximum point within the combustion zone can change when the incinerator is operating under proper conditions was measured, and on the other hand, the temperature at these points was measured. An appropriate temperature is set, the difference between the highest temperature of each measured temperature and the set temperature at that point is detected, and this is fed back to the drive device.

第三表に温度の極大値の変位軌跡を示し第四表
に焼却炉制禦ブロツクダイヤグラムを示す。
Table 3 shows the displacement trajectory of the maximum temperature, and Table 4 shows the incinerator control block diagram.

表中温度検出器は高温温度計8a,8b,8c
であつて、焼却炉のta,tb,tcの点の温度を測定
するものである。最大値検出回路は、それぞれの
温度計ta,tb,tcによつて測定した温度を電圧に
変換して最も電圧の高いもののみを選択的に取り
出すものである。投入系は既に述べたスクリウコ
ンベヤ等の送り装置と、これを駆動させるための
駆動装置とからなる被焼却物投入装置であり、ま
たコントローラは最大値検出回路を通して送られ
た最高温度の情報とあらかじめ設定した設定温度
とを比較して、その差を検出してこれを駆動装置
に伝え、駆動装置の回転数を制禦して焼却炉への
被焼却物の投入量を調節する様にしたものであ
る。そして、投入装置は投入量が変化した直後の
十数秒乃至数十秒間はその投入量が変化しない様
に制御されるものとする。これは第二表について
述べた様に、投入量が増加した直後の燃焼ゾーン
の温度の一時的な低下に反応しない様にするため
である。
The temperature detectors in the table are high temperature thermometers 8a, 8b, 8c.
It measures the temperature at points ta, tb, and tc of the incinerator. The maximum value detection circuit converts the temperatures measured by the respective thermometers ta, tb, and tc into voltages and selectively extracts only the one with the highest voltage. The input system is an incineration material input device consisting of the already mentioned feeding device such as the screw conveyor and a drive device for driving this, and the controller is configured to input information on the maximum temperature sent through the maximum value detection circuit. The system compares the set temperature with a preset temperature, detects the difference, and transmits this to the drive device, which controls the rotation speed of the drive device and adjusts the amount of material to be incinerated into the incinerator. It is something. It is assumed that the charging device is controlled so that the charging amount does not change for a period of ten to several tens of seconds immediately after the charging amount changes. This is to avoid reacting to a temporary drop in the temperature of the combustion zone immediately after the input amount is increased, as described in Table 2.

続いて焼却炉の作動状態について説明する。 Next, the operating state of the incinerator will be explained.

今、焼却炉が適正な状態で稼動し、taの点に温
度の極大点があるとする。この状態で被焼却物の
投入速度が焼却速度より小さいと、炉内の滞留焼
却物は徐々に減少する。それに伴なつて極大点が
第三表に示す設定値曲線Sに沿つて下降し、taか
らtcに移行する。最大値検出回路からコントロー
ラへは測定点ta,tb,tcのうちの常に最高温度を
示す点の温度が指示されるのであるから、この様
に極大点が設定値曲線S(ほゞ一定温度であるこ
とを示す)に沿つて移動している間はコントロー
ラへは炉内が適正な状態で稼動を続けていること
が指示されるから、投入系は定常状態で作動を続
けるのである。
Suppose that the incinerator is operating under proper conditions and that the maximum temperature is at point ta. In this state, if the input speed of the material to be incinerated is lower than the incineration rate, the amount of the material to be incinerated in the furnace will gradually decrease. Correspondingly, the maximum point descends along the set value curve S shown in Table 3 and shifts from ta to tc. Since the maximum value detection circuit instructs the controller about the temperature of the point that always shows the highest temperature among the measurement points ta, tb, and tc, the maximum point is in this way set value curve S (approximately constant temperature). The controller is instructed that the inside of the furnace continues to operate in a proper state while moving along the line (indicating that there is a certain condition), so the charging system continues to operate in a steady state.

この状態に於いて炉内の滞留焼却物の量が更に
減少すると、最大温度が設定値曲線Sによつて示
す温度より下降する。するとこれがコントローラ
へ伝えられ、更に投入系へ伝達されて被焼却物の
投入量を増加するのである。同様にして最大温度
が設定値曲線Sによつて示す温度より上昇したと
きは投入量を減少させるものであり、この様にし
て炉内温度をta、tb、tc点のうち、いづれかの最
高温度が設定温度になる様に投入量を制禦するの
であるが、この場合既に述べた様に投入量が変化
した直後の十数秒乃至数十秒間は炉内温度が一時
的に低下しても、これに対しては投入量を増加さ
せない様に形成されていることは云うまでもな
い。
In this state, when the amount of incinerated matter remaining in the furnace further decreases, the maximum temperature falls below the temperature indicated by the set value curve S. This is then transmitted to the controller, and further transmitted to the input system to increase the input amount of the material to be incinerated. Similarly, when the maximum temperature rises above the temperature shown by the set value curve S, the amount of input is reduced, and in this way the temperature inside the furnace is adjusted to the maximum temperature at points ta, tb, and tc. In this case, as mentioned above, even if the temperature inside the furnace temporarily decreases for several tens of seconds immediately after the input amount changes, In response to this, it goes without saying that the structure is designed so as not to increase the amount of input.

次に被焼却物の投入量の制禦を更にシビヤにし
た一例を示す。
Next, we will show an example in which the amount of material to be incinerated is more strictly controlled.

実施例 2 焼却炉制禦ブロツクダイヤグラムを第五表に示
す。表中最大値選択回路は、三箇所の測定点のう
ちの最大温度を示す点とその温度を検知してこれ
をコントローラに伝達するものであり、送風系は
送風機と送風空気加熱機とからなつているもので
ある。続いて作動状態について説明する。tb点を
基準とし、この点が最高温度であり、且つその温
度が設定温度であるときに焼却炉は適正に稼動し
ているものとする。
Example 2 The incinerator control block diagram is shown in Table 5. The maximum value selection circuit in the table detects the point indicating the maximum temperature among the three measurement points and transmits this to the controller.The blower system consists of a blower and a blower air heater. It is something that Next, the operating state will be explained. The incinerator is assumed to be operating properly when this point is the maximum temperature and the set temperature is based on point tb.

炉内の滞留焼却物の量が次第に減少し、最大点
tbからtcに移行したとき、被焼却物の投入量を増
加させ、tbからtaに移行したときはこれを減少さ
せる。この様にして炉内の滞留焼却物の量を一定
に保つて燃焼をコントロールするのであるが、炉
内温度が、設定温度範囲の上限sh及び下限slを外
れたときは、送風系をコントロールしてこれを制
禦するのがよい。即ち、最大温度がtbとtaとの間
にあつて、しかも炉内温度が設定温度の上限sh
を越えたときは、その旨を送風系に伝え、送風量
を減少させて燃焼を抑制するのがよく、また炉内
温度が下限slより下降したときは、その旨を送風
系に伝えて送風空気を加熱するのがよい。この様
に滞留焼却物の量が多いにも拘わらず炉内温度が
下降するのは、被焼却物中に発熱温度の低いもの
や水分含有率の高いものが混入するからである。
逆に、最高温度がtbとtcとの間にあつて、しかも
その温度が上限shを越えたときは、送風量を増
加させるのがよい。この様に温度が上昇するの
は、被焼却物中に特に発熱温度の高いものが混入
した場合に起るのであつて、この場合はクリンカ
ーが発生する可能性があるので多量の空気によつ
て火焔の温度を低下させ、同時に各被焼却物の粒
子や灰分の粒子が接合する機会を減らすことが望
ましいのである。
The amount of accumulated incineration material in the furnace gradually decreases until it reaches the maximum point.
When transitioning from tb to tc, the input amount of incinerated materials is increased, and when transitioning from tb to ta, it is decreased. In this way, combustion is controlled by keeping the amount of accumulated incineration material in the furnace constant, but when the temperature inside the furnace is outside the upper limit sh and lower limit sl of the set temperature range, the blower system is controlled. It is better to control this. In other words, the maximum temperature is between tb and ta, and the furnace temperature is above the upper limit of the set temperature sh.
When the furnace temperature exceeds the lower limit SL, it is best to notify the ventilation system to that effect and reduce the amount of air blown to suppress combustion.Also, when the temperature inside the furnace falls below the lower limit SL, it is recommended to notify the ventilation system and reduce the amount of air blown. It is better to heat the air. The reason why the temperature inside the furnace decreases despite the large amount of retained incineration material is that materials with low exothermic temperatures and materials with high moisture content are mixed into the material to be incinerated.
Conversely, when the maximum temperature is between tb and tc and exceeds the upper limit sh, it is better to increase the air flow rate. This rise in temperature occurs when materials with a particularly high exothermic temperature are mixed into the material to be incinerated. It is desirable to lower the temperature of the flame and, at the same time, reduce the chances of the particles of the incinerated material and ash particles joining together.

以上詳述した様に本発明は、燃焼ゾーン内の温
度に極大点があること、及びその極大点は燃焼ゾ
ーンの上面が昇降するにつれて、云い換えれば被
焼却物の量が増減するにつれて昇降するものであ
るが、その温度は定常状態に於いてはほゞ一定の
値を示すことを利用し、燃焼ゾーンの数箇所に温
度計を挿し込んでその点の温度を測定し、測定温
度のうちの最高温度の変化によつて、被焼却物の
投入量や送風量を調節し、これによつて炉内温度
を制禦するものであつて、機構が簡単なうえ、確
実に制禦することが出来る利点があるものであ
る。
As detailed above, the present invention provides that the temperature within the combustion zone has a maximum point, and that the maximum point rises and falls as the upper surface of the combustion zone rises and falls, or in other words, as the amount of material to be incinerated increases and decreases. However, taking advantage of the fact that the temperature shows a nearly constant value in a steady state, we insert thermometers at several points in the combustion zone and measure the temperature at those points. The amount of material to be incinerated and the amount of air blown are adjusted according to changes in the maximum temperature of the furnace, thereby controlling the temperature inside the furnace.The mechanism is simple and the temperature can be controlled reliably. It has the advantage of being able to

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明を適用する流動層型焼却炉の一例を
模式的に示す縦断面図である。 1;焼却炉本体、2;通気盤、3;排気口、
4;送気ダクト、6;投入ダクト、8;温度計。
The figure is a vertical sectional view schematically showing an example of a fluidized bed incinerator to which the present invention is applied. 1; Incinerator main body, 2; Ventilation panel, 3; Exhaust port,
4; Air supply duct, 6; Input duct, 8; Thermometer.

Claims (1)

【特許請求の範囲】[Claims] 1 焼却炉が適正に稼動している状態における燃
焼ゾーン内において、炉内温度の極大点が変異し
得る範囲内の上下数点の温度を測定し、これらの
うちの最高温度と予じめ設定した設定温度との差
を検出し、その差に応じて被焼却物の投入量を調
節し、以つて炉内温度を自動制禦することを特徴
とする流動層型焼却炉に於ける炉内温度制禦方
法。
1. In the combustion zone when the incinerator is operating properly, measure the temperature at several points above and below within the range where the maximum temperature inside the incinerator can vary, and compare the highest temperature of these with the preset temperature. In a fluidized bed incinerator, the temperature inside the furnace is automatically controlled by detecting the difference between the set temperature and the set temperature, and adjusting the amount of material to be incinerated according to the difference. Temperature control method.
JP948779A 1979-01-29 1979-01-29 Furnace temperature control in fluidized layer type incinerator Granted JPS55102813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP948779A JPS55102813A (en) 1979-01-29 1979-01-29 Furnace temperature control in fluidized layer type incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP948779A JPS55102813A (en) 1979-01-29 1979-01-29 Furnace temperature control in fluidized layer type incinerator

Publications (2)

Publication Number Publication Date
JPS55102813A JPS55102813A (en) 1980-08-06
JPS6157963B2 true JPS6157963B2 (en) 1986-12-09

Family

ID=11721581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP948779A Granted JPS55102813A (en) 1979-01-29 1979-01-29 Furnace temperature control in fluidized layer type incinerator

Country Status (1)

Country Link
JP (1) JPS55102813A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990812U (en) * 1982-12-10 1984-06-20 株式会社クボタ Garbage thickness detection device inside the incinerator
JP4540272B2 (en) * 2001-08-22 2010-09-08 中国電力株式会社 Fluidized bed equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914303A (en) * 1972-05-23 1974-02-07
JPS5060062A (en) * 1973-09-28 1975-05-23
JPS5060064A (en) * 1973-09-28 1975-05-23
JPS521980A (en) * 1975-06-03 1977-01-08 Wheelabrator Incineration Controlling system for work of multi fire beds furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914303A (en) * 1972-05-23 1974-02-07
JPS5060062A (en) * 1973-09-28 1975-05-23
JPS5060064A (en) * 1973-09-28 1975-05-23
JPS521980A (en) * 1975-06-03 1977-01-08 Wheelabrator Incineration Controlling system for work of multi fire beds furnace

Also Published As

Publication number Publication date
JPS55102813A (en) 1980-08-06

Similar Documents

Publication Publication Date Title
JP2749701B2 (en) Control method and control device for generation of No. lower x by pollution of combustion air
JPH07111247B2 (en) Waste treatment method
US4347155A (en) Energy efficient perlite expansion process
TW460676B (en) Method for controlling the firing rate of combustion installations
US5660542A (en) Cupola burner
JPH0260932B2 (en)
US4174947A (en) Installation and process for regulating the preheating of coking coal
JPS6157963B2 (en)
GB2270748A (en) Burner control systems
EP0028458B1 (en) Fluidised-bed boilers
JPH08291289A (en) Apparatus for continuously producing charcoal
JPS6023714A (en) Fusing method of industrial waste
JPH0260928B2 (en)
EP1274961B1 (en) A process for the incineration of solid combustible material
JPS62158913A (en) Industrial waste material melting furnace
JPH0260929B2 (en)
JPS6357686B2 (en)
JPH04122488A (en) Waste melting furnace
JPH036407B2 (en)
JPS54147531A (en) Air preheating temperature controller for combustion of air heating furnaces
JPH0435676B2 (en)
JPS627446B2 (en)
SU887905A1 (en) Method of automatic control of heat condition in slot-type furnace
JPH0226129B2 (en)
JPH09159133A (en) Burner