JPH0465290B2 - - Google Patents

Info

Publication number
JPH0465290B2
JPH0465290B2 JP4504386A JP4504386A JPH0465290B2 JP H0465290 B2 JPH0465290 B2 JP H0465290B2 JP 4504386 A JP4504386 A JP 4504386A JP 4504386 A JP4504386 A JP 4504386A JP H0465290 B2 JPH0465290 B2 JP H0465290B2
Authority
JP
Japan
Prior art keywords
combustion
amount
air
waste incinerator
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4504386A
Other languages
Japanese (ja)
Other versions
JPS62202926A (en
Inventor
Shinobu Fukuda
Norimasa Shimomura
Hidenori Takiguchi
Tetsushi Hayashi
Seiji Umezaki
Seizo Katsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP4504386A priority Critical patent/JPS62202926A/en
Publication of JPS62202926A publication Critical patent/JPS62202926A/en
Publication of JPH0465290B2 publication Critical patent/JPH0465290B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ごみ焼却炉からの燃焼排ガスを廃熱
ボイラで冷却する施設や、ガス冷却室で燃焼排ガ
スに冷却水を噴霧することにより燃焼排ガスを冷
却する施設などに採用されるごみ焼却炉における
自動燃焼制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applicable to facilities where flue gas from a waste incinerator is cooled with a waste heat boiler, or to cooling flue gas by spraying cooling water onto the flue gas in a gas cooling room. This article relates to an automatic combustion control method in waste incinerators used in cooling facilities.

従来の技術 たとえば火格子式ごみ焼却炉において、燃焼を
安定させるための種々の自動燃焼制御方法が提供
され、また実施されている。これらの制御におい
て、ごみ焼却炉内における各時刻の実際の燃焼量
を検知する方法として、廃熱ボイラ式ではボイラ
における発生蒸気量を指標とし、そして水噴射方
式では噴射水量を指標とした制御が実施されてい
る。また、ごみ焼却炉の出口温度をごみ焼却炉内
における各時刻の実際の燃焼量の指標として制御
している例もある。しかし、これらの指標は、ご
み焼却炉内における実際の燃焼量以外にごみ燃焼
用空気として送入された空気量そのものの影響を
受け、実際の燃焼量を正確に検知しているとは言
い難い欠点があつた。また、ごみ焼却炉内の燃焼
状況の変化に対し、ボイラにおける発生蒸気量の
変化、ガス冷却室における噴射水量の変化、およ
びごみ焼却炉の出口温度の変化は時間遅れを伴う
ため、ごみ焼却炉における瞬時の燃焼量を正確に
検知できない欠点があつた。このため、ボイラに
おける発生蒸気量やガス冷却室における噴射水量
やごみ焼却炉の出口温度を検知し、この検知値を
一定化させる制御は正確さ、迅速さに欠ける面が
あり、完全な自動燃焼制御方法とは言い難い面が
あつた。
BACKGROUND OF THE INVENTION Various automatic combustion control methods for stabilizing combustion have been provided and implemented, for example in grate-type garbage incinerators. In these controls, as a method of detecting the actual combustion amount at each time in the waste incinerator, the waste heat boiler type uses the amount of steam generated in the boiler as an index, and the water injection method uses the amount of injected water as an index. It has been implemented. There is also an example in which the outlet temperature of a waste incinerator is controlled as an index of the actual amount of combustion at each time in the waste incinerator. However, these indicators are affected not only by the actual amount of combustion in the waste incinerator but also by the amount of air sent in as waste combustion air, so it is difficult to say that they accurately detect the actual amount of combustion. There were flaws. In addition, in response to changes in the combustion conditions in the waste incinerator, changes in the amount of steam generated in the boiler, changes in the amount of water injected in the gas cooling room, and changes in the outlet temperature of the waste incinerator are accompanied by a time delay. The drawback was that the instantaneous combustion amount could not be detected accurately. For this reason, the control that detects the amount of steam generated in the boiler, the amount of water injected in the gas cooling room, and the outlet temperature of the waste incinerator and keeps these detected values constant lacks accuracy and speed, and completely automatic combustion is not possible. In some ways, it is difficult to say that this is a control method.

以上から、ごみ焼却炉内における各時刻の実際
の燃焼量をより正確に、より迅速に検知できる指
標を見い出して、この指標を一定化させる制御を
実施すれば、従来の自動燃焼制御に比べて、より
確実な自動燃焼制御を行うことが可能となる。
From the above, if we find an index that can more accurately and quickly detect the actual amount of combustion at each time in a garbage incinerator and implement control to keep this index constant, it will be easier than conventional automatic combustion control. , it becomes possible to perform more reliable automatic combustion control.

そこで最近では、ごみ焼却炉の燃焼制御方法と
して第5図に示す方式が用いられている。この第
5図において、21はごみ22が投入されるごみ
焼却炉で、炉内冷却用送風機23と押込送風機2
4とがそれぞれ配管25,26を介して連通して
いる。ごみ焼却炉21からの燃焼排ガス27は、
廃熱ボイラやガス冷却室などの熱処理装置28か
ら集じん装置29へと流れ、そして誘引送風機3
0を介して煙突31へと流れる。この方式での燃
焼制御は、ごみ焼却炉21内のガス圧が一定とな
るように、誘引送風機30の入口ダンパ32の開
度を制御するとともに、ごみ焼却炉21の出口温
度が一定となるように、炉内冷却用送風機23の
出口ダンパ33の開度を制御して炉冷却用空気量
を制御している。
Therefore, recently, a method shown in FIG. 5 has been used as a combustion control method for garbage incinerators. In this Fig. 5, 21 is a waste incinerator into which waste 22 is thrown, an incinerator cooling blower 23 and a forced air blower 2.
4 are in communication via pipes 25 and 26, respectively. The combustion exhaust gas 27 from the garbage incinerator 21 is
It flows from a heat treatment device 28 such as a waste heat boiler or a gas cooling room to a dust collector 29, and then to an induced blower 3.
0 to the chimney 31. Combustion control using this method involves controlling the opening degree of the inlet damper 32 of the induced blower 30 so that the gas pressure inside the garbage incinerator 21 is constant, and also controlling the opening degree of the inlet damper 32 of the induction blower 30 so that the temperature at the outlet of the garbage incinerator 21 is constant. In addition, the opening degree of the outlet damper 33 of the furnace cooling blower 23 is controlled to control the amount of furnace cooling air.

この場合、ごみ焼却炉21内の燃焼量が変化す
ると、その変化に対応して炉内圧が変化し、その
結果、炉内圧検知器34からの検知信号Eに基づ
いて、炉内圧を一定とするように誘引送風機30
の入口ダンパ32の開度が制御されるため、誘引
送風機30により吸引排気される燃焼排ガス量は
変化する。よつて、誘引送風機30により吸引排
気される燃焼排ガス27の温度組成が大きく変化
しない場合には、誘引送風機30の駆動動力
(KW)はごみ焼却炉21の出口燃焼排ガス量
(Nm3/h)に対応して変化することになる。こ
のため、炉内圧を一定にする上記制御を実施して
いる場合には、誘引送風機30の駆動動力の変化
は、ごみ焼却炉21内の実際の燃焼量の変化を表
わす指標として用いることが可能であり、駆動動
力の変化を駆動電流の変化とした場合、この駆動
電流を用いれば、時間遅れなく、ごみ焼却炉21
内の燃焼状況を正確に検知することが可能にな
る。第6図に誘引送風機30における送風量(排
気ガス量)と所要電流および静圧との関係の一例
を示す。
In this case, when the combustion amount in the waste incinerator 21 changes, the furnace pressure changes correspondingly, and as a result, the furnace pressure is kept constant based on the detection signal E from the furnace pressure detector 34. Induced blower 30
Since the opening degree of the inlet damper 32 is controlled, the amount of combustion exhaust gas sucked and exhausted by the induced blower 30 changes. Therefore, if the temperature composition of the flue gas 27 sucked and exhausted by the induced fan 30 does not change significantly, the driving power (KW) of the induced fan 30 will be equal to the amount of flue gas at the exit of the waste incinerator 21 (Nm 3 /h). will change accordingly. Therefore, when the above-mentioned control to keep the furnace internal pressure constant is performed, the change in the driving power of the induced fan 30 can be used as an index representing the change in the actual combustion amount in the waste incinerator 21. If the change in drive power is taken as the change in drive current, if this drive current is used, the garbage incinerator 21 will be activated without time delay.
This makes it possible to accurately detect the combustion situation inside. FIG. 6 shows an example of the relationship between the amount of air blown (the amount of exhaust gas), the required current, and the static pressure in the induced fan 30.

逆に誘引送風機30の駆動機の電流を一定とす
る制御を実施すれば、燃焼排ガス27の温度およ
び組成がほぼ同じであれば、誘引送風機30によ
り吸引排気される燃焼排ガス量は一定となり、こ
の結果、ごみ焼却炉21内における実際の燃焼量
および燃焼における空気比(実際の送入空気量÷
燃焼に必要な理論空気量)はほぼ一定に制御され
ることになる。
Conversely, if the current of the drive machine of the induced fan 30 is controlled to be constant, if the temperature and composition of the combustion exhaust gas 27 are approximately the same, the amount of combustion exhaust gas sucked and exhausted by the induced fan 30 will be constant; As a result, the actual amount of combustion in the waste incinerator 21 and the air ratio during combustion (actual amount of air supplied ÷
The theoretical amount of air required for combustion is controlled to be almost constant.

これにより誘引送風機30の駆動電流を検知
し、この値が一定となるように押込送風機24の
風量制御端36を制御すれば、押込送風機24と
誘引送風機30により平衡通風量が一定となり、
ごみ焼却炉21内に送入される燃焼用空気量が一
定となるため、実際の燃焼量の一定化制御が可能
となる。
As a result, if the drive current of the induced fan 30 is detected and the air volume control end 36 of the forced air fan 24 is controlled so that this value becomes constant, the equilibrium air flow rate will be constant due to the forced air fan 24 and the induced air fan 30.
Since the amount of combustion air sent into the waste incinerator 21 becomes constant, it becomes possible to control the actual amount of combustion to be constant.

上記した制御の実施時において、ごみ焼却炉2
1内の実際の燃焼量が短期的に変動する場合に
は、その変動はごみ焼却炉21の出口温度の変化
として表われ、その結果、温度検知器35からの
検知信号Fに基づいて出口ダンパ33の開動を制
御し、出口温度の一定化制御が働くため、炉冷却
空気量が変化する。しかし、ごみ焼却炉21内に
送入される燃焼用空気量(=押込送風機により送
風量+炉冷却送風機による送風量)が一定である
ため、ごみ焼却炉21内の実際の燃焼量が増加す
る場合には、炉内冷却用送風機23による送風量
は増加し、燃焼排ガス27中の未燃成分の完全燃
焼化を図るとともに、押込送風機24による送風
量が低下するので、ごみ焼却炉21内における実
際の燃焼量は減少する方向に制御される。
When implementing the above control, the garbage incinerator 2
When the actual amount of combustion in the waste incinerator 21 fluctuates in the short term, the fluctuation appears as a change in the outlet temperature of the waste incinerator 21, and as a result, the outlet damper changes based on the detection signal F from the temperature sensor 35. 33, and the outlet temperature is controlled to be constant, so the amount of furnace cooling air changes. However, since the amount of combustion air sent into the waste incinerator 21 (=the amount of air blown by the forced air blower + the amount of air blown by the furnace cooling fan) is constant, the actual amount of combustion inside the waste incinerator 21 increases. In this case, the amount of air blown by the in-furnace cooling blower 23 increases to completely burn the unburned components in the combustion exhaust gas 27, and the amount of air blown by the forced air blower 24 decreases, so that The actual combustion amount is controlled to decrease.

逆に、ごみ焼却炉23内における実際の燃焼量
が減少する場合には、ごみ焼却炉21の出口温度
一定化制御が働くため、炉内冷却用送風機23に
よる送風量は減少するが、押込送風機24による
ごみ焼却炉21内への送風量が増加するので、ご
み焼却炉21内における実際の燃焼量は増加され
る方向に制御される。
Conversely, when the actual combustion amount in the waste incinerator 23 decreases, the outlet temperature control of the waste incinerator 21 is activated, so the amount of air blown by the in-furnace cooling blower 23 decreases, but the forced air blower Since the amount of air blown into the waste incinerator 21 by the waste incinerator 24 increases, the actual combustion amount in the waste incinerator 21 is controlled to increase.

よつて、押込送風機24、炉内冷却用送風機2
3、誘引送風機30からなる平衡通風系におい
て、誘引送風機30の駆動機の電流が一定となる
ように押込送風機24の風量制御端36を制御す
るとともに、ごみ焼却炉21の出口温度を一定と
するための炉内冷却用送風機23の出口ダンパ3
3の開度制御を併せて実施することにより、ごみ
焼却炉21内における実際の燃焼量の安定化、お
よび一酸化炭素、炭化水素などの未燃ガスの完全
燃焼化を図ることが可能となる。
Therefore, the forced air blower 24 and the furnace cooling air blower 2
3. In the balanced ventilation system consisting of the induced fan 30, the air volume control end 36 of the forced fan 24 is controlled so that the current of the driver of the induced fan 30 is constant, and the outlet temperature of the waste incinerator 21 is kept constant. Outlet damper 3 of the blower 23 for cooling inside the furnace
By performing the opening degree control in step 3, it becomes possible to stabilize the actual combustion amount in the waste incinerator 21 and to achieve complete combustion of unburned gas such as carbon monoxide and hydrocarbons. .

発明が解決しようとする問題点 第4図に、たとえば水噴射方式において、燃焼
空気量制御を実施しない通常運転時における誘引
送風機30の電流値A、押込送風機24の出口ダ
ンパ36の開度(%)、NOx濃度(ppm)〔O212
%換算〕の関係を示す。この通常運転時において
NOx濃度は140〜200ppm〔O212%換算〕であるこ
とから充分に低減されておらず、また出口ダンパ
36は手動操作であることから、たびたび操作
(制御)することは面倒であり、かつ操作後は開
度が一定であることから燃焼の変化によつて
NOx濃度がさらに増加することになる。
Problems to be Solved by the Invention Fig. 4 shows the current value A of the induced fan 30 and the opening degree (%) of the outlet damper 36 of the forced fan 24 during normal operation without combustion air amount control in a water injection system, for example. ), NOx concentration (ppm) [O 2 12
% conversion]. During this normal operation
Since the NOx concentration is 140 to 200 ppm [O 2 12% conversion], it has not been sufficiently reduced, and the outlet damper 36 is manually operated, so it is troublesome to operate (control) it frequently. Since the opening degree remains constant after operation, the change in combustion
NOx concentration will further increase.

問題点を解決するための手段 上記問題点を解決すべく本第1発明のごみ焼却
炉における自動燃焼制御方法は、ごみ焼却炉内に
連通する誘引送風機の駆動機の電流値が一定とな
るように、駆動時の電流値を検知しつつ、この検
知値に基づいて押込送風機の風量制御端を制御す
るとともに、ごみ焼却炉出口の排ガス温度の検知
値に基づいて炉冷却用送風量制御を併せて行うの
であり、さらに本第1発明を主として、従となる
本第2発明は、燃焼火格子上のごみ層厚を検知
し、この検知値に基づいて乾燥火格子および燃焼
火格子の速度制御を行うものである。
Means for Solving the Problems In order to solve the above problems, the automatic combustion control method for a garbage incinerator according to the first invention is such that the current value of the drive machine of the induced blower communicating with the inside of the garbage incinerator is constant. In addition, while detecting the current value during operation, the air volume control end of the forced fan is controlled based on this detected value, and the air volume for cooling the waste incinerator is also controlled based on the detected value of the exhaust gas temperature at the waste incinerator outlet. In addition to the first aspect of the present invention, the secondary aspect of the present invention detects the thickness of the dust layer on the combustion grate, and controls the speed of the drying grate and the combustion grate based on this detected value. This is what we do.

作 用 上記した本第1発明の構成によると、押込送風
機の風量制御端を随時、自動的に制御し得、さら
に本第2発明の構成によると、従としてごみ層厚
を自動的に一定化させ得る。
Effect According to the configuration of the first invention described above, the air volume control end of the forced air blower can be automatically controlled at any time, and furthermore, according to the configuration of the second invention, the thickness of the dust layer can be automatically kept constant. can be done.

実施例 以下に本発明の一実施例を第1図〜第3図に基
づいて説明する。
Embodiment An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

第1図において、1はごみ2が投入されるごみ
焼却炉で、炉内冷却用送風機3と押込送風機4と
がそれぞれ配管5,6を介して連通している。ご
み焼却炉1からの燃焼排ガス7は、廃熱ボイラや
ガス冷却室などの熱処理装置8から集じん装置9
へと流れ、そして誘引送風機10を介して煙突1
1へと流れる。12は誘引送風機10の入口ダン
パ、13は炉内冷却用送風機3の出口ダンパ、1
4は炉内圧検知器、15は温度検知器、16は押
込送風機4の出口ダンパ、17は電流検知器を示
す。また18Xは乾燥火格子、18Yは燃焼火格
子、18Zは後燃焼火格子を示す。
In FIG. 1, reference numeral 1 denotes a waste incinerator into which waste 2 is thrown, and an in-furnace cooling blower 3 and a forced air blower 4 are connected through pipes 5 and 6, respectively. The combustion exhaust gas 7 from the garbage incinerator 1 is transferred from a heat treatment device 8 such as a waste heat boiler or a gas cooling room to a dust collection device 9.
through the induced blower 10 to the chimney 1
Flows to 1. 12 is an inlet damper of the induced blower 10; 13 is an outlet damper of the furnace cooling blower 3;
4 is a furnace pressure detector, 15 is a temperature sensor, 16 is an outlet damper of the forced air blower 4, and 17 is a current detector. Further, 18X indicates a drying grate, 18Y indicates a combustion grate, and 18Z indicates a post-combustion grate.

第3図に、たとえば水噴射方式において、前述
の燃焼空気制御を用いて低空気比運転を実施した
場合の誘引送風機10の電流値A、押込送風機4
の出口ダンパ16の開度(%)、NOx濃度
(ppm)〔O212%換算〕の関係を示す。第1図、
第3図において、誘引送風機10の駆動電流値を
電流検知器17で検知し、その検知信号Gによつ
て、誘引送風機10の駆動電流値が一定となるよ
うに、押込送風機4の出口ダンパ16の開度を自
動制御すれば、誘引送風機10による燃焼排ガス
7の吸引排気量および押込送風機4による燃焼用
空気量が安定となるため、NOx濃度が通常運転
時の140〜200ppm(第4図)と比較して80〜
140ppm〔O212%換算〕と大幅に低減できた。
FIG. 3 shows the current value A of the induced blower 10 and the forced blower 4 when low air ratio operation is performed using the above-mentioned combustion air control in a water injection system, for example.
The relationship between the opening degree (%) of the outlet damper 16 and the NOx concentration (ppm) [O 2 12% conversion] is shown. Figure 1,
In FIG. 3, the drive current value of the induced fan 10 is detected by the current detector 17, and the output damper 16 of the forced fan 4 is detected by the detection signal G so that the drive current value of the induced fan 10 becomes constant. If the opening degree of is automatically controlled, the suction and exhaust amount of combustion exhaust gas 7 by the induced fan 10 and the amount of combustion air by the forced fan 4 will be stabilized, so that the NOx concentration will be reduced to 140 to 200 ppm during normal operation (Figure 4). 80~ compared to
It was significantly reduced to 140ppm [O 2 12% equivalent].

このように誘引送風機10の駆動電流値が一定
となるように、押込送風機4の出口ダンパ16の
開度を自動的に制御すれば、ごみ焼却炉1内にお
ける実際の燃焼量の安定化が、廃熱ボイラにおけ
る発生蒸気量やガス冷却室における噴射水量やご
み焼却炉1の出口温度を指標とした従来の燃焼制
御方法と比較して、より正確で、より迅速な制御
が行える。また上記指標を用いる場合、検出器の
劣化や保守点検および校正といつた作業が必要と
なるが、本発明のように誘引送風機10の駆動電
流を指標とする場合、これらの問題はなくなる。
If the opening degree of the outlet damper 16 of the forced air blower 4 is automatically controlled so that the drive current value of the induced air blower 10 is kept constant in this way, the actual combustion amount in the waste incinerator 1 can be stabilized. Compared to conventional combustion control methods that use the amount of steam generated in the waste heat boiler, the amount of water injected in the gas cooling chamber, or the outlet temperature of the waste incinerator 1 as indicators, more accurate and faster control can be achieved. Furthermore, when using the above index, deterioration of the detector and work such as maintenance and inspection are required, but when the drive current of the induced fan 10 is used as the index as in the present invention, these problems are eliminated.

前記の制御を実施することにより、ごみ焼却炉
1内の燃焼火格子18Y上における実際の燃焼量
の安定化が可能となるが、ごみ2の発熱量、含水
率、元素組成などのごみ2の燃焼性に関する性状
が急激に変化する場合には、燃焼火格子18Y上
のごみ2の燃焼量を制御し、燃焼を安定化するこ
とが困難になる場合がある。このような場合に
は、前述の燃焼空気量制御を実施するだけでな
く、さらに燃焼火格子上のごみ層厚を検知し、こ
のごみ層厚が一定となるように、乾燥火格子18
Xの速度および燃焼火格子18Yの速度を調整す
る制御を併せて実施することにより、燃焼火格子
上における燃焼量の安定化をより確実に行うこと
ができる。
By implementing the above control, it is possible to stabilize the actual combustion amount on the combustion grate 18Y in the waste incinerator 1, but it is possible to stabilize the actual combustion amount on the combustion grate 18Y in the waste incinerator 1. When the properties related to combustibility change rapidly, it may become difficult to control the combustion amount of the waste 2 on the combustion grate 18Y and stabilize the combustion. In such a case, in addition to controlling the amount of combustion air described above, the thickness of the dust layer on the combustion grate is also detected, and the drying grate 18 is adjusted so that the thickness of the dust layer remains constant.
By simultaneously controlling the speed of X and the speed of combustion grate 18Y, the amount of combustion on the combustion grate can be stabilized more reliably.

ごみ層厚の検知方法としては、従来から用いら
れている火格子上のごみ層厚を超音波や光などを
用いて直接検出する方法、またはごみ層を通過す
る燃焼空気量とごみ層前後の空気(ガス)圧力差
から計算により算出する方法などが利用できる。
これらの方法により検出した燃焼火格子18Y上
のごみ層厚が設定するごみ層厚より厚い場合に
は、乾燥火格子18Xの速度を遅くする(乾燥火
格子が間欠的に作動する場合は、その休止時間を
長くする)操作を行なう。また、この時に、燃焼
火格子18Yの速度を速くする(燃焼火格子が間
欠的に作動する場合は、その休止時間を短くす
る)操作を行えば、燃焼火格子18Y上のごみ層
厚をより迅速に薄くすることが可能となる。逆
に、検出した燃焼火格子18Y上のごみ層厚が設
定するごみ層厚より薄い場合には、乾燥火格子1
8Xの速度を速くする(乾燥火格子が間欠的に作
動する場合は、その休止時間を短くする)操作を
行う。また、この時に、燃焼火格子18Yの速度
を遅くする(燃焼火格子が間欠的に作動する場合
は、その休止時間を長くする)操作を行えば、燃
焼火格子18Y上のごみ層厚をより迅速に厚くす
ることが可能となる。
The thickness of the garbage layer can be detected by directly detecting the thickness of the garbage layer on the grate, which has been conventionally used, using ultrasonic waves or light, or by measuring the amount of combustion air passing through the garbage layer and the amount before and after the garbage layer. A method such as calculation based on the air (gas) pressure difference can be used.
If the thickness of the dust layer on the combustion grate 18Y detected by these methods is thicker than the set dust layer thickness, the speed of the drying grate 18X is slowed down (if the drying grate operates intermittently, (extend the pause time). At this time, if you increase the speed of the combustion grate 18Y (if the combustion grate operates intermittently, shorten its pause time), the thickness of the dust layer on the combustion grate 18Y can be increased. It becomes possible to quickly thin the film. Conversely, if the detected dust layer thickness on the combustion grate 18Y is thinner than the set dust layer thickness, the drying grate 1
Increase the speed of 8X (if the drying grate operates intermittently, shorten its downtime). Also, at this time, if the speed of the combustion grate 18Y is slowed down (if the combustion grate operates intermittently, the pause time is lengthened), the thickness of the dust layer on the combustion grate 18Y can be further reduced. It becomes possible to quickly increase the thickness.

上記の燃焼空気量制御においては、押込送風機
4の出口ダンパ16の開度を制御するとしたが、
ごみ質によつて、ごみ焼却炉1内の火格子18上
における燃焼域は変化する。ごみ2の発熱量が低
い場合には、燃焼火格子18Yを中心に一部が後
燃焼火格子18Zにかけた火炎燃焼域となる。こ
のため、ごみ焼却炉1内の火格子18上の火炎燃
焼域を、ごみ2の発熱量に対応させて適正な位置
を保つために、第1図に示す乾燥火格子下ダンパ
19X、燃焼火格子下ダンパ19Y、後燃焼火格
子下ダンパ19Zを手動操作によつて、その時々
のごみ質にあつたダンパ開度とすることにより、
ごみ質が変動した場合においても、ごみ焼却炉1
内の火格子上の燃焼域に対応させて、押込送風機
4により燃焼用空気を圧入できるので、ごみ焼却
炉1内における燃焼量の安定化が行える。
In the above combustion air amount control, the opening degree of the outlet damper 16 of the forced air blower 4 is controlled.
The combustion area on the grate 18 in the waste incinerator 1 changes depending on the quality of the waste. When the calorific value of the waste 2 is low, there is a flame combustion area centered around the combustion grate 18Y and a part of which is applied to the post-combustion grate 18Z. Therefore, in order to keep the flame combustion area on the grate 18 in the garbage incinerator 1 at an appropriate position in accordance with the calorific value of the garbage 2, the damper 19X under the drying grate shown in FIG. By manually operating the damper under the grate 19Y and the damper under the post-combustion grate 19Z, the damper opening degree is adjusted to suit the type of garbage at the time.
Even if the quality of waste changes, the waste incinerator 1
Since the forced air blower 4 can pressurize combustion air in accordance with the combustion area on the grate inside the waste incinerator 1, the amount of combustion inside the waste incinerator 1 can be stabilized.

ごみ焼却炉1の出口温度制御による炉冷却空気
の送入により、ごみ焼却炉1の出口温度の安定化
および燃焼排ガス中の未燃分の完全燃焼化が図れ
るが、炉冷却空気を多量に1箇所から送入する
と、炉冷却空気送入位置において未燃ガスが激し
く局所燃焼を起こし、燃焼排ガス中のNOx濃度
の増加、炉壁へのクリンカ付着といつた弊害が生
じる。逆に、この炉冷却用空気量を減少させすぎ
ると、燃焼排ガス7中の未燃成分の燃焼が不十分
となり、燃焼排ガス7中の一酸化炭素、炭化水素
など未燃分が増加するという弊害がでる。このた
め、炉冷却空気の送入位置および送入量は、第2
図に示すように、ごみ焼却炉1の出口温度を一定
化制御により必要とされる炉冷却空気量に応じ
て、その送入位置を、量が多くなるにつれて、第
1図に示した炉冷却空気圧入位置X,Y,Zにお
いて、Xのみ、XとYの2箇所、XとYとZの3
箇所から炉冷却空気を送入する方式とする。この
方式によつて炉冷却空気送入位置および送入量を
制御することにより、燃焼排ガス7中の未燃分の
完全燃焼が実施できるとともに、燃焼排ガス7中
の未燃分の完全燃焼が実施できるとともに、燃焼
排ガス7中の未燃ガスの局所燃焼が防止でき、こ
の結果、NOx濃度の増加が防止できるとともに、
炉壁へのクリンカ付着が防止可能となる。
By supplying the furnace cooling air by controlling the outlet temperature of the waste incinerator 1, it is possible to stabilize the outlet temperature of the waste incinerator 1 and completely burn out the unburned matter in the combustion exhaust gas. If the unburned gas is introduced from a certain point, the unburned gas will cause intense local combustion at the furnace cooling air supply point, causing problems such as an increase in the NOx concentration in the combustion exhaust gas and clinker adhesion to the furnace wall. On the other hand, if the amount of air for cooling the furnace is reduced too much, the combustion of unburned components in the flue gas 7 will be insufficient, resulting in an increase in unburned components such as carbon monoxide and hydrocarbons in the flue gas 7. comes out. Therefore, the feeding position and feeding amount of the furnace cooling air are
As shown in the figure, depending on the amount of furnace cooling air required by constant control of the outlet temperature of the waste incinerator 1, the inlet position is changed as the amount increases, the furnace cooling air shown in FIG. At the air injection positions X, Y, and Z, only X, 2 locations at X and Y, and 3 locations at X, Y, and Z
The method will be to introduce furnace cooling air from a certain point. By controlling the feeding position and amount of the furnace cooling air using this method, it is possible to achieve complete combustion of the unburned components in the combustion exhaust gas 7, as well as complete combustion of the unburned components in the combustion exhaust gas 7. At the same time, local combustion of unburned gas in the combustion exhaust gas 7 can be prevented, and as a result, an increase in NOx concentration can be prevented, and
It is possible to prevent clinker from adhering to the furnace wall.

次に、ごみ質が長期的に変動する場合には、同
じ量を焼却し、燃焼に関する理論空気比を同じと
すれば、ごみの発熱量の増減に対応して燃焼排ガ
ス量も増減することになる。このため、誘引送風
機10の駆動電流がごみの発熱量に対応して変動
することになる。よつて、ごみの発熱量の長期的
な変動に対しては、誘引送風機10の電流設定値
を変更することにより、ごみの発熱量が変化した
場合においても、空気比が一定の燃焼量安定化制
御が可能となる。
Next, if the quality of waste changes over the long term, if the same amount is incinerated and the theoretical air ratio for combustion is the same, the amount of combustion exhaust gas will increase or decrease in response to the increase or decrease in the calorific value of the garbage. Become. For this reason, the drive current of the induced blower 10 will vary depending on the amount of heat generated by the waste. Therefore, in response to long-term fluctuations in the calorific value of garbage, by changing the current setting value of the induced blower 10, even when the calorific value of the garbage changes, the combustion amount can be stabilized at a constant air ratio. Control becomes possible.

上記実施例では、ごみ焼却炉1の形式を火格子
式焼却炉としているが、本第1発明の自動燃焼制
御方法では、詳細な点を除けば第3図の如くまと
められるので、ごみ焼却炉1の形式は、火格子式
焼却炉のみでなく、流動層式焼却炉、多段炉式焼
却炉、ロータリーキルン式焼却炉、固定床式焼却
炉、噴霧焼却式焼却炉などのあらゆる焼却炉に適
用できるものである。
In the above embodiment, the type of garbage incinerator 1 is a grate type incinerator, but in the automatic combustion control method of the first invention, the garbage incinerator 1 is summarized as shown in FIG. 3 except for the details. Type 1 can be applied not only to grate-type incinerators but also to all types of incinerators such as fluidized bed incinerators, multi-stage incinerators, rotary kiln incinerators, fixed bed incinerators, and spray incinerators. It is something.

第1図においては、炉内冷却用送風機3を別途
設置した場合のフローシートを示したが、これは
炉内冷却用送風機3を設けず、押込送風機4の出
口からの分岐ダクトを炉内冷却用空気として用い
てもよい。この場合には、その分岐部のダンパ
を、第1図における炉内冷却用送風機3の出口ダ
ンパ20A,20B,20Cにおきかえれば、上
記自動燃焼制御方法の適用が可能である。
In Fig. 1, a flow sheet is shown in the case where the blower 3 for cooling the furnace is installed separately, but in this case, the blower 3 for cooling the furnace is not installed, and the branch duct from the outlet of the forced fan 4 is used for cooling the furnace. It may also be used as air for use. In this case, the automatic combustion control method described above can be applied by replacing the dampers at the branched portions with the outlet dampers 20A, 20B, and 20C of the in-furnace cooling blower 3 shown in FIG.

また本実施例は、炉内圧制御(排ガス量制御)
を誘引送風機10の入口ダンパ12で行う場合で
あるが、この入口ダンパ12と誘引送風機10の
回転数制御の組合せで行う場合にも本方式が適用
できる。
In addition, in this example, the furnace pressure control (exhaust gas amount control)
Although this is the case where this is performed using the inlet damper 12 of the induced fan 10, the present method can also be applied to cases where this method is performed by a combination of the inlet damper 12 and the rotation speed control of the induced fan 10.

発明の効果 上記構成の本第1発明の自動燃焼制御方法を実
施することにより、従来の廃熱ボイラにおける発
生蒸気量、ガス冷却室における噴射水量、ごみ焼
却炉の出口温度を検知し、これらの値を安定化さ
せるように押込送風機の出口ダンパ開度、各火格
子速度などを制御する制御方法を実施する場合よ
りも、ごみ焼却炉内の実際の燃焼量がより正確
に、より迅速に検知できるとともに、押込送風機
の風量制御端を操作端とするために、ごみ焼却炉
内における燃焼性の応答が非常に早く、かつ、ご
み焼却炉における実際の燃焼量を一定に保つこと
が可能となる。また、ごみ質が変動して、ごみ焼
却炉内の燃焼量が変動する場合にも、上記の制御
を実施すれば、ごみ焼却炉内における燃焼量の安
定化が図れるだけでなく、燃焼排ガス中の未燃分
の完全燃焼化も可能になる。さらに本第1発明の
自動燃焼制御方法は、焼却量に対応する燃焼用空
気量(押込送風機による送風量+炉冷却送風機に
よる送風量)を一定量に制御する方法であるた
め、誘引送風機の電流設定値を増減させることに
より、ごみ焼却炉に送入する燃焼空気量を制御で
きる長所がある。このため、ごみ焼却炉内の実際
の燃焼量が同じ場合においては、この電流設定値
を操作することにより、ごみ焼却炉内の燃焼に関
する空気比を調整することが可能となる。このた
め、本第1発明の自動燃焼制御方法を用いれば、
安定した低空気比運転が実施でき、NOx低減を
目的とした炉内水噴霧を併用すれば、窒素酸化物
(NOx)がさらに大幅に低減できる運転を実施で
きる。
Effects of the Invention By implementing the automatic combustion control method of the first invention with the above configuration, the amount of steam generated in the conventional waste heat boiler, the amount of water injected in the gas cooling chamber, and the outlet temperature of the waste incinerator can be detected. The actual combustion amount in the waste incinerator can be detected more accurately and more quickly than when implementing a control method that controls the outlet damper opening of the forced air blower, each grate speed, etc. to stabilize the value. In addition, since the air volume control end of the forced air blower is used as the operating end, the response of combustibility in the waste incinerator is extremely fast, and it is possible to keep the actual amount of combustion in the waste incinerator constant. . Furthermore, even if the amount of combustion in the waste incinerator fluctuates due to changes in waste quality, implementing the above control will not only stabilize the amount of combustion in the incinerator, but also increase the amount of combustion in the combustion exhaust gas. It also becomes possible to completely burn the unburned matter. Furthermore, since the automatic combustion control method of the first invention is a method of controlling the amount of combustion air corresponding to the amount of incineration (the amount of air blown by the forced fan + the amount of air blown by the furnace cooling fan) to a constant amount, the current of the induced fan It has the advantage that the amount of combustion air sent to the waste incinerator can be controlled by increasing or decreasing the set value. Therefore, when the actual combustion amount in the garbage incinerator is the same, by manipulating this current setting value, it is possible to adjust the air ratio regarding combustion in the garbage incinerator. Therefore, if the automatic combustion control method of the first invention is used,
Stable low air ratio operation can be carried out, and if in-furnace water spraying is used to reduce NOx, it is possible to carry out operation that can further significantly reduce nitrogen oxides (NOx).

上記の燃焼空気量制御以外に、本第2発明の燃
焼火格子上のごみ層厚の安定化制御を併わせて実
施すれば、ごみ質が急激に変化した場合にも、ご
み焼却炉内における実際のごみの燃焼量の安定化
制御が実施できる。
In addition to the combustion air amount control described above, if the stabilization control of the thickness of the waste layer on the combustion grate of the second invention is also carried out, even if the quality of waste changes rapidly, the It is possible to carry out stabilization control of the amount of actual garbage combustion.

長期的なごみの発熱量の変動に対しては、誘引
排風機の電流設定値を変更することにより対処可
能であるが、この設定値変更については、過去の
運転データから算出されるごみの発熱量および計
画焼却量から算出される設定電流値を本自動燃焼
制御装置に自動的に入力し、設定電流値が自動的
に更新できるシステムとすることにより、ごみの
発熱量の変動に対しても、手動操作で誘引送風機
の電流設定値を変更する操作が不要となる。
Long-term fluctuations in the calorific value of waste can be dealt with by changing the current settings of the induced exhaust fan. By automatically inputting the set current value calculated from the planned incineration amount into this automatic combustion control device and creating a system that can automatically update the set current value, it is possible to respond to fluctuations in the calorific value of waste. There is no need to manually change the current setting value of the induced blower.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の一実施を示し、第1
図はフローシート図、第2図は炉冷却空気量と送
入位置の関係を示す説明図、第3図は自動運転時
における運転記録の一例を示す説明図、第4図〜
第6図は従来例を示し、第4図は手動運転時にお
ける運転記録の一例を示す説明図、第5図はフロ
ーシート図、第6図は送風機における送風量と所
要電流および静圧の関係を示す説明図である。 1……ごみ焼却炉、3……炉内冷却用送風機、
4……押込送風機、8……熱処理装置、9……集
じん装置、10……誘引送風機、12……入口ダ
ンパ、13……出口ダンパ、14……炉内圧検知
器、15……温度検知器、16……出口ダンパ、
17……電流検知器、18X……乾燥火格子、1
8Y……燃焼火格子。
1 to 3 show one implementation of the present invention, and the first
The figure is a flow sheet diagram, Figure 2 is an explanatory diagram showing the relationship between the amount of furnace cooling air and the feeding position, Figure 3 is an explanatory diagram showing an example of an operation record during automatic operation, and Figures 4-
Fig. 6 shows a conventional example, Fig. 4 is an explanatory diagram showing an example of an operation record during manual operation, Fig. 5 is a flow sheet diagram, and Fig. 6 shows the relationship between air flow rate, required current, and static pressure in the blower. FIG. 1... Garbage incinerator, 3... Furnace cooling blower,
4... Forced blower, 8... Heat treatment device, 9... Dust collector, 10... Induced fan, 12... Inlet damper, 13... Outlet damper, 14... Furnace pressure detector, 15... Temperature detection vessel, 16...exit damper,
17... Current detector, 18X... Dry grate, 1
8Y... Combustion grate.

Claims (1)

【特許請求の範囲】 1 ごみ焼却炉内に連通する誘引送風機の駆動機
の電流値が一定となるように、駆動時の電流値を
検知しつつ、この検知値に基づいて押込送風機の
風量制御端を制御するとともに、ごみ焼却炉出口
の排ガス温度の検知値に基づいて炉冷却用送風量
制御を併せて行うことを特徴とするごみ焼却炉に
おける自動燃焼制御方法。 2 ごみ焼却炉内に連通する誘引送風機の駆動機
の電流値が一定となるように、駆動時の電流値を
検知しつつ、この検知値に基づいて押込送風機の
風量制御端を制御するとともに、ごみ焼却炉出口
の排ガス温度の検知値に基づいて炉冷却用送風量
制御を併せて行い、さらに燃焼火格子上のごみ層
厚を検知し、この検知値に基づいて乾燥火格子お
よび燃焼火格子の速度制御を行うことを特徴とす
るごみ焼却炉における自動燃焼制御方法。
[Scope of Claims] 1. While detecting the current value during driving so that the current value of the drive machine of the induced fan connected to the waste incinerator is constant, the air volume of the forced fan is controlled based on this detected value. 1. An automatic combustion control method in a waste incinerator, characterized by controlling the temperature of the exhaust gas at the waste incinerator outlet, and controlling the amount of blowing air for cooling the waste incinerator based on a detected value of the exhaust gas temperature at the outlet of the waste incinerator. 2. While detecting the current value during driving so that the current value of the drive machine of the induced fan connected to the garbage incinerator remains constant, the air volume control end of the forced fan is controlled based on this detected value, and The air flow rate for cooling the furnace is controlled based on the detected value of the exhaust gas temperature at the waste incinerator outlet, and the thickness of the waste layer on the combustion grate is also detected, and based on this detected value, the drying grate and combustion grate are An automatic combustion control method in a garbage incinerator characterized by controlling the speed of.
JP4504386A 1986-02-28 1986-02-28 Method of automatically controlling combustion in incinerator Granted JPS62202926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4504386A JPS62202926A (en) 1986-02-28 1986-02-28 Method of automatically controlling combustion in incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4504386A JPS62202926A (en) 1986-02-28 1986-02-28 Method of automatically controlling combustion in incinerator

Publications (2)

Publication Number Publication Date
JPS62202926A JPS62202926A (en) 1987-09-07
JPH0465290B2 true JPH0465290B2 (en) 1992-10-19

Family

ID=12708338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4504386A Granted JPS62202926A (en) 1986-02-28 1986-02-28 Method of automatically controlling combustion in incinerator

Country Status (1)

Country Link
JP (1) JPS62202926A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015068580A (en) * 2013-09-30 2015-04-13 Jx日鉱日石金属株式会社 Fly-ash-deposition prevention system and fly ash deposition prevention method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5348714B2 (en) * 2008-12-05 2013-11-20 新日鉄住金エンジニアリング株式会社 Combustion control method and combustion control apparatus for waste melting furnace
CN112728948A (en) * 2019-10-14 2021-04-30 廊坊京磁精密材料有限公司 Cooling air volume control system and method for neodymium iron boron sintering process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015068580A (en) * 2013-09-30 2015-04-13 Jx日鉱日石金属株式会社 Fly-ash-deposition prevention system and fly ash deposition prevention method

Also Published As

Publication number Publication date
JPS62202926A (en) 1987-09-07

Similar Documents

Publication Publication Date Title
JPH0465290B2 (en)
JPS59180212A (en) Combustion controller in refuse incinerator
JPS6116889B2 (en)
WO1991014915A1 (en) Method of controlling combustion in fluidized bed incinerator
JPH05113208A (en) Controlling method for co in incinerator
KR900006880B1 (en) Combustion control device
JPH01302018A (en) Automatic combustion control method of rotary type incinerator
JP3717221B2 (en) Waste incinerator exhaust gas control system
JP2000304240A (en) Combustion facility
JP2623404B2 (en) Operating method and apparatus of fluidized bed incinerator
JPH11270829A (en) Combustion control of refuse in refuse incinerator
JP2001272170A (en) Operating method for waste drying facility
JP2762054B2 (en) Combustion control method for fluidized bed incinerator
JP2889117B2 (en) Garbage incinerator
JP3034418B2 (en) Rotary incinerator
JPH0217775B2 (en)
JPH1114027A (en) Method of controlling combustion of incinerator
JP2003108231A (en) Flow-rate control apparatus for fluid
JPH06300239A (en) Dioxin restraining control method of combustion device
JPH1061929A (en) Control method for supplying secondary combustion air in combustion device
JPH0157245B2 (en)
JPS60232413A (en) Method to control fans in incinerator
KR100446491B1 (en) Method and device for automatically controlling combustion of incinerator without boiler equipment with temperature detecting apparatus
JP2000088227A (en) Waste incinerator equipment and its control method
JPS59231308A (en) Nox control method of combustion furnace