JPH0435676B2 - - Google Patents

Info

Publication number
JPH0435676B2
JPH0435676B2 JP15377588A JP15377588A JPH0435676B2 JP H0435676 B2 JPH0435676 B2 JP H0435676B2 JP 15377588 A JP15377588 A JP 15377588A JP 15377588 A JP15377588 A JP 15377588A JP H0435676 B2 JPH0435676 B2 JP H0435676B2
Authority
JP
Japan
Prior art keywords
temperature
furnace
exhaust gas
fuel
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15377588A
Other languages
Japanese (ja)
Other versions
JPH024191A (en
Inventor
Takeo Yoshigae
Tomio Suzuki
Yoshiaki Kitao
Keiichi Yamazaki
Yasuhiro Tsuneto
Masao Matsuda
Tooru Takeuchi
Tadashi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15377588A priority Critical patent/JPH024191A/en
Publication of JPH024191A publication Critical patent/JPH024191A/en
Publication of JPH0435676B2 publication Critical patent/JPH0435676B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は下水汚泥、都市ごみ等の廃棄物、その
処理灰または石炭灰等を高温下で溶融させる溶融
炉の温度制御方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a temperature control method for a melting furnace that melts waste such as sewage sludge and municipal garbage, its treated ash, coal ash, etc. at high temperatures. .

〔従来の技術〕[Conventional technology]

従来の溶融炉の温度制御方法を第2図によつて
説明する。
A conventional temperature control method for a melting furnace will be explained with reference to FIG.

同図において、Aは施回流溶融炉で、この溶融
炉Aの燃焼室1内がバーナー2により加熱され
て、被溶融物の溶流温度以上の高温状態に保たれ
る。
In the figure, A is a forced flow melting furnace, and the combustion chamber 1 of this melting furnace A is heated by a burner 2 and maintained at a high temperature higher than the melt flow temperature of the material to be melted.

定量供給機3から出て圧縮空気により圧送され
る石炭灰等の被溶融物は、ブロワ4から送られる
燃料用空気と混合されて炉内に投入され、燃料室
1内の高温下で施回しながら溶融スラグ化する。
この溶融スラグは、炉壁に沿つて流下し、燃料室
下方のスラグポツト5(または取出しコンベア)
に収集される。また、燃料室1の燃料ガス(排ガ
ス)は、被溶融物の粒子と分離されて排ガス出口
6に向かい、煙道7を通つて排出される。
The material to be melted, such as coal ash, which comes out of the quantitative feeder 3 and is pumped by compressed air is mixed with the fuel air sent from the blower 4 and then put into the furnace, where it is heated under high temperature in the fuel chamber 1. while turning into molten slag.
This molten slag flows down along the furnace wall and reaches the slag pot 5 (or the take-out conveyor) below the fuel chamber.
will be collected. Further, the fuel gas (exhaust gas) in the fuel chamber 1 is separated from the particles of the material to be melted, heads toward the exhaust gas outlet 6, and is discharged through the flue 7.

溶融炉Aの炉内および炉壁温度(以下、炉温度
という)は、被溶融物の溶流温度以上で、かつ耐
火物保護のために規制される温度以下(たとえば
石灰系脱水ケーキの流動焼却灰の場合で1250℃〜
1350℃、以下、適正炉温度という)に保つ必要が
ある。
The internal and furnace wall temperatures of melting furnace A (hereinafter referred to as furnace temperature) are higher than the melt flow temperature of the material to be melted and lower than the temperature regulated for the protection of refractories (for example, fluidized incineration of lime-based dehydrated cake). 1250℃~ for ash
It is necessary to maintain the temperature at 1350℃ (hereinafter referred to as the appropriate furnace temperature).

この炉温度は被溶融物の供給量等によつて変化
するため、この炉温度を検出し、これに基づいて
バーナー燃料の供給量を調節して炉温度を適性炉
温度に向けて制御する必要がある。
Since this furnace temperature changes depending on the supply amount of the material to be melted, etc., it is necessary to detect this furnace temperature and adjust the supply amount of burner fuel based on this to control the furnace temperature toward the appropriate furnace temperature. There is.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この温度制御方法として、従来は、熱電対等の
温度センサ9を炉壁に埋め込み、この温度センサ
9により炉壁温度を間接的に検出し、かつこの検
出値を炉壁温度演算器10により実際の炉壁温度
相当値に補正して炉温度制御装置11に送り、こ
こで予め設定された適正温度値と比較し、その比
較結果に基づいて、バーナー2に対する燃料供給
量調節用の流量調節弁12の開度を制御して燃料
供給量を制御する構成をとつている。
Conventionally, as this temperature control method, a temperature sensor 9 such as a thermocouple is embedded in the furnace wall, the temperature sensor 9 indirectly detects the furnace wall temperature, and this detected value is converted to the actual furnace wall temperature calculator 10. It is corrected to a value equivalent to the furnace wall temperature and sent to the furnace temperature control device 11, where it is compared with a preset appropriate temperature value, and based on the comparison result, a flow rate adjustment valve 12 for adjusting the amount of fuel supplied to the burner 2 is sent. The fuel supply amount is controlled by controlling the opening degree of the fuel tank.

ところが、上記のように炉壁温度を検出する従
来の方法によると、つぎのような問題があつた。
However, the conventional method of detecting the furnace wall temperature as described above has the following problems.

すなわち、溶融運転中は、溶融スラグが炉壁に
沿つて流下し、炉壁にスラグ層が形成される。こ
のスラグ層は炉壁よりも熱伝導率が低いため、上
記炉壁温度演算器10による補正温度が実際の炉
壁温度よりも低くなる(たとえばスラグ層が10
mmの厚さで形成されると補正値が実際値よりも約
80℃低くなる)。また、炉壁の耐火物がスラグと
の化学反応等によつて損耗すると、逆に、補正温
度が実際温度よりも高くなる(たとえば10mmの厚
さで損耗すると補正値が実際値よりも約30℃高く
なる)。
That is, during the melting operation, molten slag flows down along the furnace wall, and a slag layer is formed on the furnace wall. Since this slag layer has a lower thermal conductivity than the furnace wall, the corrected temperature by the furnace wall temperature calculator 10 becomes lower than the actual furnace wall temperature (for example, the slag layer has a lower thermal conductivity than the furnace wall).
When formed with a thickness of mm, the correction value will be approximately lower than the actual value.
(80℃ lower). In addition, if the refractory in the furnace wall is worn out due to a chemical reaction with slag, the corrected temperature will be higher than the actual temperature (for example, if the refractory is worn to a thickness of 10 mm, the corrected value will be about 30% higher than the actual value). ).

このように、スラグが流下する炉壁での温度検
出を行なう従来方法によると、流下スラグの影響
による検出誤差が大きいため、制御精度が悪いも
のとなつていた。
As described above, according to the conventional method of detecting the temperature at the furnace wall where slag flows down, the detection error due to the influence of the flowing slag is large, resulting in poor control accuracy.

また、炉壁の損耗によつて温度センサ9が炉内
に露出すると、同センサ9が被溶融物の粒子との
接触によつて損傷し、寿命が低下するという問題
があつた。
Furthermore, when the temperature sensor 9 is exposed inside the furnace due to wear and tear on the furnace wall, the sensor 9 is damaged by contact with particles of the melted material, resulting in a shortened service life.

そこで本発明は、炉温度を流下スラグによる影
響を受けることなく正確に検出して精度の良い温
度制御を行なうことができ、また温度センサの損
傷を防止してセンサ寿命を向上させることができ
る溶融炉の温度制御方法を提供するものである。
Therefore, the present invention has developed a melt melting system that can accurately detect the furnace temperature without being affected by the falling slag and perform accurate temperature control, and that can prevent damage to the temperature sensor and extend the sensor life. A method for controlling the temperature of a furnace is provided.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、投入された被溶融物を高温の燃料室
内で溶融させる溶融炉の排ガス通路に温度センサ
を設け、この温度センサにより溶融炉の排ガス温
度を検出し、この検出値に基づいて、燃焼用バー
ナーに対する燃料の供給量を制御するものであ
る。
The present invention provides a temperature sensor in the exhaust gas passage of a melting furnace that melts the charged material to be melted in a high-temperature fuel chamber, detects the exhaust gas temperature of the melting furnace with this temperature sensor, and based on this detected value, This controls the amount of fuel supplied to the burner.

〔作用〕[Effect]

このように、流下スラグとは無関係な、しかも
炉温度と直結した排ガス温度を検出するため、炉
温度を流下スラグの影響を受けることなく正確に
検出することができる。このため、炉温度制御を
精度良く行なうことができる。
In this way, since the exhaust gas temperature is detected which is unrelated to the flowing slag and is directly connected to the furnace temperature, the furnace temperature can be accurately detected without being affected by the flowing slag. Therefore, the furnace temperature can be controlled with high accuracy.

また、排ガス通路で、粒子が分離された排ガス
の温度を検出するため、センサが粒子との接触に
よつて損傷するおそれがなくなる。
Furthermore, since the temperature of the exhaust gas from which the particles have been separated is detected in the exhaust gas passage, there is no risk that the sensor will be damaged by contact with the particles.

〔実施例〕〔Example〕

本発明の実施例を第1図によつて説明する。 An embodiment of the present invention will be explained with reference to FIG.

この実施例における溶融炉Aの基本構成、溶融
炉Aに対する被溶融物および燃料の供給構成等、
第2図に示すものと同じ部分については第2図と
同一符号を付して示し、その重複説明を省略す
る。
In this example, the basic configuration of the melting furnace A, the supply configuration of the material to be melted and fuel to the melting furnace A, etc.
Components that are the same as those shown in FIG. 2 are designated by the same reference numerals as in FIG. 2, and redundant explanation thereof will be omitted.

この実施例装置においては、熱電対等の温度セ
ンサ13を溶融炉Aの排ガス出口6部分に設け、
この温度センサ13によつて燃料室1から排出さ
れる排ガスの温度を検出するようにしている。
In this embodiment, a temperature sensor 13 such as a thermocouple is provided at the exhaust gas outlet 6 of the melting furnace A.
The temperature sensor 13 detects the temperature of exhaust gas discharged from the fuel chamber 1.

この排ガスの温度は、燃料の燃焼による排ガス
の顕熱、および炉内耐火物の蓄熱等の総計として
与えられ、炉温度と直結した(炉温度とほぼ等し
い)温度であるため、この温度センサ13の検出
値が、そのまま炉温度として、従来のように演算
器による補正操作を受けることなく炉温度制御装
置14に送られる。
The temperature of this exhaust gas is given as the sum of the sensible heat of the exhaust gas due to fuel combustion and the heat accumulated in the refractory inside the furnace, and is directly connected to the furnace temperature (almost equal to the furnace temperature), so this temperature sensor 13 The detected value is directly sent as the furnace temperature to the furnace temperature control device 14 without being subjected to a correction operation by an arithmetic unit as in the conventional case.

この炉温度制御装置14においては、予め設定
された適正炉温度値とこのセンサ検出値とを比較
し、その比較結果に基づいて、流量調節弁12に
制御信号(開度増加または減少信号)を出力す
る。これによつて流量調節弁10の開度が調節さ
れ、バーナー2に対する燃料供給量が調節されて
炉温度が適正温度に向けて制御される。
This furnace temperature control device 14 compares a preset appropriate furnace temperature value with this sensor detection value, and sends a control signal (opening increase or decrease signal) to the flow rate control valve 12 based on the comparison result. Output. As a result, the opening degree of the flow control valve 10 is adjusted, the amount of fuel supplied to the burner 2 is adjusted, and the furnace temperature is controlled toward an appropriate temperature.

このように、炉温度を、流下スラグとは無関係
な、しかも炉温度と直結した排ガス温度で検出す
るため、炉温度を流下スラグの影響を一切受けず
に正確に検出することができる。従つて、この正
確な検出温度に基づいて燃料調節、すなわち炉温
度制御が精度良く行なわれる。また、排ガス温度
は、燃料燃焼量との相関性を有し、燃料供給量の
変化が直接この排ガス温度に反映されるため、制
御応答性が良く、制御精度が一層向上することと
なる。
In this way, since the furnace temperature is detected using the exhaust gas temperature, which is unrelated to the flowing slag and is directly connected to the furnace temperature, the furnace temperature can be accurately detected without being affected by the flowing slag. Therefore, fuel adjustment, that is, furnace temperature control, is performed with high precision based on this accurately detected temperature. Furthermore, the exhaust gas temperature has a correlation with the amount of fuel burned, and changes in the amount of fuel supplied are directly reflected in the exhaust gas temperature, resulting in good control responsiveness and further improved control accuracy.

一方、被溶融物の粒子は、その殆どが排ガス出
口6の手前で燃焼ガスから分離されて下降し、排
ガス出口6部分では燃焼室1内と比較して遥かに
粉塵濃度が低いため、この部分に設置された温度
センサ13が粒子との接触によつて損傷するおそ
れがなく、センサ寿命が向上することとなる。
On the other hand, most of the particles of the material to be melted are separated from the combustion gas before the exhaust gas outlet 6 and descend, and since the dust concentration is much lower at the exhaust gas outlet 6 than in the combustion chamber 1, this part There is no risk that the temperature sensor 13 installed in the sensor will be damaged by contact with particles, and the sensor life will be extended.

ところで、バーナー2の空燃比は、燃効率およ
び燃費向上のために一定値(たとえば1.2)に設
定されるが、とくにマイナス圧運転時に炉内への
空気侵入によつて空燃比が変動する場合がある。
Incidentally, the air-fuel ratio of burner 2 is set to a constant value (for example, 1.2) to improve fuel efficiency and fuel efficiency, but the air-fuel ratio may fluctuate due to air entering the furnace, especially during negative pressure operation. be.

そこで、この実施例において、排ガスが通る煙
道7内に、排ガス中の酸素濃度を検出する酸素濃
度センサ15を設け、このセンサ15の検出値に
基づいて燃焼空気量を調節するようにしている。
Therefore, in this embodiment, an oxygen concentration sensor 15 for detecting the oxygen concentration in the exhaust gas is provided in the flue 7 through which the exhaust gas passes, and the amount of combustion air is adjusted based on the detected value of this sensor 15. .

詳述すると、酸素濃度センサ15による検出酸
素濃度は、空燃比演算器16に送られる。この演
算器16では、酸素濃度設定器17によつて設定
された酸素濃度(たとえば空燃比1.2において酸
素濃度3.8%)と検出酸素濃度とを比較し、検出
酸素濃度を設定酸素濃度にするための目標空燃比
を求める。ここで求められた目標空燃比、すなわ
ち設定酸素濃度を実現するために必要な燃焼空気
量の値は空燃比制御装置18に送られる。
Specifically, the oxygen concentration detected by the oxygen concentration sensor 15 is sent to the air-fuel ratio calculator 16. This calculator 16 compares the oxygen concentration set by the oxygen concentration setting device 17 (for example, oxygen concentration 3.8% at an air-fuel ratio of 1.2) with the detected oxygen concentration, and calculates the detected oxygen concentration to make it the set oxygen concentration. Find the target air-fuel ratio. The target air-fuel ratio determined here, that is, the amount of combustion air required to achieve the set oxygen concentration, is sent to the air-fuel ratio control device 18.

この空燃比制御装置18には、前記した炉温度
制御のために炉温度制御装置14から燃料流量調
節弁12に送られる燃料流量指令信号が同時に取
込まれ、この燃料流量との関係から目標空燃比を
実現するための燃焼空気量が割出されて、空気流
量調節弁19に開度指令(流量指令)信号として
出力される。
The air-fuel ratio control device 18 simultaneously receives the fuel flow rate command signal sent from the furnace temperature control device 14 to the fuel flow control valve 12 for the above-mentioned furnace temperature control, and based on the relationship with this fuel flow rate, the target air-fuel ratio The amount of combustion air required to achieve the desired fuel ratio is determined and output to the air flow rate control valve 19 as an opening command (flow rate command) signal.

このようにして、空燃比を熱効率、燃費の面で
最も有利に値に保持することができる。なお、本
発明者の実験によれば、上記の空燃比制御によつ
て燃料原単位(炉温度を10℃上げるのに必要な燃
料の量)を5〜10%低減することができた。
In this way, the air-fuel ratio can be maintained at the most advantageous value in terms of thermal efficiency and fuel efficiency. According to experiments conducted by the present inventor, the fuel consumption rate (the amount of fuel required to raise the furnace temperature by 10° C.) could be reduced by 5 to 10% through the air-fuel ratio control described above.

ところで、排ガス温度を検出する温度センサ1
3は、上記した排ガス出口6に限らず、煙道7に
設置してもよい。
By the way, temperature sensor 1 for detecting exhaust gas temperature
3 may be installed not only at the exhaust gas outlet 6 described above but also at the flue 7.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明によるときは、溶融炉の排
ガス通路に温度センサを設け、この温度センサに
より、流下スラグとは無関係な、しかも炉温度と
直結した排ガス温度を検出するため、炉温度を流
下スラグの影響を受けることなく正確に検出する
ことができる。このため、炉壁温度を検出する従
来方法と比較して、炉温度制御を精度良く行なう
ことができる。
As described above, according to the present invention, a temperature sensor is provided in the exhaust gas passage of the melting furnace, and this temperature sensor detects the exhaust gas temperature, which is unrelated to the flowing slag and is directly connected to the furnace temperature. Accurate detection is possible without being affected by slag. Therefore, compared to the conventional method of detecting the furnace wall temperature, the furnace temperature can be controlled with higher accuracy.

また、粒子が分離され粉塵濃度が低い排ガス通
路に温度センサを設置するため、この温度センサ
の粒子との接触による損傷を防止でき、センサ寿
命を向上させることができる。
Furthermore, since the temperature sensor is installed in the exhaust gas passage where particles are separated and the dust concentration is low, damage to the temperature sensor due to contact with particles can be prevented, and the life of the sensor can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を説明するための溶融
炉および制御系の概略構成図、第2図は従来方法
を説明するための第1図相当図である。 A……溶融炉、1……燃焼室、2……バーナ
ー、6……排ガス出口(排ガス通路)、12……
燃料流量調節弁、13……温度センサ、14……
炉温度制御装置。
FIG. 1 is a schematic diagram of a melting furnace and a control system for explaining an embodiment of the present invention, and FIG. 2 is a diagram corresponding to FIG. 1 for explaining a conventional method. A... Melting furnace, 1... Combustion chamber, 2... Burner, 6... Exhaust gas outlet (exhaust gas passage), 12...
Fuel flow control valve, 13...Temperature sensor, 14...
Furnace temperature control device.

Claims (1)

【特許請求の範囲】[Claims] 1 投入された被溶融物を高温の燃焼室内で溶融
させる溶融炉の排ガス通路に温度センサを設け、
この温度センサにより溶融炉の排ガス温度を検出
し、この検出値に基づいて、燃焼用バーナーに対
する燃料の供給量を制御することを特徴とする溶
融炉の温度制御方法。
1. A temperature sensor is installed in the exhaust gas passage of the melting furnace that melts the input material to be melted in the high-temperature combustion chamber.
A temperature control method for a melting furnace, characterized in that the temperature sensor detects the exhaust gas temperature of the melting furnace, and the amount of fuel supplied to the combustion burner is controlled based on the detected value.
JP15377588A 1988-06-21 1988-06-21 Temperature control of smelting furnace Granted JPH024191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15377588A JPH024191A (en) 1988-06-21 1988-06-21 Temperature control of smelting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15377588A JPH024191A (en) 1988-06-21 1988-06-21 Temperature control of smelting furnace

Publications (2)

Publication Number Publication Date
JPH024191A JPH024191A (en) 1990-01-09
JPH0435676B2 true JPH0435676B2 (en) 1992-06-11

Family

ID=15569869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15377588A Granted JPH024191A (en) 1988-06-21 1988-06-21 Temperature control of smelting furnace

Country Status (1)

Country Link
JP (1) JPH024191A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5203421B2 (en) * 2010-06-04 2013-06-05 中外炉工業株式会社 melting furnace
CN103225953B (en) * 2013-03-28 2015-04-08 河北联合大学 Small-size sintering cup device and method for performing sintering cup test by using same
CN104344741B (en) * 2014-10-28 2016-06-01 中冶南方工程技术有限公司 One utilizes industrial exhaust heat to carry out hydrochloride waste spray roasting system and control method

Also Published As

Publication number Publication date
JPH024191A (en) 1990-01-09

Similar Documents

Publication Publication Date Title
US5957064A (en) Method and apparatus for operating a multiple hearth furnace
US5020451A (en) Fluidized-bed combustion furnace
JPH0435676B2 (en)
WO2008038492A1 (en) Operating method and operation control apparatus for gasification melting furnace
JP4256355B2 (en) Melting furnace control method and control apparatus
JP3902454B2 (en) Combustion control method and waste treatment apparatus
JPS54147531A (en) Air preheating temperature controller for combustion of air heating furnaces
US5113770A (en) Apparatus for incinerating waste materials
JP3868206B2 (en) Waste gasification combustion apparatus and combustion method
JP2003287213A (en) Burning control device for garbage incinerator
JP2637529B2 (en) Furnace temperature and NOx control device
JPH0260928B2 (en)
JPS54147530A (en) Air preheating temperature controller for combustion of air heating furnaces
JPS63187018A (en) Control device for fluidized bed type refuse incinerator
JP3621805B2 (en) Combustion control method in fluidized bed incinerator
JPH0195211A (en) Starting/stopping device of town refuse incinerator
JP2001029725A (en) Control method of temperature of exhaust gas inlet of dust collector of waste melting equipment
JPH0122536B2 (en)
KR100446491B1 (en) Method and device for automatically controlling combustion of incinerator without boiler equipment with temperature detecting apparatus
JP4129224B2 (en) Combustion control method for combustion chamber of waste melting treatment equipment
SU918688A1 (en) Method of automatic regulating of solid fuel burning process
JPH0465290B2 (en)
JPH0260929B2 (en)
JPS59122811A (en) Automatic control method for industrial waste material melting furnace
JPS59122812A (en) Combustion controller of multi-stage incinerator

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

LAPS Cancellation because of no payment of annual fees