JPS6157921B2 - - Google Patents

Info

Publication number
JPS6157921B2
JPS6157921B2 JP12107380A JP12107380A JPS6157921B2 JP S6157921 B2 JPS6157921 B2 JP S6157921B2 JP 12107380 A JP12107380 A JP 12107380A JP 12107380 A JP12107380 A JP 12107380A JP S6157921 B2 JPS6157921 B2 JP S6157921B2
Authority
JP
Japan
Prior art keywords
load
pressure
turbine
steam
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12107380A
Other languages
Japanese (ja)
Other versions
JPS5746006A (en
Inventor
Hiroshi Hanaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12107380A priority Critical patent/JPS5746006A/en
Publication of JPS5746006A publication Critical patent/JPS5746006A/en
Publication of JPS6157921B2 publication Critical patent/JPS6157921B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 本発明はタービン圧力制御方式に係り、特に、
複合サイクル発電プラントの変圧運転時の加減弁
制御特性を向上させるに好適なタービン圧力制御
方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a turbine pressure control system, and in particular,
The present invention relates to a turbine pressure control method suitable for improving control valve control characteristics during variable pressure operation of a combined cycle power plant.

第1図は複合サイクル発電プラントの系統図で
ある。
Figure 1 is a system diagram of a combined cycle power plant.

第1図に示すように複合サイクル発電プラント
は、ガスタービンと、その排ガス熱を利用して蒸
気を発生させ、この発生蒸気で駆動される蒸気タ
ービンとより成る。すなわち、ガスタービン1
は、ガスタービン発電機2と、ガスタービン排ガ
ス4を利用した排熱回収ボイラ5と、排熱回収ボ
イラ発生蒸気を利用した蒸気タービン6、及び蒸
気タービン発電機7を主機として構成される。水
蒸気系は、一般の蒸気タービンサイクルと同様に
復水器8、復水ポンプ9、脱気器10、給水ポン
プ11、排熱回収ボイラ5、から主蒸気管及び蒸
気タービン加減弁12を経て蒸気タービン6に至
る。ガスタービン及び排熱回収ボイラ5は複数台
である事もありその場合、給水ポンプ11の出口
ヘツダ以降、及び蒸気タービン加減弁前ヘツダ迄
の系統が複数台並置される。
As shown in FIG. 1, a combined cycle power plant consists of a gas turbine and a steam turbine that generates steam using the exhaust gas heat and is driven by the generated steam. That is, gas turbine 1
The main engines are a gas turbine generator 2, an exhaust heat recovery boiler 5 using gas turbine exhaust gas 4, a steam turbine 6 using steam generated by the exhaust heat recovery boiler, and a steam turbine generator 7. As in a general steam turbine cycle, the steam system starts with a condenser 8, a condensate pump 9, a deaerator 10, a feed water pump 11, an exhaust heat recovery boiler 5, and then passes through a main steam pipe and a steam turbine control valve 12. This leads to turbine 6. There may be a plurality of gas turbines and exhaust heat recovery boilers 5, and in that case, a plurality of systems from the outlet header of the feed water pump 11 to the header in front of the steam turbine control valve are arranged in parallel.

また、ガスタービン発電機および蒸気タービン
を一本の軸で直結する構成もある。
There is also a configuration in which the gas turbine generator and the steam turbine are directly connected through one shaft.

第1図のようなプラントにおける負荷制御方式
をガスタービン2台の場合について説明する。
A load control method in a plant as shown in FIG. 1 will be explained in the case of two gas turbines.

発電機2,7の各々に負荷検出器14,15を
設け、その検出信号を負荷制御装置16にGT
(ガスタービン)負荷信号20a(No.1GTが2
0a、No.2GTが20b)及びST(蒸気タービ
ン)負荷信号21として取り込み、この負荷制御
装置16でガスタービン燃料ポンプ3あるいは燃
料弁を操作する。なお、蒸気タービン加減弁12
は蒸気タービン前圧力信号13に基づくタービン
前圧制御装置17により制御する。
Load detectors 14 and 15 are provided in each of the generators 2 and 7, and the detection signals are sent to the load control device 16 by GT.
(Gas turbine) Load signal 20a (No.1GT is 2
0a, No. 2GT (20b) and ST (steam turbine) load signal 21, and this load control device 16 operates the gas turbine fuel pump 3 or fuel valve. In addition, the steam turbine control valve 12
is controlled by a turbine front pressure control device 17 based on a steam turbine front pressure signal 13.

第2図は負荷制御装置16の詳細ブロツク図で
ある。
FIG. 2 is a detailed block diagram of the load control device 16.

目標負荷設定18に変化率制限器19を介して
目標負荷信号を作成し、各ガスタービン負荷20
a,20bと蒸気タービン負荷21の合計との偏
差を減算器23で求め、調節器24を介して各ガ
スタービンのデマンド負荷信号を作成する。デマ
ンド負荷信号は更に各ガスタービン負荷20a或
は20bと比較され調節器26を介してガスター
ビン燃料操作信号とする場合もある。
A target load signal is created for the target load setting 18 via the change rate limiter 19, and each gas turbine load 20
A subtracter 23 calculates the deviation between a, 20b and the total steam turbine load 21, and a demand load signal for each gas turbine is created via a regulator 24. The demand load signal may also be compared to each gas turbine load 20a or 20b via regulator 26 to provide a gas turbine fuel operating signal.

一方蒸気タービンは、排熱回収ボイラで発生し
た蒸気を有効利用する為全て受け入れる方式とし
て、蒸気タービン加減弁前圧制御方式としてい
る。この加減弁前圧の設定方式は、第3図に示す
様に、蒸気タービン負荷に対して低負荷で圧力設
定が低く、高負荷で圧力設定を高くし、その間を
直線で結ぶようにする。設定関数28が蒸気ター
ビン効率向上の為にも、又タービン湿りを軽減す
る点からも望ましい。
On the other hand, the steam turbine adopts a steam turbine control valve front pressure control system, which accepts all the steam generated by the exhaust heat recovery boiler in order to effectively utilize it. As shown in FIG. 3, this method of setting the pressure in front of the regulating valve is such that the pressure setting is low at low loads with respect to the steam turbine load, and the pressure setting is high at high loads, with a straight line connecting the two. Setting function 28 is desirable both for improving steam turbine efficiency and for reducing turbine wetting.

第3図は従来の圧力制御系を示すブロツク図で
ある。
FIG. 3 is a block diagram showing a conventional pressure control system.

ガスタービン負荷指令値27の関数として、第
4図で示す前圧力設定関数を前圧設定関数器28
で作成し、減算器29で蒸気タービン前圧力信号
13と減算し、調節器30を介して加減弁開度信
号31を作成する。
As a function of the gas turbine load command value 27, the front pressure setting function shown in FIG.
, and is subtracted from the steam turbine front pressure signal 13 by a subtractor 29 to create an adjustment valve opening signal 31 via a regulator 30.

しかし、この方式に於ては、第5図に示す様な
現象が生じる。
However, in this method, a phenomenon as shown in FIG. 5 occurs.

第5図で、Lsr、Ar、Prは夫々蒸気タービンの
負荷、加減弁開度、圧力の基準値である。ここで
基準値とは、プラント全体の状態量の静バランス
がとれている時の値という意味である。また、
Lsa1、Aa1、Pa1は夫々、プラントの動特性変化
(過渡変化)を考慮した時の蒸気タービンの負
荷、加減弁開度、圧力である。
In FIG. 5, Lsr, Ar, and Pr are reference values for the steam turbine load, control valve opening, and pressure, respectively. Here, the reference value means a value when the state quantities of the entire plant are statically balanced. Also,
Lsa 1 , Aa 1 , and Pa 1 are the load of the steam turbine, the opening degree of the regulating valve, and the pressure, respectively, when considering changes in the dynamic characteristics (transient changes) of the plant.

更に、Gr、Ga1は夫々ボイラ発生蒸気量の基準
値及び実際値である。又LGはガスタービン負荷
指令又は負荷である。
Further, Gr and Ga 1 are the reference value and actual value of the amount of steam generated by the boiler, respectively. Further, L G is a gas turbine load command or load.

第5図の実際値の特性は蒸気タービン加減弁の
前圧制御を第3図に示す制御系を採用した場合で
あり、時刻t0からt1迄ガスタービン負荷LGを上昇
させると、ボイラ発生蒸気量は動特性的遅れがあ
る為に、基準値Grに対しGa1の様になり、蒸気タ
ービン負荷Lsa1も前圧がP1で一定であるため、
Lrにやや遅れて上昇する。しかし、時刻t1からt2
にかけてガスタービン負荷に対応して前圧設定を
P1からP2に上昇させると、加減弁開度Aa1が低下
し、蒸気タービン負荷Lsa1も一次低下する。
The characteristics of the actual values shown in Fig. 5 are obtained when the control system shown in Fig. 3 is adopted for the front pressure control of the steam turbine regulator, and when the gas turbine load L G is increased from time t0 to t1 , the boiler Since the generated steam amount has a dynamic delay, it becomes Ga 1 with respect to the reference value Gr, and the steam turbine load Lsa 1 is also constant at the front pressure P 1 , so
It rises slightly later than Lr. But from time t 1 to t 2
The front pressure is set according to the gas turbine load.
When increasing from P 1 to P 2 , the regulating valve opening degree Aa 1 decreases, and the steam turbine load Lsa 1 also decreases to a primary degree.

これは、ボイラ発生蒸気量Ga1が基準値Grに比
べ増加が遅れるが、前圧のみは制御している為に
基準値通りとなる(Pa1=Pr)となり加減弁を閉
じる為である。
This is because although the boiler generated steam amount Ga 1 increases later than the reference value Gr, since only the front pressure is controlled, it becomes the same as the reference value (Pa 1 =Pr) and the control valve is closed.

この為に、蒸気タービンの負荷上昇がボイラ発
生蒸気量の遅れ以上に遅れる事になる。
For this reason, the increase in load on the steam turbine is delayed beyond the delay in the amount of steam generated by the boiler.

本発明の目的は、前圧制御式タービンの変圧開
始時に生じる蒸気タービン負荷の逆応答を防止す
るタービン圧力制御方式を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a turbine pressure control method that prevents a reverse response of a steam turbine load that occurs at the start of pressure transformation of a prepressure controlled turbine.

本発明は、ガスタービン負荷の上昇に伴ない、
蒸気タービン加減弁前圧を上昇させる際には前圧
制御を中断して加減弁一定開始に保持し、圧力が
P2に達してから圧力一定制御を行なう事により、
蒸気タービン負荷の低下を防止するようにしたも
のである。
As the gas turbine load increases, the present invention
When increasing the pressure in front of the steam turbine control valve, the front pressure control is interrupted and the control valve is kept at a constant starting point, and the pressure is increased.
By performing constant pressure control after reaching P 2 ,
This is designed to prevent a drop in steam turbine load.

第6図は本発明による諸制御状態図である。 FIG. 6 is a diagram of various control states according to the present invention.

時刻t0からt1までは従来と同様に蒸気タービン
加減弁は前圧一定(P1)制御であるが、時刻がt1
になりガスタービン負荷がLG1に達した時点で蒸
気タービン加減弁開度をその時の開度に保持し、
前圧がP2に達する(時刻t3)迄保ち、その後のガ
スタービン上昇に対しては前圧を一定制御とす
る。
From time t 0 to t 1 , the steam turbine control valve is controlled at a constant front pressure (P 1 ) as before, but when time t 1
When the gas turbine load reaches L G1 , the steam turbine regulating valve opening is maintained at the opening at that time.
The front pressure is maintained until it reaches P 2 (time t 3 ), and the front pressure is controlled to be constant as the gas turbine rises thereafter.

ガスタービン負荷を降下させる場合も同様であ
るが、この場合はガスタービン規定負荷LG2以下
になつてから加減弁開度を一定に保ち前圧がP1
降下したら加減弁前圧(P1)一定制御とする。
The same applies when lowering the gas turbine load, but in this case, after the gas turbine load falls below the specified gas turbine load L ) constant control.

第7図は本発明の実施例を示すブロツク図であ
る。
FIG. 7 is a block diagram showing an embodiment of the present invention.

時刻t0からt1までは、負荷指令27に基づいて
第3図に示したと同一の構成で調節器30(PI構
成)より加減弁開度信号を得て、前圧一定制御を
行なつている。時刻t1〜t2で、比較器41,4
2,43,44でガスタービン負荷LG、蒸気タ
ービン前圧実測値を設定値と比較する。すなわ
ち、比較器41でLG≧LG1、比較器42でP
P2、比較器43でLGG2、比較器44でP>
P1を比較し、比較器41と42のAND条件を
AND回路45でとり、比較器43と44のAND
条件をAND回路46でとり、AND回路45と4
6のORをOR回路47でとる。比較器41,42
で負荷上昇を判定し、比較器43,44で負荷下
降を判定する。AND回路45,46のいずれか
の出力により、リレー回路48を駆動し、リレー
接点50a,50b,50cを、50aがオフ、
50b,50cがオンとなるように切換える。こ
れにより調節器30の第6図の時刻t1時点の出力
がメモリ32に記憶され、この記憶値が時刻t2
で一定の加減弁開度信号として出力される。ま
た、メモリ32の出力はタイバツク信号33とし
て調節器30に送られる。
From time t 0 to t 1 , based on the load command 27, the adjustment valve opening signal is obtained from the regulator 30 (PI configuration) with the same configuration as shown in FIG. 3, and the front pressure is controlled to be constant. There is. At time t1 to t2 , comparators 41 and 4
At steps 2, 43, and 44, the gas turbine load L G and the actual measured steam turbine front pressure are compared with the set values. That is, the comparator 41 holds L G ≧L G1 and the comparator 42 holds P
P 2 , L G L G2 in comparator 43, P> in comparator 44
Compare P 1 and set the AND condition of comparators 41 and 42.
Taken by AND circuit 45 and AND of comparators 43 and 44
The conditions are taken by the AND circuit 46, and the AND circuits 45 and 4
The OR circuit 47 takes the OR of 6. Comparators 41, 42
A load increase is determined by the comparators 43 and 44, and a load decrease is determined by the comparators 43 and 44. The output of either the AND circuit 45 or 46 drives the relay circuit 48, and the relay contacts 50a, 50b, 50c are turned off.
50b and 50c are switched on. As a result, the output of the regulator 30 at time t1 in FIG. 6 is stored in the memory 32, and this stored value is output as a constant control valve opening signal until time t2 . The output of the memory 32 is also sent to the regulator 30 as a tieback signal 33.

なお、OR出力条件は、ガスタービン負荷LG
が、LG1≦LG≦LG2で示される条件とする事が
まず考えられるが、第7図で示す条件が、加減弁
開度及び蒸気タービン負荷の一次的減少(負荷上
昇時)或は一次的増大(負荷降下時)を完全に防
止する方式である。
In addition, the OR output condition is gas turbine load L G
However, the conditions shown in FIG . This method completely prevents temporary increases (when the load drops).

第7図に於けるガスタービン負荷LG,LG1
G2の替りにガスタービン負荷指令値、プラント
目標負荷指令値、蒸気タービン負荷をとる事でも
同様の効果を期待出来る。
Gas turbine loads L G , L G1 , in Fig. 7
A similar effect can be expected by using the gas turbine load command value, plant target load command value, or steam turbine load instead of L G2 .

なお、本発明の実施例では複合サイクルタービ
ンの例を示したが、このような形式にこだわらず
前圧を一定に制御する形式(発生蒸気等の総てを
タービンに入れるもの、燃料制御のできないも
の)の総てに適用可能である。また、タービン形
式も蒸気、ガス、フロン等を用いるものに対して
広く適用しうる。
In the embodiments of the present invention, an example of a combined cycle turbine has been shown, but it is not limited to such a type; it may also be of a type that controls the front pressure at a constant level (such as a type in which all generated steam etc. is input to the turbine, or a type in which fuel cannot be controlled). Applicable to all items). Further, the turbine type can be widely applied to those using steam, gas, fluorocarbon, etc.

以上より明らかなように本発明によれば、プラ
ントの負荷変化時の蒸気タービン負荷逆転現象を
防止し円滑な負荷変化を行なうことができる。
As is clear from the above, according to the present invention, it is possible to prevent a steam turbine load reversal phenomenon when a plant load changes, and to perform a smooth load change.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は複合サイクル発電プラントの系統図、
第2図は第1図の負荷制御装置16の詳細ブロツ
ク図、第3図は従来の圧力制御系のブロツク図、
第4図は蒸気タービン前圧力設定特性図、第5図
は従来の諸制御状態図、第6図は本発明の諸制御
状態図、第7図は本発明の実施例のブロツク図で
ある。 1……ガスタービン、2,7……発電機、3…
…燃料ポンプ、5……熱回収ボイラ、6……蒸気
タービン、8……復水器、10……脱気器、1
4,15……負荷検出器、16……負荷制御装
置、28……前圧設定関数器、29……減算器、
30……調節器、32……メモリ、41,42,
43,44……比較器、45,46……AND回
路、47……OR回路、48……リレー回路、5
0a,50b,50c……リレー回路。
Figure 1 is a system diagram of a combined cycle power plant.
FIG. 2 is a detailed block diagram of the load control device 16 shown in FIG. 1, and FIG. 3 is a block diagram of a conventional pressure control system.
FIG. 4 is a steam turbine front pressure setting characteristic diagram, FIG. 5 is a conventional control state diagram, FIG. 6 is a control state diagram of the present invention, and FIG. 7 is a block diagram of an embodiment of the present invention. 1... Gas turbine, 2, 7... Generator, 3...
...fuel pump, 5 ... heat recovery boiler, 6 ... steam turbine, 8 ... condenser, 10 ... deaerator, 1
4, 15...Load detector, 16...Load control device, 28...Prepressure setting function device, 29...Subtractor,
30...Adjuster, 32...Memory, 41, 42,
43, 44... Comparator, 45, 46... AND circuit, 47... OR circuit, 48... Relay circuit, 5
0a, 50b, 50c...Relay circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 発生量の制御が実施されない熱交換器より発
生した流動媒体を加減弁を介してタービンに取り
込むに際し、前記加減弁の前圧設定を負荷又は負
荷相当信号の関数として設定するタービン圧力制
御方式において、前記前圧設定圧力が一定となる
負荷範囲では前圧一定制御を実行し、前記前圧設
定圧力の変圧範囲では前記加減弁の開度を一定と
する制御を実行することを特徴とするタービン圧
力制御方式。
1. In a turbine pressure control method in which the front pressure setting of the regulating valve is set as a function of the load or a load equivalent signal when the fluidized medium generated from the heat exchanger whose generation amount is not controlled is taken into the turbine via the regulating valve. , a turbine characterized in that a front pressure constant control is executed in a load range where the front pressure set pressure is constant, and a control is executed to keep the opening degree of the regulating valve constant in a pressure changing range of the front pressure set pressure. Pressure control method.
JP12107380A 1980-09-03 1980-09-03 Turbine pressure control system Granted JPS5746006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12107380A JPS5746006A (en) 1980-09-03 1980-09-03 Turbine pressure control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12107380A JPS5746006A (en) 1980-09-03 1980-09-03 Turbine pressure control system

Publications (2)

Publication Number Publication Date
JPS5746006A JPS5746006A (en) 1982-03-16
JPS6157921B2 true JPS6157921B2 (en) 1986-12-09

Family

ID=14802168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12107380A Granted JPS5746006A (en) 1980-09-03 1980-09-03 Turbine pressure control system

Country Status (1)

Country Link
JP (1) JPS5746006A (en)

Also Published As

Publication number Publication date
JPS5746006A (en) 1982-03-16

Similar Documents

Publication Publication Date Title
US4287430A (en) Coordinated control system for an electric power plant
US4576124A (en) Apparatus and method for fluidly connecting a boiler into pressurized steam feed line and combined-cycle steam generator power plant embodying the same
EP0093724B1 (en) Sliding pressure flash tank
US6609379B2 (en) Gas turbine plant and method of controlling gas turbine plant
US5279263A (en) Cascaded steam temperature control applied to a universal pressure boiler
JPS6157921B2 (en)
JPS5820363B2 (en) steam turbine equipment
JP2918743B2 (en) Steam cycle controller
GB2176248A (en) Turbine control
JP3285946B2 (en) Steam temperature controller for variable-pressure once-through boiler
JP2823342B2 (en) Steam temperature controller for superheater / reheater in combined cycle power plant
JP2686262B2 (en) Operating method of once-through boiler
JP3183937B2 (en) Water supply control device
JPH05296401A (en) Exhaust heat recoverying boiler system and its main steam temperature controller
JP2612740B2 (en) Automatic power plant control system
JPS623287B2 (en)
JPH0776604B2 (en) Drum level control device
JPH0133767Y2 (en)
JPS6239661B2 (en)
JPH0330687B2 (en)
JPS613901A (en) Method of controlling water level in drum on starting of combined power plant
JPS6350601B2 (en)
JPS60524B2 (en) Combined cycle plant output control device
JPS59115406A (en) Load controller of composite cycle power generating plant
JPS6260603B2 (en)