JPS613901A - Method of controlling water level in drum on starting of combined power plant - Google Patents

Method of controlling water level in drum on starting of combined power plant

Info

Publication number
JPS613901A
JPS613901A JP12374484A JP12374484A JPS613901A JP S613901 A JPS613901 A JP S613901A JP 12374484 A JP12374484 A JP 12374484A JP 12374484 A JP12374484 A JP 12374484A JP S613901 A JPS613901 A JP S613901A
Authority
JP
Japan
Prior art keywords
water level
drum
flow rate
drum water
combined power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12374484A
Other languages
Japanese (ja)
Inventor
国場 幸政
勇一 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP12374484A priority Critical patent/JPS613901A/en
Publication of JPS613901A publication Critical patent/JPS613901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は火力プラントの制御方法に係り、特に。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a method for controlling a thermal power plant, and particularly to a method for controlling a thermal power plant.

ガスタービンと蒸気タービンに、それぞれ、発電機を設
けた多軸型コンバインド発電プラントの制御方法に関す
る。
The present invention relates to a control method for a multi-shaft combined power generation plant in which a gas turbine and a steam turbine are each provided with a generator.

〔発明の背景〕[Background of the invention]

従来のドラム水位制御ではドラム水位設置゛値と実際の
水位値の差を取り、この差に対してPI制御を行なうの
が一般的である。この制御ではコンバインド発電プラト
ン特有のスウェリングを防止するためドラム水位を起動
前に低い位置に設定し、ガスタービン着火と共に、徐々
に規準水位まで上げていく間に、節炭器再循環流量を開
始するため、ドラムへ給水がほとんど行かなくなり、水
位窃降下が起こる。この降下に対して、ドラム水位設定
値と実際の水位値の差によるPI制御だけでは遅く、ま
た、応答を早くするために起動時にPI制御の制御定数
を合わせた場合、負荷併入以降の水位変動の小さな領域
で応答が早いため、激しい水位変動を起こす恐れがある
。従って、従来の制御方式では起動時の水位制御は困難
である。
In conventional drum water level control, it is common to calculate the difference between the drum water level setting value and the actual water level value, and perform PI control on this difference. In this control, in order to prevent the swelling characteristic of combined power generation Plato, the drum water level is set to a low position before startup, and as the gas turbine ignites, the drum water level is gradually raised to the standard level while the economizer recirculation flow is started. As a result, almost no water is supplied to the drum, and the water level drops. In response to this drop, PI control based only on the difference between the drum water level set value and the actual water level value is slow, and if the control constants of PI control are matched at startup to speed up the response, the water level after load addition is Since the response is fast in areas with small fluctuations, there is a risk of severe water level fluctuations. Therefore, with the conventional control method, it is difficult to control the water level at startup.

〔発明の目的〕[Purpose of the invention]

本発明の目的は排熱回収式ボイラを設けたコンバインド
発電プラトンの起動時におけるドラ入水位ai制御にお
いて、ガスタービン着火ととも#′Cphまる節炭器再
循環流量制御のために、ドラムへの給水が減少するのに
対し、起動時の特に着火の際に給水を急激に増すことに
よりガスタービン着火付近で起こるドラム水位の低下を
防止することにへる。
The purpose of the present invention is to control the drum inlet water level ai at the time of startup of a combined power generation Plato equipped with an exhaust heat recovery boiler, and to control the recirculation flow rate of #'Cph to the drum when the gas turbine ignites. While the water supply decreases, by rapidly increasing the water supply at startup, especially at ignition, it is possible to prevent the drum water level from dropping near the gas turbine ignition.

〔発明の実施例〕[Embodiments of the invention]

第1図で本発明を適用する排熱回収式コンバインド発電
プラトンの概要を説明する。
An outline of the exhaust heat recovery type combined power generation Plato to which the present invention is applied will be explained with reference to FIG.

先ず、ガスタービンの圧縮機1によって圧縮された一気
は燃焼器2で燃焼される。この燃焼により膨張した燃焼
ガスをタービン3に送り1発電機4を駆動する。ガスタ
ービンより排出された排ガスは排ガスダクト5に導びか
れ、過熱器7、蒸発器8、節炭器9、ドラム6、より構
成される排熱回収ボイラを通り、熱交換された後に、外
部へ排出される。
First, a gas compressed by a compressor 1 of a gas turbine is combusted in a combustor 2. Combustion gas expanded by this combustion is sent to a turbine 3 to drive a generator 4. Exhaust gas discharged from the gas turbine is led to an exhaust gas duct 5, passes through an exhaust heat recovery boiler consisting of a superheater 7, an evaporator 8, an economizer 9, and a drum 6, and is then heat-exchanged. is discharged to.

一方、復水器13より供給された水は給水ポンプ15を
経て、給水流量調節弁10により所要の給水流量を供給
する。給水された水は節炭器9に(よって加熱され一部
は節炭器再循環流量として節炭器再循環流量調節弁17
により流量制御され、復水器13へ回収される。残りの
給水がドラム6へ供給される。ドラム6の水は、さらに
、蒸発器8により加熱されて蒸気となり、蒸気は過熱器
7で過熱蒸気となり、一方は加減弁11を経て流量調節
され、蒸気タービン12に供給され、発電機14を駆動
する。もう一方は、タービンバイパス弁]6で、流量調
節された蒸気は復水器13に回収されて復水となる。
On the other hand, the water supplied from the condenser 13 passes through the water supply pump 15, and the water supply flow rate control valve 10 supplies the required water supply flow rate. The supplied water is heated by the economizer 9 (thereby, a part of the water is passed through the economizer recirculation flow rate control valve 17 as the economizer recirculation flow rate).
The flow rate is controlled by , and the water is recovered to the condenser 13 . The remaining feed water is supplied to the drum 6. The water in the drum 6 is further heated by an evaporator 8 to become steam, the steam is turned into superheated steam by a superheater 7, the flow rate of which is adjusted through a control valve 11, and supplied to a steam turbine 12, which drives a generator 14. drive The other is a turbine bypass valve [6], and the steam whose flow rate is adjusted is recovered into a condenser 13 and becomes condensed water.

次に、従来のドラム水位制御系統について概要を説明す
る。第2図に従来のドラム水位制御系統を先ず、水位設
定器29は上位計算機或いはプログラマブル設定器など
により設定値が与えられる。
Next, an overview of a conventional drum water level control system will be explained. FIG. 2 shows a conventional drum water level control system. First, a water level setter 29 is given a set value by a host computer or a programmable setter.

与えられた水位設定値に対し、ドラム水位発信器30よ
りフィードバック信号が与えられ、減算器20で設定値
と実際の水位との偏差を出し、比例積分器21で比例積
分演算される。ドラム水位制御は四要素制御であるため
、減算器22で発信器31より給水流量1発信器32よ
り蒸気流量、発信器33より節炭器再循環流量及びドラ
ム水位偏差の比例積分値を減算することによる偏差出力
を比例積分器23で、さら番こ、比例積分演算を行ない
、その出力によって給水流1kIlliJ節弁の制御を
行なう。尚、減算器26、信号発生M825、比例積分
器27.高値選択24は給水流量の最小流量を確保する
ための回路である。
A feedback signal is given from the drum water level transmitter 30 to a given water level set value, a subtracter 20 calculates the deviation between the set value and the actual water level, and a proportional integrator 21 performs a proportional integral calculation. Since the drum water level control is a four-element control, the subtractor 22 subtracts the water supply flow rate from the transmitter 31, the steam flow rate from the transmitter 32, the economizer recirculation flow rate from the transmitter 33, and the proportional integral value of the drum water level deviation. The resulting deviation output is subjected to a proportional integral calculation in the proportional integrator 23, and the water supply flow 1kIlliJ control valve is controlled by the output. In addition, the subtracter 26, the signal generator M825, the proportional integrator 27. The high value selection 24 is a circuit for ensuring the minimum flow rate of the water supply flow rate.

起動時における従来のドラム水位(a)、給水流量(b
)、節炭器再循環流量(c)の挙動を第3図で説明する
Conventional drum water level (a) and water supply flow rate (b) at startup
), the behavior of the economizer recirculation flow rate (c) is explained in FIG.

先ず、ドラム水位設定値40がガスタービン着火からラ
ンプ状に設定され、ガスタービン併入で規準水位に達す
る。設定値に対して1着火付近で水位が下がる要因とし
てはガスタービン起動から着火まで排ガスダクト5の排
ガスが排出されるため、排ガスボイラーの温度が下がり
、それによってドラム6、節炭器9、蒸発器8の水の収
縮が起こり、ドラム水位41が下がる。また、給水42
はガスタービンの起動によりa T / H供給されて
おり、ガスタービンの着火時に、節炭器再循環流量43
の制御が始まるが、過渡的な応答により再循環流量設定
値a T / Hをオーバーシュートする場合がある。
First, the drum water level set value 40 is set in a ramp-like manner from the gas turbine ignition, and reaches the standard level when the gas turbine is added. The reason why the water level decreases around 1 ignition with respect to the set value is that the exhaust gas in the exhaust gas duct 5 is discharged from the start of the gas turbine to the ignition, so the temperature of the exhaust gas boiler decreases, which causes the temperature of the drum 6, economizer 9, and evaporator to decrease. The water in the container 8 contracts and the drum water level 41 decreases. In addition, water supply 42
is supplied by starting the gas turbine, and when the gas turbine ignites, the economizer recirculation flow rate 43
control begins, but the recirculation flow rate set value a T / H may be overshot due to a transient response.

給水流量a T / Hを超えた再循環流量値のため、
ドラム6への給水配管の構造によっては、ドラls 6
の水が逆流して再循環流として流れ出る場合がある。
Because of the recirculation flow rate value exceeding the feedwater flow rate a T/H,
Depending on the structure of the water supply piping to the drum 6, the drum ls 6
Water may flow backwards and flow out as recirculation flow.

これらの原因により、ガスタービン着火付近でドラム水
位が下がってしまい、水位低の警報設定値、或いはトリ
ップ値まで達する可能性がある。
Due to these causes, the drum water level may drop near the gas turbine ignition and may reach the low water level alarm set value or trip value.

このことから、ガスタフピンの着火時のドラム水位の降
下に対して1着火f8号とともに給水を急激に増すこと
により着火時の水位降下を防ぐことができる。
From this, it is possible to prevent the water level from dropping at the time of ignition by rapidly increasing the water supply together with No. 1 ignition f8 in response to the drop in the drum water level at the time of ignition of the gas tough pin.

着火時の給水流量を増す回路を従来の制御系統に加えた
ものを第4図に示す。
Figure 4 shows a conventional control system in which a circuit for increasing the water supply flow rate during ignition is added.

追加した回路には、加算器30、微分器34、切替器3
5.信号発生器36,37、があり、この回路によりガ
スタービン着火信号で信号発生器36.37のバイアス
値を切替える。つまり、通隼′はバイアス値It O#
lであるが着火信号とともに所定の設定バイアス値に切
替わる。そのバイアス値が微分冊に入力され、出力は設
定バイアスがR問とともに減衰してゆく微分状の信号が
出力される。
The added circuits include an adder 30, a differentiator 34, and a switch 3.
5. There are signal generators 36, 37, and this circuit switches the bias value of the signal generators 36, 37 with the gas turbine ignition signal. In other words, the bias value It O#
1, but is switched to a predetermined set bias value together with the ignition signal. The bias value is input to the differential book, and a differential signal is outputted in which the set bias attenuates as the R question increases.

このt令状のバイアス値が加算器38に加算される。本
回路によって、レベル設定値と実際のドラムレベルの偏
差にさらに微分状のバイアス値を加えることになり、給
水流量を着火時のみ増加させることになる。
The bias value of this t warrant is added to the adder 38. With this circuit, a differential bias value is further added to the deviation between the level setting value and the actual drum level, and the water supply flow rate is increased only at the time of ignition.

本回路を追加したことによるドラム水位、給水流量2節
炭器再循環流量の挙動を第5図に示す。
Figure 5 shows the behavior of the drum water level and water supply flow rate 2 economizer recirculation flow rate due to the addition of this circuit.

節炭優の再循環流量については従来通りの挙動であるが
給水流量についてはガスタービン着火より、設定バイア
ス分の給水流量が瞬間的に流れ。
The recirculation flow rate for excellent coal savings behaves as before, but the water supply flow rate is instantaneously equal to the set bias when the gas turbine ignites.

着火以降過渡的に減衰し、流* a T / Hまで減
衰する。この間に流れた給水流量によりドラム水位は降
下することなく規準水位まで上昇してゆく。
After ignition, it decays transiently until the flow *a T/H. During this period, the drum water level rises to the standard level without falling due to the flow rate of the water supply flowing.

尚、微分状のバイアス値を加算することによりドラム水
位設定値は第4図に示す様に、ランプ状に変化していた
ものが実質的には微分状バイアスを上乗せした破線で示
すような水位設定値となる。
By adding the differential bias value, the drum water level set value changes from a ramp-like change to a water level as shown by the broken line with the differential bias added, as shown in Figure 4. This is the set value.

13、、、*。0.イ1..よ9、やえよ、。5ラム、
水位が低ければ低い程、偏差が大きく生じ、給水流量も
さらに増加する様に制御されるため。
13,,,*. 0. B1. .. Yo 9, yay. 5 rum,
The lower the water level, the greater the deviation, and the water supply flow rate is controlled to increase further.

着火時以降のドラム水位の低下を防ぐことができる。図
中28は給水流量調節弁である。
It is possible to prevent the drum water level from decreasing after ignition. In the figure, 28 is a water supply flow rate control valve.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、着火以降のドラム水位の低下を十分に
防ぎ、ランプ状のドラム水位設定値に十分追従でき、制
御として最適で、かつ、効果も大きい。
According to the present invention, it is possible to sufficiently prevent a drop in the drum water level after ignition and to sufficiently follow the ramp-shaped drum water level set value, which is optimal as control and highly effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は多軸型フンバインド発電プラントの概略図、第
2図は従来のドラム水位制御系統図、第3図は従来のド
ラム水位制御によるドラム水位給水流量2節炭器再li
環流量の挙動図、第4図は本発明に一実施例のドラム水
位制御系統図、第5図は本発明のドラム水位制御による
ドラム水位、給水流量2節炭器再411ft流量の挙動
図である。 34・・・微分器、35・・・信号切替器、36・・・
信号発生器、37・・・信号発生器。
Figure 1 is a schematic diagram of a multi-shaft Humbind power generation plant, Figure 2 is a conventional drum water level control system diagram, and Figure 3 is a drum water level feed water flow rate with conventional drum water level control.
Figure 4 is a diagram of the behavior of the recirculation flow rate, Figure 4 is a drum water level control system diagram of an embodiment of the present invention, Figure 5 is a behavior diagram of the drum water level and the water supply flow rate of 2 economizers and the 411 ft flow rate according to the drum water level control of the present invention. be. 34... Differentiator, 35... Signal switch, 36...
Signal generator, 37... Signal generator.

Claims (1)

【特許請求の範囲】 1、排熱回収式コンバインド発電プラトンにおいて、 ドラム水位制御系統に加算器、微分器、信号発生器、切
替器を設け、ガスタービンの着火とともに始まる節炭器
再循環流量のために起こるドラム水位の降下に対し、前
記ドラムの水位設定値と実際の水位値との差に起動時の
み微分状のバイアス値を加算する手段を設けたことを特
徴とするコンバインド発電プラトンの起動時のドラム水
位制御方法。
[Claims] 1. In the exhaust heat recovery type combined power generation Plato, an adder, a differentiator, a signal generator, and a switch are provided in the drum water level control system to control the energy saving recirculation flow rate that starts when the gas turbine ignites. The starting of the combined power generation Plato is characterized in that a means is provided for adding a differential bias value to the difference between the drum water level set value and the actual water level value only at the time of starting, in response to a drop in the drum water level that occurs due to the drop in drum water level. drum water level control method.
JP12374484A 1984-06-18 1984-06-18 Method of controlling water level in drum on starting of combined power plant Pending JPS613901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12374484A JPS613901A (en) 1984-06-18 1984-06-18 Method of controlling water level in drum on starting of combined power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12374484A JPS613901A (en) 1984-06-18 1984-06-18 Method of controlling water level in drum on starting of combined power plant

Publications (1)

Publication Number Publication Date
JPS613901A true JPS613901A (en) 1986-01-09

Family

ID=14868250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12374484A Pending JPS613901A (en) 1984-06-18 1984-06-18 Method of controlling water level in drum on starting of combined power plant

Country Status (1)

Country Link
JP (1) JPS613901A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4784574A (en) * 1984-10-18 1988-11-15 Ngk Insulators, Ltd. Turbine rotor units and method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4784574A (en) * 1984-10-18 1988-11-15 Ngk Insulators, Ltd. Turbine rotor units and method of producing the same

Similar Documents

Publication Publication Date Title
JPS5923004A (en) Method and device for controlling generator facility of steam turbine
JP2692973B2 (en) Steam cycle startup method for combined cycle plant
US6609379B2 (en) Gas turbine plant and method of controlling gas turbine plant
JPS613901A (en) Method of controlling water level in drum on starting of combined power plant
JPS5820363B2 (en) steam turbine equipment
JP2908884B2 (en) Pressurized fluidized bed combined plant and its partial load operation control method and control device
JP3007724B2 (en) Load control method and apparatus for combined cycle power plant
JPH0932508A (en) Combined cycle plant
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
GB2176248A (en) Turbine control
JP2692978B2 (en) Start-up operation method of combined cycle plant
JPH05296401A (en) Exhaust heat recoverying boiler system and its main steam temperature controller
JPS6064101A (en) Controller for once-through boiler
JPH1181919A (en) White smoke of exhaust gas preventing method in binary cycle gas turbine device
JPS62294724A (en) Turbine casing cooler for turbocharger
JP2549190B2 (en) Combined Cycle Power Plant Controller
JPS60228711A (en) Turbine bypass control device for combined cycle electric power plant
JP2507458B2 (en) Control equipment for coal gasification combined cycle plant
JP2645128B2 (en) Coal gasification power plant control unit
SU1179009A1 (en) Method of regulating recovery boller steam rating
JPH03134204A (en) Combined cycle power plant
JPH01212802A (en) Steam temperature control device for boiler
JPS622129B2 (en)
JPS62245009A (en) Automatic controller for boiler
JPS63192919A (en) Control device for coal gasification combined plant